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ABSTRACT 

The proactivity in maintenance management is improved by 

the implementation of CBM (Condition-Based 

Maintenance) and of PHM (Prognostic and Health 

Management). These implementations use data about the 

health status of the systems. Among them, prognostic data 

make it possible to evaluate the future health of the systems. 

The Remaining Useful Lifetimes (RULs) of the components 

is frequently required to prognose systems. However, the 

availability of complex systems for productive tasks is often 

expressed in terms of RULs of functions and/or subsystems; 

those RULs provide information about the components. 

Indeed, the maintenance operators must know what 

components need maintenance actions in order to increase 

the RULs of the functions or subsystems, and consequently 

the availability of the complex systems. This paper aims at 

defining a generic prognostic function of complex systems 

aiming at prognosing its subsystems, functions and at 

enabling the isolation of components that needs 

maintenance actions. The proposed function requires 

knowledge about the system to be prognosed. The 

corresponding models are detailed. The proposed prognostic 

function contains graph traversal so its distribution is 

proposed to increase the calculation speed. It is carried out 

by generic agents. 

1. INTRODUCTION 

The implementation of the Condition-Based Maintenance 

(CBM) recommendations usually leads to the improvement 

of the equipment availability (Jardine, Lin and Banjevic, 

2006; Scarf, 2007). The CBM actions are planned and led 

according to the health status of equipments. Monitoring, 

diagnostic and prognostic functions assess these statuses. 

The development of health assessment functions has often 

been considered as a downstream activity in the design 

process of complex systems with few allocated means. This 

has often led to a lack of collaboration with upstream 

activities and to centralized deployment in light 

computational modules although those functions have to 

process numerous pieces of data of different kinds. The 

consequences are increasing rates of useless replacements of 

devices, with the increasing complexity of the systems. 

Those replacements are not only costly but may also cause 

additional damage to the system. 

Therefore, health assessment functions now become a major 

issue for complex system designers. Among those functions, 

the prognostic function aims at defining the future health of 

the system that contributes to plan productive tasks or 

maintenance tasks. Among the difficulties leading to the 

implementation of prognostic functions in complex systems, 

there are the numerous hardware or software components, 

devices, functions or subsystems of complex systems. Those 

equipments are designed, manufactured, assembled by 

different industrial partners (OEMs, suppliers, 

subcontractors, etc.). Each partner has a part of the needed 

knowledge to carry out the prognosis of the complex system. 

However, some pieces of this knowledge are parts of the 

own know-how of the partners and so they cannot be shared. 

To tackle this difficulty, a decentralized/distributed 

architecture can be proposed. Indeed, such architectures 

enable the implementation of the Remaining Useful 

Lifetime (RUL) assessment and prognostic functions closer 

to components, devices, functions or subsystems. Therefore, 

each OEMs, suppliers or subcontractors can provide RUL 

assessment and prognostic functions for their equipments. 

Nevertheless, those functions have to collaborate in order to 

ensure the convergence of the prognostic process of 
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complex systems. Indeed, the union of local prognoses is 

not the global prognosis. To illustrate that point, let us 

consider a system made of a power supply and a computer. 

If the RUL of the power supply is lower than the one of the 

computer, the computer will not probably be able to carry 

out its activity beyond the RUL of the power supply. Agents 

that carry out RUL assessment and prognostic function can 

be used to ensure this collaboration. An agent is defined as a 

self-contained problem-solving computational entity able, at 

least, to perform most of its problem-solving tasks, to 

interact with its environment, to perceive its environment 

and to respond within a given time, to take initiatives when 

it is appropriate (Jennings and Wooldridge, 1995). 

The aim of this article is to present an architecture for 

implementing a distributed prognostic function for complex 

systems. Firstly, the interest of distributed prognostic 

function is discussed. To implement prognostic function, 

knowledge about the complex system is necessary. Then the 

paper describes the principles of the prognostic function for 

complex systems. The notion of Time before Out of order 

(TBO) is introduced. Then the paper shows the proposed 

architecture that is based on the multi-agent system concept 

with generic agents and how to split up the modeled 

knowledge between the agents.  

2. DISTRIBUTED PROGNOSIS 

One aim of the Prognostic and Health Management (PHM) 

is to assess the ability of complex systems to carry out 

future tasks from diagnostic and prognostic results and the 

definition of the constraints of the future tasks. Roemer, 

Byington, Kacprzynski and Vachtsevanos (2007) advise that 

diagnostic and prognostic algorithm should be processed as 

close as possible to the monitored components and that the 

produced data should be then exploited by ascending the 

hierarchical structure of the complex system. Therefore, 

bringing the PHM into operation requires the 

implementation of prognostic functions.  

If Vachtsevanos and Wang (2001) consider that the 

prognostic activity consists in assessing a RUL once an 

early detection of failure have been made, Lebold and 

Thurston (2001) consider that it is a reliable assessment of 

the RUL of a system or a device. From these studies it 

appears that the assessment of the RUL is the keystone of 

the prognostic activity. Indeed, the data it provides are used 

as decision support for maintenance planning and proactive 

maintenance (Iung, Monnin, Voisin, Cocheteux and Levrat, 

2008) or for e-maintenance (Muller, Crespo Marquez and 

Iung, 2008). 

Several studies have been led dealing with the design of 

prognostic functions of devices. Several techniques are 

described in (Vachtsevanos, Lewis, Roemer, Hess and Wu, 

2006). Nevertheless, in the case of complex systems, the set 

of the RULs of the devices may not be enough to be a 

suitable decision support for maintenance or for productive 

tasks planning purposes. The sets of RULs shall therefore be 

processed. In complex systems, the number of RULs can be 

so huge that the only reasonable way to process them is 

distributed. Another good reason in using distributed 

architecture is that it enables implementations of prognostic 

processes as close as possible to the monitored devices as 

Roemer et al. (2007) advise it. Works dealing with 

distributed prognosis are quite recent and several ways to 

distribute the prognostic processes were already proposed.  

In (Voisin, Levrat, Cocheteux and Iung, 2010) the prognosis 

is considered as a business process whose activities can be 

distributed in a context of e-maintenance. The mentioned 

distribution is made according to different actors located on 

different sites. 

Saha, Saha, and Goebel (2009) propose an architecture 

made of several agents that can communicate between each 

other. An agent diagnoses a device and when it detects a 

fault it switches to the prognostic mode and informs a base 

station. The base station plans tasks, can reinitialize the 

processes of agents if errors are detected, it manages the 

accesses to resources like the ones to an external database 

and it manages the availability of agent in terms of 

computation load. 

Dragomir, Gouriveau, Zerhouni and Dragomir (2007) 

present an architecture for health assessment that consists of 

two levels: the local level corresponds to the components 

and global level that is associated to the complex system. In 

this architecture, each local agent brings into operation 

several known prognostic methods according to the 

available knowledge about the monitored component. The 

global agent collects the health assessment data from the 

local agents and computes a health assessment for the 

system thanks to a neural network. 

Takai and Kumar (2011) propose a decentralized prognoser 

for discrete event systems where local agents generate 

prognoses that are sent to the other agents. Then the agents 

cooperate in order to converge to a prognosis of the system 

thanks to an inference engine.  

The sets of RULs shall also be processed according to 

knowledge as mentioned in (Saha et al., 2009). 

3. KNOWLEDGE MODELING 

During the design stage of a complex system, different 

kinds of knowledge are elaborated. Among them, the 

structural knowledge, the functional knowledge and the 

behavioral knowledge are required to implement prognostic 

functions (Reiter, 1992; Chittaro and Ranon, 2003). HAZard 

and OPerability (HAZOP) methodology, that is a process 

hazard analysis technique, enable to study not only the 

hazards of a system, but also its operability problems, by 

exploring the effects of any deviations from design 

conditions (Dunjo, Fthenakis, Vilchez and Arnaldos, 2010). 



European Conference of Prognostics and Health Management Society 2012 

 

3 

 

This methodology enables to identify functions and 

interconnections. 

3.1. The functional knowledge modeling 

The functional knowledge modeling aims at providing the 

sets of components that implements the functions of the 

complex system from the users point of views. Knowing the 

RUL of a function will help to plan future missions of the 

system and/or the maintenance actions it needs. 

Therefore, the functional knowledge modeling consists in 

defining functions as sets of components or devices, which 

we call all “devices”. Functions can also be made of 

functions. Complex systems can also be divided into 

subsystems. In that case, a subsystem can be considered as a 

set of functions. Thus, a complex system is made of 

subsystems. A subsystem is made of functions. A function 

is made of devices and/or functions.  

Three types of functions must be considered for the 

computation of prognostic of functions.  

Simple functions are functions that fail if one their entities 

fails (devices or functions) at least.  

For reliability purposes, complex systems contain functions 

with redundancies. These functions are carried out by at 

least two entities (devices and/or subfunctions) that bring 

into operation the same activities, services... For example, 

we suppose that a flight control function of an aircraft is 

made of three functions we call “flight controllers”. If one 

or even two flight controllers fail, the flight control can still 

carry out its task. However, if two flight controllers fail, 

there is no more redundancy. That is why we consider 

redundancies as functions called redundancy functions. 

Those functions are the only entities included in the 

functions with redundancies.  

Subsystems are considered as sets of functions that are not 

included in other functions. Thus, subsystems can be 

considered as simple functions. The prognostic of the 

complex system can then be assessed from the prognostic of 

its subsystems. 

The modeling of this knowledge can be done thanks to a 

UML (Unified Modeling Language), which is an object 

oriented modeling language, class diagram shown in 

figure 1.  

3.2. The structural knowledge modeling 

The structural modeling aims at representing the direct 

interactions between devices and their failure modes mainly 

in order to propagate the effects of failures (Worn, Langle, 

Albert, Kazi, Brighenti, Revuelta Seijo, Senior, Sanz-Bobi 

and Villar Collado, 2004).  

 

Figure 1. Functional knowledge model. 

Failure Modes and Effects Analysis (FMEA) or HAZOP 

studies enable to collect the necessary knowledge for 

structural modeling. Indeed, those studies enable to identify 

what happens to other devices when one or several devices 

fail. 

Therefore the structural knowledge can be modeled thanks 

to a set   of arcs      
       

 with    , where an arc 

means that the device   will be out of order (mode    ) if 

the failure mode    of a device    occurs. Let us note that 

the mode    can be the mode    . However, some 

particular cases exist. For example, a laptop uses a power 

supply function. Let us simplify by assuming that the 

battery and the electricity distribution network carry out this 

function. If only the battery or the electricity distribution 

network fails, the computer still operates normally. That is 

why, the cases where a function    fails or becomes out 

order makes components become out of order must also be 

considered. Thus, the structural model must also represent a 

set   of arcs with the same meaning      
       

 with 

     . So, the structural model consists of the sets S1 and 

S2. Those sets of arcs represent a graph where the nodes are 

the failure modes of the devices and the functions of the 

complex system. 

The out of order mode (Moo) is quite relevant because it 

indicates that the origin of the predicted failure of an entity 

is not the entity itself.  

3.3. The behavioral knowledge modeling 

The behavioral modeling mainly aims at defining the 

dynamical behavior of a system. Behavioral models can be 

used to detect degradation and to analyze their trends in 

order to define the RUL of the monitored device. 

The behavioral models used to prognose a device can be 

achieved thanks to three approaches (Byington, Roemer, 

Watson and Galie, 2003): experience-based, evolutionary 

and/or statistical trending or model based. The implemented 

behavioral models to prognose a complex system can so be 

numerous and of various kinds that it is difficult to consider 
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all of them. They also require design knowledge of devices, 

functions or subsystems that may reveal the know-how of 

their providers. Nevertheless, the most important things are 

what they contribute to produce: the RULs of the devices. 

We then assume that a monitoring layer made of one or 

several agents provides the RULs to the proposed 

prognostic function. The monitoring layer agents can so 

bring into operation the most suitable techniques to assess 

RULs of devices. 

3.4. RUL modeling 

In order to be processed by a prognostic function, a RUL 

has to assess a duration T between the instant t0, at which it 

is calculated, and the predicted instant t0+T at which the 

device will fail according to a given failure mode. Thus, a 

RUL must contain four entities (Voisin et al., 2010) that are: 

 the involved device, 

 the involved failure or degraded mode,  

 the instant at which it was calculated, 

 the duration. 

RULs are assessments, so fields can be added to deal with 

uncertainty or confidence level. However, the proposed 

prognostic function of complex system does not take into 

account any kind of uncertainty representations. The aim of 

this paper is to propose a principle for prognosing a 

complex system that can be distributed into generic agents. 

Handling uncertainty of RULs would likely lead to 

implement different processes into the tasks described in 

section 4. 

The RULs that the monitoring layer provides are the base of 

the proposed prognostic function for complex systems but 

this function also needs the functional and structural 

knowledge. 

4. PROGNOSTIC FUNCTION FOR COMPLEX SYSTEMS 

This section is dedicated to the proposed generic principle 

for prognosing complex systems from RULs and from the 

modeled functional and structural knowledge. We assume 

that the monitoring layer sends to the Complex System 

Prognostic Function (CSPF) each RUL that it computes for 

each failure mode of the devices unless the out of order 

mode. The CSPF is divided into three main tasks that are: 

1. the computation of the RUL of the device for which a 

RUL has been received, 

2. the computation of the RUL of the devices that are 

interconnected (directly or not) to the device for which 

a RUL has been received,  

3. the computation of the RUL of functions from the 

former task,  

The process of the CSPF starts when a RUL is received 

from the monitoring layer. 

4.1. Computation of the RUL of a device (task 1) 

The RUL received by the CSPF from the monitoring layer is 

noted RUL(Di, Mj, tk, Tl) where Di is the device, Mj is the 

predicted failure mode, tk is the instant at which the RUL 

was computed and Tl is remaining lifetime such as tk+Tl is 

the predicted instant at which the failure will likely occur. 

When a RUL RUL(Di, Mf, tk, Tl) is received at the instant t, 

it is recorded and it replaces the last stored RUL for Di with 

the failure mode Mj RUL(Di, Mf, tk-1, Tl-1) if tk > tk-1 else the 

task stops. If tk > tk-1, the RUL of Di is then defined thanks to 

its last recorded RULs for all its failure modes. These RULs 

are noted RUL(Di, Mj, tkj, Tlj). The new RUL of Di becomes 

RUL(Di, Mp, t, Tp) where p correspond to the failure mode 

for which: 

      
 

            (1) 

Then this RUL is compared to the last recorded RUL for the 

device noted RUL(Di, Mq, tkq, Tlq) if  
            , RUL(Di, Mp, t, Tp) becomes the new 

RUL of the device Di. It is stored and replaces RUL(Di, Mq, 

tkq, Tlq) and then, if at least one arc starts from the node 

     
, the task 2 is processed else the task 3 is processed. If 

RUL(Di, Mp, t, Tp) does not become the new RUL of the 

device Di the CSPF stops. 

4.2. Computation of the RUL of the devices that are 

interconnected (task 2) 

This task consists in propagating the new RUL(Di, Mp, t, Tp) 

in the graph described by the arcs       
       

 where 

the devices will likely be out of order earlier than previously 

predicted because of this new RUL. We must here introduce 

the notion of Time Before Out of order (TBO). This notion 

explains that a device will likely become out of order 

because of the failure Mp of the device Di. This notion is 

meaningful for maintenance because it enables to localize 

the devices for which maintenance actions will be 

necessary. The TBO so contains five entities:  

 the involved device, 

 the device for which the RUL has generated the TBO,  

 the failure mode of the device for which the RUL has 

generated the TBO,  

 the instant at which the TBO was computed, 

 the remaining time before the out of order mode occurs. 

If the prognostic function handles uncertainty, TBOs must 

also contain fields dealing with this notion. That is not the 

case in this paper. 

This second task does not consist of the computation of the 

new RULs of the interconnected devices but of their new 

TBOs. Two cases are considered:  

 one for the arcs      
       

, 
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 one for the arcs       
       

. 

For all the arcs      
       

, RUL(Di, Mp, tkp, Tp) is 

compared to the last recorded TBOs of the devices Dj for 

which TBOs are noted TBO(Dj, Dx, Mqx, tkqx, Tqx) with j≠x. 

This comparison is made at the instant t. If  
               , then the new TBO of Dj becomes 

TBO(Dj, Di, Mp, t, Tpt) with               . This new 

TBO is recorded and replaces the previous stored one and it 

is propagated in the graph from the node       
 otherwise 

the propagation in the graph from the node       
 is 

stopped. 

For all the other arcs       
       

 the TBO of the 

device Dn noted TBO(Dn, Di, Mp, tpt, Tpt) is compared to the 

last recorded TBO of Dm noted TBO(Dm, Dj, Mq, tqt, Tqt). 

This comparison is made at the instant t. If  
               , then the new TBO of Dm becomes 

TBO(Dm, Di, Mp, t, T) with              . This new 

TBO is recorded and replaces the previous stored one and it 

is propagated in the graph from the node       
 otherwise 

the propagation from the node       
 is stopped. 

This tasks ends when there is no more TBO to propagate. 

Then the prognostic of the functions must be done by the 

CSPF from the RULs and TBOs that were updated.  

4.3. Computation of the RUL of the functions (task 3) 

According to section 3.1, three types of functions must be 

considered for the computation of their prognoses: simple 

functions, functions with redundancies and redundancy 

functions. 

The failure mode of a function is directly linked to the 

failure mode of one of its devices and/or to the missing 

service carry out by one of its subfunctions. That is why we 

only consider the TBOs of the functions instead of their 

RULs. The TBO of a function contains the same fields as 

the ones of the TBOs for devices except the involved 

function instead of the involved device.  

The TBO of a function is computed if, at least, one RUL of 

one its devices has been modified or if one TBO of one of 

its entities (devices or functions), noted X, has been 

modified by the CSPF.  

For a simple function Fj, if the RUL RUL(Di, Mp, tp, Tp) of 

one of its device has been modified its TBO(Fj, Dk, Ml, tl, Tl) 

is modified if             is verified then it becomes 

TBO(Fj, Di, Mp, t, T) with             .  

For a simple function Fj, if the TBO of one of its functions 

or of its devices TBO(Xq, Di, Mp, tp, Tp), where Xq denotes 

either the function or the device, has been modified its 

TBO(Fj, Dk, Ml, tl, Tl) is modified if             is 

verified then it becomes TBO(Fj, Di, Mp, t, T) with 

            .  

The new TBO is recorded and replace the previous stored 

one. 

For functions with redundancies, the TBOs and/or RULs of 

their entities included in their redundancy functions are 

considered. For an entity that is a device Di, we consider its 

RUL RUL(Di, Mp, tp, Tp) or its TBO TBO(Di,, Dx,  Mq, tq, Tq) 

and the value Tti that is computed with the relationship (2):  

                     (2) 

If an entity is a function Fj with TBO(Fj,, Dx,  Mq, tq, Tq), the 

value Ttj is computed with the relationship (3): 

           (3) 

The TBO(Fwr,, Dy,  Ms, t, T) of a function with redundancies 

is computed from (4): 

     
 

        (4) 

where Dy and Ms are the device and its failure mode for 

which the RUL or TBO that have the greatest value Tt and t 

is the instant at which the TBO has been computed. The 

new TBO is recorded and replace the previous stored one. 

For a redundancy function, the TBOs and/or RULs of their 

entities are considered. For an entity that is a device Di, we 

consider its RUL(Di, Mp, tp, Tp) or TBO(Di,, Dx,  Mq, tq, Tq) 

and the value Tti, that is also computed with the relationship 

(2). For a function entity Fj with TBO(Fj,, Dx,  Mq, tq, Tq), the 

value Ttj is computed with the relationship (3) too. The 

TBO(Fr,, Dy,  Ms, t, T) of a redundancy function is computed 

from (5): 

        
 

        (5) 

where Dy and Ms are the device and its failure mode for 

which the RUL or TBO that have the nth greatest value Tt 

and t is the instant at which the TBO has been computed 

(generally n=2). The new TBO is recorded and replace the 

previous stored one. 

If the TBO of a function Fk has changed and if its linked to a 

device by an arc      
       

, which is in fact an arc 

      
       

, the task 2 is then processed with the same 

procedure as the one for arcs       
       

. 

The TBOs of the functions and RULs of the devices are the 

elements of the prognostic. 

4.4. Experimental results 

The CSPF was successfully tested. In order to illustrate the 

results it provides, we propose the case study of the figure 2 

where the arcs represent the structural knowledge and the 

boxes the functional knowledge.  
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Figure 2. Case study. 

In this system, only one mode of failure is considered for 

each device and the effect of this failure is supposed to be 

the same as the out of order mode. That is why only one 

kind of arcs is represented in Figure 2. However, one case of 

system with devices having two failure modes with different 

effects has also been successfully tested.  

The table 1 shows an overview of the results provided by 

the CSPF for a simulated scenario. In this table the first 

column is the rank of reception of a RUL, the second 

column is the identifier of the device for which the 

monitoring layer has emitted a RUL, the third column is the 

date (which is the sum t+T of the fields contained in the 

received RUL) at which the device will probably fail. The 

other columns of the table contain the dates (the sums t+T) 

of the RULs or TBO of devices and functions that are 

modified by the CSPF because of the received RUL. Dates 

in red mean that the date (t+T) of RUL’s device is earlier 

than the date of its TBO. 

The proposed CSPF is processed on-line each time a new 

RUL is received but it always leads to reduce the dates (t+T) 

of the RULs and TBOs of devices and functions. Thus, it is 

a pessimistic approach of the prognostic of the complex 

system. In that case, we can consider that the prognostic 

made on-line is dedicated to control operators. However, the 

CSPF can be run off-line for maintenance operators. The T 

values of the TBO must so be set to very great values. Then 

the CSPF is then run for all the RULs of each device. Thus, 

the maintenance operators have so indications about the 

devices that need maintenance actions. Once a device have 

been replaced or fixed, its RUL must be set at new values. 

In such cases, the T value of the RUL of the replaced or 

fixed device may be set to a value equal to its MTBF (Mean 

Time Between Failures) or MTTF (Mean Time To Failure). 

The T values of the TBO are then set to very great values. 

Then the CSPF is then run for all the RULs of each device. 

However, The CSPF requires graph traversal and it can so 

be a long process. One way to reduce the computation time 

is to distribute the CSPF. 

5. DISTRIBUTION OF THE CSPF 

The proposed distribution of the CSPF consists of several 

agents that all process the CSPF. Assuming that there are 

few interconnections between subsystems, we propose one 

agent by subsystem in order to reduce the number of the 

sent messages between the agents. The agents have to be 

implemented into different computing platforms to increase 

the computation of the CSPF. Thus, the architecture can be 

represented as shown in figure 3. 

 

 

 

Table 1. Example of results provided by the CSPF 
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Figure 3. Distributed architecture scheme. 

The SPAs are the Subsystem Prognostic Agent. They 

contain a database in which the functional and structural 

knowledge are represented as well as the structural 

interconnections between the subsystems. In this 

architecture the monitoring layer sends the RULs of the 

devices to the SPA that prognoses the subsystem to which 

the device belongs.  

In the proposed distribution of the CSPF, the knowledge is 

distributed to the SPAs. The SPAs are generic agents 

because they all process the same tasks but their results 

depend on the knowledge modeled in their databases. The 

prognostic of the complex system is made of the RULs of 

the devices and the TBOs of the functions that are recorded 

by the SPAs. 

Thus the proposed architecture is also quite scalable. 

Indeed, adding a device or a new function consists mainly in 

adding functional and structural descriptions in the SPA of 

the subsystem it belongs to and, perhaps, some arcs for the 

structural models of the other SPAs. However, they do not 

need to modify the algorithms processed by the SPAs. 

Assuming the case study of the figure 2, three SPAs are 

implemented.  

The parts of knowledge that are modeled in the databases of 

the SPAs are described in figure 4 (4.1 for SPA1, 4.2 for 

SPA2 and 4.3 for SPA3).  

From the structural knowledge, an SPA knows to what SPA 

a TBO must be sent thanks to the identifier of the external 

devices.  

The communication between the SPAs can be modeled 

thanks to an UML sequence diagram as shown in figure 5 

where the monitoring layer is considered as a single agent 

but it could made of several ones. Two SPAs are 

represented: the one that receives the RUL and one that 

represent the other SPAs. The task 1 is processed only once 

when a “New_RUL” message is received by a SPA. The 

“Modified_TBO” messages are emitted by the SPA from 

task 2 or task 3. Those messages indicate to the SPA that 

receives it what device is impacted by the TBO. Thus, when 

a SPA receives such a message, it processes the task 2 and 

the task 3. Even if it is distributed, the CSPF can be quite 

long to execute and “New_RUL” or “Modified_TBO” 

messages can be received while a SPA is running. So those 

messages have to be stored in a kind of buffer. The t values, 

which are fields of RULs and TBOs, can be used to sort the 

messages by increasing date. 

 

(4.1) 

 

(4.2) 

 

(4.3) 

Figure 4. Modeled knowledge in SPAs . 

 

Figure 5. Sequence diagram. 
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6. CONCLUSION 

This paper presented a generic algorithm to carry out the 

prognosis of complex system from the RULs of its devices. 

This approach requires functional and structural knowledge 

of the complex systems whose models were given. 

Requirements for the functional modeling were detailed. As 

the proposed prognostic principle requires graph traversal, 

its distribution into generic agents in order to reduce its 

computation time was presented. The distribution of the 

functional and structural models into the prognostic agents 

was proposed. The principle of prognosis provides online 

pessimistic results but it can be run off-line for more 

optimistic results. So one can consider that online process is 

dedicated to control operators (TBOs of functions) and that 

off-line process is dedicated to maintenance (TBOs of 

functions and RULs of devices).  

The distributed simulation platform is under development. It 

uses a middleware to bring into operation the 

communication between the monitoring layer agents and 

SPAs. This platform shall enable to compare the centralized 

approach (with one SPA) and the distributed approach with 

several SPAs.  

Another perspective will consist of the definition of 

functional and structural model to assess TBOs of devices 

and functions even when RULs of devices are increasing 

(when t+T is increasing). Eventually, the problem of 

uncertainty of RULs could be addressed for prognosing 

complex systems. 
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