
Expert Guided Adaptive Maintenance

Tony Lindgren1 and Jonas Biteus2

1Department of Computer and System Sciences, Stockholm University, Forum 100, 164 40 Kista, Sweden

tony@dsv.su.se

2Scania CV AB, Service Support Solutions, YSPX, Verkstadsvägen 17, by 280, 151 87 Södertälje, Sweden

jonas.biteus@scania.com

ABSTRACT

The heavy truck industry is a highly competitive business

field; traditionally maintenance plans for heavy trucks are

static and not subject to change. The advent of affordable

telematics solutions has created a new venue for services

that use information from the truck in operation. Such

services could for example aim at improving the

maintenance offer by taking into account information of

how a truck has been utilized to dynamically adjust

maintenance to align with the truck’s actual need. These

types of services for maintenance are often referred to as

condition based maintenance (CBM) and more recently

Integrated Vehicle Health Management (IVHM).

In this paper we explain how we at Scania developed an

expert system for adapting the maintenance intervals

dependent on operational data from trucks. The expert

system is aimed at handling components which

maintenance experts have knowledge about but do not find

it worth the effort to create a correct physical wear-model

for.

We developed a systematic way for maintenance experts to

express how operational data should influence the

maintenance intervals. The rules in the expert system

therefore are limited in what they can express, and as

such our presented system differs from other expert

systems in general.

In a comparison between our expert system and another

general expert system framework, the expert system we

constructed outperforms the general expert framework

using our limited type of rules.

1. INTRODUCTION

Expert systems have been around for a long time (Durking,

1990; Russel & Norvig, 2010). They have been successfully

used in a variety of applications ranging from diagnosing

medical problems (Buchanan & Shortliffe, 1984) to

facilitate space exploration (Marsh, 1988). Today the term

expert system is not used to any large extent, especially not

in industry, now days they are often referred to as rule

engines. In this paper we will use the term expert system

and not rule engine.

Scania Commercial Vehicles (Scania) is a manufacturer of

heavy trucks, coaches and engines for industrial and

marine usage. We at Scania have investigated how an

expert system could be used for improving the maintenance

of our products. The aim is to achieve perfect alignment

with the maintenance program of a Scania product with the

actual maintenance needs of the product. Using on-board

sensors from our vehicles we collect data of how the

vehicle is utilized. This operational data together with

expert knowledge, captured in a type of expert system, is

used to adapt the maintenance program to match each

vehicle individual maintenance needs.

This paper is focused on describing the design

considerations developing such adaptive system. We also

relate our system to other general expert systems. The rest

of the paper is organized as follows: In the next section we

will look at rules and expert systems in greater detail. Then

the current solution of vehicle maintenance at Scania is

presented after that we present our proposed solution, its

implementation and the findings from comparing it with a

general expert system. The last section is dedicated to

discussion and conclusions and finally we give pointers to

future work.

2. EXPERT SYSTEMS AND RULES

An expert system has two major settings of operation, one

when the knowledge base is updated and one when using

the knowledge base.

In the former case an expert’s knowledge of a domain is

captured and inserted through the user interface. The

information is then stored in the knowledge base in a

Tony Lindgren et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

mailto:tony@dsv.su.se
mailto:jonas.biteus@scania.com

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

suitable format for the inference mechanism. In the latter

case a user (or computer) post a question using the user

interface and the inference mechanism infer an answer

which is presented for the user.

Expert systems are beneficial when developing advanced

software systems because they fulfill the need of separating

out the expert knowledge from the source code. This

separation is typically beneficial for easy maintenance of the

knowledge base over time. Re-use of proven inference

mechanisms is also facilitated using this approach as the

inference mechanism can be an external software module.

2.1. Rules

Rules come in different flavors, but there are two dominant

types, production rules and logic programming rules. As

noted in the paper by Kowalski and Sadri (Kowalski &

Sadri, 2009), these two types of rules have traits which

overlap but also have differences between them. In this

paper we will make a simple distinction between them and

use the term production rules for rules which use a forward-

chaining inference mechanism and logic programming rules

as rules which use a backward-chaining inference

mechanism. For a clarifying paper about these inference

mechanisms, see (Shapiro, 1987).

Basically the main difference between the two inference

mechanisms is how search is conducted. In a search

problem setting we have a certain goal and a current state,

i.e. where we are now. If we choose to search from the

current state until we find the goal, we are doing forward-

chaining inference. If we start from the goal and search

(backward) until we find a path to the current state, we are

doing backward-chaining inference.

In a rule based system this type of search are conducted in a

knowledge base together with a question or new fact. The

type of inference mechanism is closely related to what type

of reasoning we are interested in. For example are we

interested in answer(s) to a certain question or do we want

to see the implications of new facts that we just observed?

Typical heuristics for choosing one inference mechanism is

to consider what event that trigger the problem solving. If

the trigger is a new fact then the exploration of

consequences given the new fact is naturally handled by

forward-chaining mechanism. If on the other hand the

trigger is a query to which an answer is required they are

naturally handled by backward-chaining.

Other general rules for guidelines for choosing inference

mechanism are to investigate the branching of the search

space, i.e. depending upon the knowledge base. If the

average state in the search space has more successors than

predecessors backwards-chaining is desirable. If the average

state has fewer successors than predecessor it is desirable to

use forward-chaining. These two inference mechanisms can

also be mixed.

3. HEAVY TRUCK MAINTENANCE – CURRENT SITUATION

AT SCANIA

Today the maintenance plan for Scania vehicles is set when

the vehicle is sold. This is typically done by sales

personnel together with the buyer by selecting one of a

set of predefined maintenance plans that best matches the

vehicle specifications and the buyers intended usage.

The predefined maintenance plans are developed and

maintained by skilled personnel having knowledge about

both the products and customer's usage. Vehicle usage is

divided into six typical applications types. For each

application type and vehicle specification, a cyclic

maintenance plan is given as the number of kilometers

between maintenance occasions with fixed maintenance

protocols.

Maintenance is always done in a cycle of S-M-S-L

occasions, where S = Small, M = Medium, and L = Large

are different maintenance modules for maintaining

different sets of components.

There are a number of problems with the way

maintenance plans are created today:

1. Much responsibility is put on the sales personnel to

know the product as well as the customer's usage of

the product.

2. Once created the plans are seldom updated even if

the application of the vehicle changes. Thus, it is

possible that the maintenance a vehicle receives does

not correspond to its needs.

3. Although the fixed S, M, and L modules make it

convenient to plan, they contain maintenance points

that do not need to be grouped together with the

effect that some components are maintained more

than necessary.

4. The current maintenance plans are coarse in the sense

that the precision in the type of application must be

fitted into one of the six types of application. Therefore

the experts dictating when maintenance ought to be

done, use a safety margins given the uncertainty of

the actual usage of a particular vehicle. This has two

consequences, one is that plans are not individualized

to the degree that they could be and the second

consequence is that components are maintained more

than necessary.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

4. PROPOSED SOLUTION’S SCOPE, AIMS AND MOTIVATION

Many problems with the current situation can be improved

with a system for Integrated Vehicle Health Monitoring

(IVHM), see (Ian K. Jennions et al., 2011; Dunsdon &

Harrington, 2008). Using modern IT technologies

communication between Scania trucks and our system is

feasible. This includes acquiring operational data from a

specific trucks while in operation, this data can then be used

to calculate the maintenance need of a vehicle.

This computation of the maintenance need can be done in a

verity of ways with different complexities. Ranging from

computer models that capture the maintenance point

physical characteristics to simple preset deadlines,

dependent on some operational data, which dictate when

maintenance should be done.

The aim of our expert system was to capture the knowledge

of our maintenance experts in a systematic and user friendly

manner. The system was design so that the maintenance

experts should be able to edit “rules” them self and also able

to verify them.

The intension of the system was that it should be used when

experts “know” how operational factors, measured via

operational data, affect the maintenance need of a

component, but we are not interested in creating a complex

and fully verified maintenance model for the component.

The reasons of why we want to use the expert system and

don’t want to create a “full” model can be motivated by the

fact that the cost of creating such a model is regarded as to

high compared to its benefits.

As a truck from Scania consist of around 80 to 160 unique

maintenance points related to different components.

Currently we have created four “full” maintenance models

for components with vital importance and this figure will

probably rise in the future. But for maintenance points that

will not have “full” models an expert system seems like a

logical way to address the need for individualized

maintenance from a technical and business oriented view.

4.1. Expert system design

To create our expert system we firstly removed the

maintenance points from their S, M and L modules and let

the maintenance experts themselves define new

maintenance points. Thus improving the precision as

maintenance point no longer needs to be lumped together.

When experts express rules regarding maintenance points

they need to convey information about “which specification

is the maintenance point valid for?” and “when is the

maintenance point valid?” The first question is specified by

part-numbers used by Scania when assembling a truck. The

second question is specified by intervals utilize three basic

types of information; mileage, operational hours and static

time.

Mileage is self-explanatory, operational hours is defined as

time when the engine is running and static time denotes

calendar time. For example can an interval be defined by

opHours_cond(0,+inf), which denotes that a rule is valid

for a whole vehicles lifetime, as it is valid from 0 operating

hours to infinity (inf) operating hours. Mileage is measured

in km, operational time in hours and static time in days.

This interval validity condition was requested by the

maintenance experts as they wanted to be able to express

different rules for different ages of a component, i.e. check a

chassis for cracks do not to happen frequently when a truck

is new but when it’s old it needs to be done more often. This

type of rule also put a demands on the system to keep track

of events which causes reset of the three type of conditions,

for example even how unlikely it may be, if we replaced the

chassis on a truck.

4.1.1. Operational data

Before we look in to how the experts can use operational

data to influence the maintenance point we have to look at

the characteristics of operational data at Scania trucks.

Operational data is captured in episodes, i.e. from time t0 to

time t1. These episodes can be of varying length, trucks with

wireless telemetric can export episodes at a preset

periodicity, while trucks not having wireless telemetric

might have episodes that are equal to their operational time

between workshop visits.

Three different data formats exist for operational data,

scalar, vector and matrix format. Measurement for average

fuel consumption is a scalar value, i.e.

fuel_consumption(53) = 53 liter / 100 km, which is

calculated for an episode. Vectors can for example be the

altitude(VeryLow, Low, Medium, High, VeryHigh),

VeryLow = less than 110m, Low = 110m to 990m, Medium

= 990m to 1950m, High = 1950m to 3000m, VeryHigh =

3000m or more over sea level.

The value for operational data variables are aggregated in

bins and reflect the amount of time the truck is used under

conditions for a particular bin. The same is true for matrix

bins, but each bin has two conditions to adhere to. For

example we could have a matrix measuring load in tons on

the y-axis and speed of the truck on the x-axis.

4.1.2. Expressing how operational data influence

maintenance

Using the three types of operational data collected from

Scania products maintenance experts can via rules express

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

boundaries for deadlines and how operational data should

influence maintenance deadlines.

Rules have boundaries to make the maintenance point rules

well defined, each rule has a minimum, maximum and a

base value for at least one of three basic types and all three

basic types can have these values. These values define the

deadline span of the maintenance point and its central value,

i.e. the base value. The application of the rule can never

result in a lower value than the minimum value defined or

higher than the maximum value defined.

For example can we use the basic type km and define the

minimum value = 50 000 km, base value = 100 000 km and

maximum value = 150 000 km.

Using numbers in range [-9, 9], the users can express how

one instance of operational data influence the basic types for

a specific rule. For example if we have the expression

altitude(4, 2, 1, -3, -8) with the base values as defined

above and an operational data episode from a truck with the

following values altitude(0.1, 0.3, 0.6, 0, 0), where the

aggregated values are normalized. This outcome for a rule is

calculated in two steps, first the impact score in this case 4

* 0.1 + 2 * 0.3 + 1 * 0.6 + -3 * 0 + -8 * 0 = 1.6 then the we

apply the impact score onto the basic types, in this case as

the value is positive 150000 – 100000 / 9 = 5556, 5556 *1.6

+ 100000 = 108889. Hence in this case the system would

output 108889 km as deadline for this particular

maintenance point.

More generally the impact is calculated as follows:

∑ ∑

 (1)

Where the op_factors is the operational data influence

specified by the maintenance expert, ranging from -9 to 9.

The value can be set when answering the question “how

much impact should we assign to observing this operational

data in the relation to the base value and in what

direction?”

Calculating the basic type outcome given impact:

 {

 (2)

The maintenance expert is free to set the basic types base

value anywhere between the minimum value and the

maximum value. If it is set in the middle of these two values

the “steps” will be equally long on each side of the base

value, i.e. an impact value of 2 and -2 will amount in the

same increase respectively decrease in the basic type.

Setting the base value allows the expert to change how the

impact will affect the outcome.

When the impact is zero the outcome is the base value and

when it is 9 the outcome is the maximum value and -9

correspond to the minimum value. When experts define

rules and use vector and matrix data which are distributions,

it is unlikely that the impact will come close the endpoints

of (+/-) 9.

However scalars do not have any predefined bins and it is

up to the experts to create the bins and set the influence

value of (-/+) 9 for each bin. For example

fuel_consumprion(from, to, influence_value), where from

and to define the lower resp. higher bound for the bin. The

scalars behave differently from vectors and matrix

distributions in that one bin will get a 1 and the rest of the

bins zero. Hence the influence value should be set with

caution for scalars.

In conclusion a maintenance expert defines the following

values for a rule: ValidSpecification,

BasicRuleIntervalCondition, Min, Base, Max,

ExpertMaintInfluenceList.

5. IMPLEMENTATION

We implemented the system in SICStus Prolog, see (Mats

Carlsson et al., 2013). One of the motivations of choosing

this language is that Prolog uses a backwards chaining proof

(resolution) to prove questions posted to it together with

goals and facts in its knowledge base (or program). This fits

fine with our intention of creating a system that answers the

maintenance needs given a trucks operational data and

specification.

Using this programming language you get a complete and

sound and tested theorem-prover “for free”, which made it

an ideal language for our purposes. Other expert system

frameworks could have been chosen, which we will

elaborate further upon at the end of the paper, but the

primary reason is our limited and restrictive “rules”, that did

not need any fancier expert framework.

To ensure better modularity we used the Rule Interchange

Format (RIF) (W3C, 2013) standard proposed by W3C. The

standard is supported by a number of expert systems, for

example IBM Websphere and ILOG JRules, OntoBroker,

Oracle Business Rules (OBR) etc. To ensure backwards

compatibility and development of new knowledgebase

releases, we utilized Prologs blackboard functionality, using

version and status as keys to a certain blackboard. Version

is just a version number and status can be one of

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

development, testing and released. Essentially a blackboard

is a memory area where we post one knowledge base.

We created a webb-based GUI using AJAX technology for

creating and simulating rules. The GUI also check rule

validity, i.e. that the base value is higher than the minimum

value and lower than the maximum value.

The expert system is a separate module and runs on a server

exposing its services through the PrologBeans interface. Our

solution make is possible to keep track of different user

sessions and service many requests simultaneously. We

have aimed for the modules to be self-contained with a clear

interface. The expert system has two main services,

loadRules and useRules. Loading a rule set check that it is

syntactical correct, while semantics are pushed to the GUI,

i.e. checks that intervals are defined correct etc. We also

facilitate expert’s creation of new rule sets and updates to

existing rule sets by addRule and removeRule.

6. COMPARISON WITH OTHER SYSTEMS

The initial motivation for using a programming language as

Prolog for implementing the expert system was to have the

freedom to change the system depending on the need from

the users and to explore different solutions to the problem.

There are a number of different expert systems available,

both commercial and open-source. There does not exist, to

the author’s knowledge at least, a multitude of systematical

comparisons of expert systems. But one comparison of rule

engines has been done in the field of Semantic Web which

recommended for the interested reader (Senlin Liang, et al.,

2009).

One of the more successful open-source tools is Drools (Red

Hat, 2013). Drools is part of the JBoss platform. It is an

open-source software that aims at being “…a unified and

integrated platform for Rules, Workflow and Event

Processing”. To investigating how our expert system

performance is comparable to other established general

expert systems, we choose Drools to compare with. The

reason was mainly its availability as it is open source

software and partly because it is well established.

The experimental setup was as follows:

We implemented the same type of reasoning in Drools as

we do in our system. Then we created knowledge base’s

consisted of a base set of 1000 rules, each of these rules

hade truck specification conditions (TSC) not matching an

intended query. Into this knowledge base we injected rules

at random that had TSC that matched the intended query.

The TSC consisted of: ValidSpecification and

BasicRuleIntervalCondition as mentioned before. Two

ValidSpecification conditions were used for all rules. The

number of the injected rules, where 60, 80 and 100. This

procedure was repeated 10 times, so in total 30 rule bases

was created, each with an random injection of rules, and

equally many queries was made. For each query the CPU

time was measured and the amount of memory used.

In Table 1 the amount of time (in milliseconds) for each

system to answer a query is shown. The number of matches

at each query is 60, 80 and 100 respectively. The minimum,

average and maximum time is shown for the 10 queries.

Table 1. The minimum, average and Maximum CPU time

in milliseconds used to answer the 10 queries with 60, 80

and 100 matches.

60

80

100

MI AV MA MI AV MA MI AV MA
Drools 172 179 204 188 206 298 204 229 313
Prolog 109 129 187 109 125 156 109 139 187

The memory consumption is always the same when using

Prolog, probably because its allocated memory in chunks

and the different sizes of rule set does not render in need of

more memory allocation. Drools on the other hand allocate

different memory sizes on each run. See Table 2 for an

overview, using the same structure as in Table 1 but

measuring the memory needs in megabytes.

Table 2. The minimum, average and maximum memory

used in megabytes used to answer the 10 queries with 60,

80 and 100 matches.

60

80

100

MI AV MA MI AV MA MI AV MA
Drools 120 197 247 53 203 253 136 205 267
Prolog 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9 3,9

One possible reason for the big memory needs for Drools

compared with Prolog is that the rules cannot be written as

compact as in Prolog. In Prolog a rule is one line, in Drools

the same rule is written in around 40 lines. This extra size of

the rule set is possibly an explanation of the extra time

needed by Drools to answer the queries.

From the experiment it evident that our system outperforms

Drools, both when it comes to response times and memory

consumption.

7. CONCLUSION

We have presented a systematic way of capturing expert’s

knowledge in the field of heavy truck maintenance. The

suggested way of making use of expert knowledge through

an expert system is motivated for the bulk of components

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

that we want to maintain, but do not want to create an

advanced model for.

To achieve adaptive maintenance for vehicle’s components

we think our solution has a given place when considering a

balance of cost and speed of creating rules in our system

compared to more advanced models. Thus we believe this

approach will be a starting point for adaptive maintenance

for a majority of components.

 The implementation we made also showed that our solution

outperforms a leading off the shelf product. This is

encouraging results and suggests that we are on the right

track when developing our system.

What we need to investigate further is how verification of

the rule base can be improved, i.e. checking the rule set for

soundness and completeness. Completeness is probably

easy to check, if each vehicle get a maintenance plan from

the rule set, for each of its components that should be

maintained, the rule set is complete. Soundness is a bit

harder as it involves some measurement of quality. In this

case we are considering automatic detection of outliers, to

point users towards potential errors in the rule set.

Somewhat related to automatic verification of the rule set is

the use of Machine Learning (ML) (Mitchell, 1997)

techniques for learning rules and supporting the users

creating rules. In such a setting components (maintenance

points) could be coupled with operational data and

presented for the maintenance experts, their task would then

be to label each components maintenance point with the

three basic types of intervals.

After sufficiently many components have been given

intervals we could then use ML to generalize from the

examples to generate new rules for the rule set. This rule set

could be expressed in the same format we described earlier,

making the rule set a white box from a maintenance expert’s

perspective.

ACKNOWLEDGEMENT

This work has been funded by Scania CV AB and the

Vinnova program for Strategic Vehicle Research and

Innovation (FFI).

REFERENCES

Buchanan, B. G., & Shortliffe, E. H. (1984). Rule Based

Expert Systems: The Mycin Experiments of the

Stanford Heuristic Programming Project. Boston:

Addison-Wesley.

Dunsdon, J., & Harrington, M. (2008). The Application of

Open System Architecture for Condition Based

Maintenance to Complete IVHM. Aerospace

Conference, (pp. 1-9).

Durking, J. (1990). Application of Expert Systems in the

Sciences. Ohio Journal of Science, 90(5), 171-179.

Ian K. Jennions et al. (2011). Integrated Vehicle Health

Management: Perspectives on an Emerging Field.

Warrendale: SAE.

Kowalski, R. A., & Sadri, F. (2009). Integrating Logic

Programming and Production Systems in

Abductive Logic Programming Agents. In Web

Reasoning and Rule Systems (pp. 1-23). Berlin:

Springer.

Marsh, C. A. (1988). The ISA expert system: a prototype

system for failure diagnosis on the space station.

Proceedings of the 1st international conference on

Industrial and engineering applications of artificial

intelligence and expert systems. 1, pp. 60-74.

Tullahoma: ACM.

Mats Carlsson et al. (2013). SICStus Prolog Users's

Manual. Kista: Intelligent Systems Laboratory,

Swedish Institute of Computer Science.

Mitchell, T. (1997). Machine Learning. New York:

McGraw-Hill.

Red Hat. (2013, 09 25). Drools. (Red Hat) Retrieved 09 25,

2013, from http://labs.jboss.com/drools

Russel, S. J., & Norvig, P. (2010). Artificial Intelligence - A

Modern Approach (3rd edition). Upper Saddle

River: Pearson Education.

Senlin Liang, et al. (2009). OpenRuleBench: an analysis of

the performance of rule engines. Proceedings of

the 18th international conference on World Wide

Web. Madrid.

Shapiro, S. C. (1987). Processing, bottom-up and top-down.

In Encyclopedia of Artificial Intelligence (pp. 779-

785). New York: John Wiley & Sons.

W3C. (2013, 02 05). RIF RULE INTERCHANGE FORMAT

CURRENT STATUS. (W3C) Retrieved 08 21,

2013, from

http://www.w3.org/standards/techs/rif#w3c_all

