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ABSTRACT 

The heavy truck industry is a highly competitive business 

field; traditionally maintenance plans for heavy trucks are 

static and not subject to change. The advent of affordable 

telematics solutions has created a new venue for services 

that use information from the truck in operation. Such 

services could for example aim at improving the 

maintenance offer by taking into account information of 

how a truck has been utilized to dynamically adjust 

maintenance to align with the truck’s actual need. These 

types of services for maintenance are often referred to as 

condition based maintenance (CBM) and more recently 

Integrated Vehicle Health Management (IVHM). 

 
In this paper we explain how we at Scania developed an 

expert system for adapting the maintenance intervals 

dependent on operational data from trucks. The expert 

system is aimed at handling components which 

maintenance experts have knowledge about but do not find 

it worth the effort to create a correct physical wear-model 

for. 

 
We developed a systematic way for maintenance experts to 

express how operational data should influence the 

maintenance intervals. The rules in the expert system 

therefore are limited in what they can express, and as 

such our presented system differs from other expert 

systems in general.  

 

In a comparison between our expert system and another 

general expert system framework, the expert system we 

constructed outperforms the general expert framework 

using our limited type of rules. 

1. INTRODUCTION 

Expert systems have been around for a long time (Durking, 

1990; Russel & Norvig, 2010). They have been successfully 

used in a variety of applications ranging from diagnosing 

medical problems (Buchanan & Shortliffe, 1984) to 

facilitate space exploration (Marsh, 1988). Today the term 

expert system is not used to any large extent, especially not 

in industry, now days they are often referred to as rule 

engines. In this paper we will use the term expert system 

and not rule engine. 

 

Scania Commercial Vehicles (Scania) is a manufacturer of 

heavy trucks, coaches and engines for industrial and 

marine usage. We at Scania have investigated how an 

expert system could be used for improving the maintenance 

of our products. The aim is to achieve perfect alignment 

with the maintenance program of a Scania product with the 

actual maintenance needs of the product. Using on-board 

sensors from our vehicles we collect data of how the   

vehicle is utilized. This operational data together with  

expert  knowledge, captured in a type of expert system, is 

used to adapt the maintenance program to match each 

vehicle individual maintenance needs. 

 

This paper is focused on describing the design 

considerations developing such adaptive system. We also 

relate our system to other general expert systems. The rest 

of the paper is organized as follows: In the next section we 

will look at rules and expert systems in greater detail. Then 

the current solution of vehicle maintenance at Scania is 

presented after that we present our proposed solution, its 

implementation and the findings from comparing it with a 

general expert system. The last section is dedicated to 

discussion and conclusions and finally we give pointers to 

future work.     

2. EXPERT SYSTEMS AND RULES 

An expert system has two major settings of operation, one 

when the knowledge base is updated and one when using 

the knowledge base.  

 

In the former case an expert’s knowledge of a domain is 

captured and inserted through the user interface. The 

information is then stored in the knowledge base in a 
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suitable format for the inference mechanism. In the latter 

case a user (or computer) post a question using the user 

interface and the inference mechanism infer an answer 

which is presented for the user. 

Expert systems are beneficial when developing advanced 

software systems because they fulfill the need of separating 

out the expert knowledge from the source code. This 

separation is typically beneficial for easy maintenance of the 

knowledge base over time. Re-use of proven inference 

mechanisms is also facilitated using this approach as the 

inference mechanism can be an external software module.    

2.1. Rules 

Rules come in different flavors, but there are two dominant 

types, production rules and logic programming rules. As 

noted in the paper by Kowalski and Sadri (Kowalski & 

Sadri, 2009), these two types of rules have traits which 

overlap but also have differences between them. In this 

paper we will make a simple distinction between them and 

use the term production rules for rules which use a forward-

chaining inference mechanism and logic programming rules 

as rules which use a backward-chaining inference 

mechanism. For a clarifying paper about these inference 

mechanisms, see (Shapiro, 1987). 

 

Basically the main difference between the two inference 

mechanisms is how search is conducted. In a search 

problem setting we have a certain goal and a current state, 

i.e. where we are now. If we choose to search from the 

current state until we find the goal, we are doing forward-

chaining inference. If we start from the goal and search 

(backward) until we find a path to the current state, we are 

doing backward-chaining inference.  

 

In a rule based system this type of search are conducted in a 

knowledge base together with a question or new fact. The 

type of inference mechanism is closely related to what type 

of reasoning we are interested in. For example are we 

interested in answer(s) to a certain question or do we want 

to see the implications of new facts that we just observed? 

 

Typical heuristics for choosing one inference mechanism is 

to consider what event that trigger the problem solving. If 

the trigger is a new fact then the exploration of 

consequences given the new fact is naturally handled by 

forward-chaining mechanism. If on the other hand the 

trigger is a query to which an answer is required they are 

naturally handled by backward-chaining.  

 

Other general rules for guidelines for choosing inference 

mechanism are to investigate the branching of the search 

space, i.e. depending upon the knowledge base. If the 

average state in the search space has more successors than 

predecessors backwards-chaining is desirable. If the average 

state has fewer successors than predecessor it is desirable to 

use forward-chaining. These two inference mechanisms can 

also be mixed. 

 

3. HEAVY TRUCK MAINTENANCE – CURRENT SITUATION 

AT SCANIA 

Today the maintenance plan for Scania vehicles is set when 

the vehicle is sold. This is typically done by sales 

personnel together with the buyer by selecting one of a 

set of predefined maintenance plans that best matches the 

vehicle specifications and the buyers intended usage. 

 

The predefined maintenance plans are developed and 

maintained by skilled personnel having knowledge about 

both the products and customer's usage. Vehicle usage is 

divided into six typical applications types. For each 

application type and vehicle specification, a cyclic 

maintenance plan is given as the number of kilometers 

between maintenance occasions with fixed maintenance 

protocols. 

 
Maintenance is always done in a cycle of S-M-S-L 

occasions, where S = Small, M = Medium, and L = Large 

are different maintenance modules for maintaining 

different sets of components. 

 
There   are   a   number   of   problems   with   the   way 

maintenance plans are created today: 

 
1. Much responsibility is put on the sales personnel to 

know the product as well as the customer's usage of 

the product. 

2. Once created the plans are seldom updated even if 

the application of the vehicle changes. Thus, it is 

possible that the maintenance a vehicle receives does 

not correspond to its needs. 

3. Although the fixed S, M, and L modules make it 

convenient to plan, they contain maintenance points 

that do not need to be grouped together with the 

effect that some components are maintained more 

than necessary. 

4. The current maintenance plans are coarse in the sense 

that the precision in the type of application must be 

fitted into one of the six types of application. Therefore 

the experts dictating when maintenance ought to be 

done, use a safety margins given the uncertainty of 

the actual usage of a particular vehicle. This has two 

consequences, one is that plans are not individualized 

to the degree that they could be and the second 

consequence is that components are maintained more 

than necessary. 
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4. PROPOSED SOLUTION’S SCOPE, AIMS AND MOTIVATION 

Many problems with the current situation can be improved 

with a system for Integrated Vehicle Health Monitoring 

(IVHM), see (Ian K. Jennions et al., 2011; Dunsdon & 

Harrington, 2008). Using modern IT technologies 

communication between Scania trucks and our system is 

feasible. This includes acquiring operational data from a 

specific trucks while in operation, this data can then be used 

to calculate the maintenance need of a vehicle.  

This computation of the maintenance need can be done in a 

verity of ways with different complexities. Ranging from 

computer models that capture the maintenance point 

physical characteristics to simple preset deadlines, 

dependent on some operational data, which dictate when 

maintenance should be done.  

The aim of our expert system was to capture the knowledge 

of our maintenance experts in a systematic and user friendly 

manner. The system was design so that the maintenance 

experts should be able to edit “rules” them self and also able 

to verify them.  

 

The intension of the system was that it should be used when 

experts “know” how operational factors, measured via 

operational data, affect the maintenance need of a 

component, but we are not interested in creating a complex 

and fully verified maintenance model for the component. 

The reasons of why we want to use the expert system and 

don’t want to create a “full” model can be motivated by the 

fact that the cost of creating such a model is regarded as to 

high compared to its benefits.  

 

As a truck from Scania consist of around 80 to 160 unique 

maintenance points related to different components. 

Currently we have created four “full” maintenance models 

for components with vital importance and this figure will 

probably rise in the future. But for maintenance points that 

will not have “full” models an expert system seems like a 

logical way to address the need for individualized 

maintenance from a technical and business oriented view.             

4.1. Expert system design 

To create our expert system we firstly removed the 

maintenance points from their S, M and L modules and let 

the maintenance experts themselves define new 

maintenance points. Thus improving the precision as 

maintenance point no longer needs to be lumped together.  

 

When experts express rules regarding maintenance points 

they need to convey information about “which specification 

is the maintenance point valid for?” and “when is the 

maintenance point valid?” The first question is specified by 

part-numbers used by Scania when assembling a truck.  The 

second question is specified by intervals utilize three basic 

types of information; mileage, operational hours and static 

time.  

 

Mileage is self-explanatory, operational hours is defined as 

time when the engine is running and static time denotes 

calendar time. For example can an interval be defined by 

opHours_cond(0,+inf), which denotes that a rule is valid 

for a whole vehicles lifetime, as it is valid from 0 operating 

hours to infinity (inf) operating hours. Mileage is measured 

in km, operational time in hours and static time in days. 

 

This interval validity condition was requested by the 

maintenance experts as they wanted to be able to express 

different rules for different ages of a component, i.e. check a 

chassis for cracks do not to happen frequently when a truck 

is new but when it’s old it needs to be done more often. This 

type of rule also put a demands on the system to keep track 

of events which causes reset of the three type of conditions, 

for example even how unlikely it may be, if we replaced  the 

chassis on a truck.  

4.1.1. Operational data 

Before we look in to how the experts can use operational 

data to influence the maintenance point we have to look at 

the characteristics of operational data at Scania trucks.  

 

Operational data is captured in episodes, i.e. from time t0 to 

time t1. These episodes can be of varying length, trucks with 

wireless telemetric can export episodes at a preset 

periodicity, while trucks not having wireless telemetric 

might have episodes that are equal to their operational time 

between workshop visits.  

 

Three different data formats exist for operational data, 

scalar, vector and matrix format. Measurement for average 

fuel consumption is a scalar value, i.e. 

fuel_consumption(53) = 53 liter / 100 km, which is 

calculated for an episode. Vectors can for example be the 

altitude(VeryLow, Low, Medium, High, VeryHigh), 

VeryLow = less than 110m, Low = 110m to 990m, Medium 

= 990m to 1950m, High = 1950m to 3000m, VeryHigh = 

3000m or more over sea level.  

 

The value for operational data variables are aggregated in 

bins and reflect the amount of time the truck is used under 

conditions for a particular bin. The same is true for matrix 

bins, but each bin has two conditions to adhere to. For 

example we could have a matrix measuring load in tons on 

the y-axis and speed of the truck on the x-axis.  

4.1.2. Expressing how operational data influence 

maintenance 

Using the three types of operational data collected from 

Scania products maintenance experts can via rules express 
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boundaries for deadlines and how operational data should 

influence maintenance deadlines. 

 

Rules have boundaries to make the maintenance point rules 

well defined, each rule has a minimum, maximum and a 

base value for at least one of three basic types and all three 

basic types can have these values. These values define the 

deadline span of the maintenance point and its central value, 

i.e. the base value. The application of the rule can never 

result in a lower value than the minimum value defined or 

higher than the maximum value defined.   

 

For example can we use the basic type km and define the 

minimum value = 50 000 km, base value = 100 000 km and 

maximum value = 150 000 km.  

 

Using numbers in range [-9, 9], the users can express how 

one instance of operational data influence the basic types for 

a specific rule. For example if we have the expression 

altitude(4, 2, 1, -3, -8) with the base values as defined 

above and an operational data episode from a truck with the 

following values altitude(0.1, 0.3, 0.6, 0, 0), where the 

aggregated values are normalized. This outcome for a rule is 

calculated in two steps, first the impact score in this case  4 

* 0.1 + 2 * 0.3 + 1 * 0.6 + -3 * 0 + -8 * 0 = 1.6 then the we 

apply the impact score onto the basic types, in this case as 

the value is positive 150000 – 100000 / 9 = 5556, 5556 *1.6 

+ 100000 = 108889. Hence in this case the system would 

output 108889 km as deadline for this particular 

maintenance point.  

 

More generally the impact is calculated as follows: 

 

 
∑ ∑              
          
             

           
 (1) 

 

Where the op_factors is the operational data influence 

specified by the maintenance expert, ranging from -9 to 9. 

The value can be set when answering the question “how 

much impact should we assign to observing this operational 

data in the relation to the base value and in what 

direction?” 

 

Calculating the basic type outcome given impact: 
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The maintenance expert is free to set the basic types base 

value anywhere between the minimum value and the 

maximum value. If it is set in the middle of these two values 

the “steps” will be equally long on each side of the base 

value, i.e. an impact value of 2 and -2 will amount in the 

same increase respectively decrease in the basic type. 

Setting the base value allows the expert to change how the 

impact will affect the outcome.  

 

When the impact is zero the outcome is the base value and 

when it is 9 the outcome is the maximum value and -9 

correspond to the minimum value. When experts define 

rules and use vector and matrix data which are distributions, 

it is unlikely that the impact will come close the endpoints 

of (+/-) 9.  

 

However scalars do not have any predefined bins and it is 

up to the experts to create the bins and set the influence 

value of (-/+) 9 for each bin. For example 

fuel_consumprion(from, to, influence_value), where from 

and to define the lower resp. higher bound for the bin. The 

scalars behave differently from vectors and matrix 

distributions in that one bin will get a 1 and the rest of the 

bins zero. Hence the influence value should be set with 

caution for scalars. 

 

In conclusion a maintenance expert defines the following 

values for a rule: ValidSpecification, 

BasicRuleIntervalCondition, Min, Base, Max, 

ExpertMaintInfluenceList. 

5. IMPLEMENTATION 

We implemented the system in SICStus Prolog, see (Mats 

Carlsson et al., 2013). One of the motivations of choosing 

this language is that Prolog uses a backwards chaining proof 

(resolution) to prove questions posted to it together with 

goals and facts in its knowledge base (or program). This fits 

fine with our intention of creating a system that answers the 

maintenance needs given a trucks operational data and 

specification. 

 

Using this programming language you get a complete and 

sound and tested theorem-prover “for free”, which made it 

an ideal language for our purposes. Other expert system 

frameworks could have been chosen, which we will 

elaborate further upon at the end of the paper, but the 

primary reason is our limited and restrictive “rules”, that did 

not need any fancier expert framework.  

 

To ensure better modularity we used the Rule Interchange 

Format (RIF) (W3C, 2013) standard proposed by W3C. The 

standard is supported by a number of expert systems, for 

example IBM Websphere and ILOG JRules, OntoBroker, 

Oracle Business Rules (OBR) etc. To ensure backwards 

compatibility and development of new knowledgebase 

releases, we utilized Prologs blackboard functionality, using 

version and status as keys to a certain blackboard. Version 

is just a version number and status can be one of 
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development, testing and released. Essentially a blackboard 

is a memory area where we post one knowledge base.  

 

We created a webb-based GUI using AJAX technology for 

creating and simulating rules. The GUI also check rule 

validity, i.e. that the base value is higher than the minimum 

value and lower than the maximum value.  

 

The expert system is a separate module and runs on a server 

exposing its services through the PrologBeans interface. Our 

solution make is possible to keep track of different user 

sessions and service many requests simultaneously. We 

have aimed for the modules to be self-contained with a clear 

interface. The expert system has two main services, 

loadRules and useRules. Loading a rule set check that it is 

syntactical correct, while semantics are pushed to the GUI, 

i.e. checks that intervals are defined correct etc. We also 

facilitate expert’s creation of new rule sets and updates to 

existing rule sets by addRule and removeRule.   

6. COMPARISON WITH OTHER SYSTEMS 

The initial motivation for using a programming language as 

Prolog for implementing the expert system was to have the 

freedom to change the system depending on the need from 

the users and to explore different solutions to the problem.  

 

There are a number of different expert systems available, 

both commercial and open-source. There does not exist, to 

the author’s knowledge at least, a multitude of systematical 

comparisons of expert systems. But one comparison of rule 

engines has been done in the field of Semantic Web which 

recommended for the interested reader (Senlin Liang, et al., 

2009).   

 

One of the more successful open-source tools is Drools (Red 

Hat, 2013).  Drools is part of the JBoss platform. It is an 

open-source software that aims at being “…a unified and 

integrated platform for Rules, Workflow and Event 

Processing”. To investigating how our expert system 

performance is comparable to other established general 

expert systems, we choose Drools to compare with. The 

reason was mainly its availability as it is open source 

software and partly because it is well established.  

 

The experimental setup was as follows:  

We implemented the same type of reasoning in Drools as 

we do in our system. Then we created knowledge base’s 

consisted of a base set of 1000 rules, each of these rules 

hade truck specification conditions (TSC) not matching an 

intended query. Into this knowledge base we injected rules 

at random that had TSC that matched the intended query. 

The TSC consisted of: ValidSpecification and 

BasicRuleIntervalCondition as mentioned before. Two 

ValidSpecification conditions were used for all rules. The 

number of the injected rules, where 60, 80 and 100. This 

procedure was repeated 10 times, so in total 30 rule bases 

was created, each with an random injection of rules, and 

equally many queries was made. For each query the CPU 

time was measured and the amount of memory used.   

In Table 1 the amount of time (in milliseconds) for each 

system to answer a query is shown. The number of matches 

at each query is 60, 80 and 100 respectively. The minimum, 

average and maximum time is shown for the 10 queries. 

 

Table 1. The minimum, average and Maximum CPU time 

in milliseconds used to answer the 10 queries with 60, 80 

and 100 matches. 

 

  
60 

 
80 

 
100 

MI AV MA MI AV MA MI AV MA 
Drools 172 179 204 188 206 298 204 229 313 
Prolog 109 129 187 109 125 156 109 139 187 

 
The memory consumption is always the same when using 

Prolog, probably because its allocated memory in chunks 

and the different sizes of rule set does not render in need of 

more memory allocation. Drools on the other hand allocate 

different memory sizes on each run. See Table 2 for an 

overview, using the same structure as in Table 1 but 

measuring the memory needs in megabytes. 

 

Table 2. The minimum, average and maximum memory 

used in megabytes used to answer the 10 queries with 60, 

80 and 100 matches. 

 

  
60 

 
80 

 
100 

MI AV MA MI AV MA MI AV MA 
Drools 120 197 247 53 203 253 136 205 267 
Prolog 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 

 

One possible reason for the big memory needs for Drools 

compared with Prolog is that the rules cannot be written as 

compact as in Prolog. In Prolog a rule is one line, in Drools 

the same rule is written in around 40 lines. This extra size of 

the rule set is possibly an explanation of the extra time 

needed by Drools to answer the queries. 

 

From the experiment it evident that our system outperforms 

Drools, both when it comes to response times and memory 

consumption. 

7. CONCLUSION 

We have presented a systematic way of capturing expert’s 

knowledge in the field of heavy truck maintenance. The 

suggested way of making use of expert knowledge through 

an expert system is motivated for the bulk of components 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

that we want to maintain, but do not want to create an 

advanced model for.  

 

To achieve adaptive maintenance for vehicle’s components 

we think our solution has a given place when considering a 

balance of cost and speed of creating rules in our system 

compared to more advanced models. Thus we believe this 

approach will be a starting point for adaptive maintenance 

for a majority of components.     

 

 The implementation we made also showed that our solution 

outperforms a leading off the shelf product. This is 

encouraging results and suggests that we are on the right 

track when developing our system.  

 

What we need to investigate further is how verification of 

the rule base can be improved, i.e. checking the rule set for 

soundness and completeness. Completeness is probably 

easy to check, if each vehicle get a maintenance plan from 

the rule set, for each of its components that should be 

maintained, the rule set is complete. Soundness is a bit 

harder as it involves some measurement of quality. In this 

case we are considering automatic detection of outliers, to 

point users towards potential errors in the rule set.   

 
Somewhat related to automatic verification of the rule set is 

the use of Machine Learning (ML) (Mitchell, 1997) 

techniques for learning rules and supporting the users 

creating rules. In such a setting components (maintenance 

points) could be coupled with operational data and 

presented for the maintenance experts, their task would then 

be to label each components maintenance point with the 

three basic types of intervals.  

 

After sufficiently many components have been given 

intervals we could then use ML to generalize from the 

examples to generate new rules for the rule set. This rule set 

could be expressed in the same format we described earlier, 

making the rule set a white box from a maintenance expert’s 

perspective.    
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