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ABSTRACT 

A lot of studies are nowadays devoted to structural health 

monitoring, especially inside the aeronautical environment. 

In particular, focusing the attention on metallic structures, 

fatigue cracks represent both a design and maintenance 

issue. The disposal of real time diagnostic technique for the 

assessment of structural health has led the attention also 

toward the prognostic assessment of the residual useful life, 

trying to develop robust prognostic health management 

systems to assist the operators in scheduling maintenance 

actions. The work reported inside this paper is about the 

development of a Bayesian particle filter to be used to refine 

the posterior probability density functions of both the 

damage condition and the residual useful life, given a prior 

knowledge on damage evolution is available from 

NASGRO material characterization. The prognostic 

algorithm has been applied to two cases. The former 

consists in an off-line application, receiving diagnostic 

inputs retrieved with manual structure scanning for fault 

identification. The latter is used on-line to filter the input 

coming from a real-time automatic diagnostic system. A 

massive usage of FEM simulations is used in order to 

enhance the algorithm performances. 

1. INTRODUCTION 

Fatigue crack nucleation and propagation is a major issue 

when considering aeronautical structures, both from a 

design (Schmidt & Schmidt-Brandecker, 2009) and 

maintenance points of view (Lazzeri & Mariani, 2009). 

From one hand, a proper design is required in order to 

guarantee the structure damage tolerance or the safe life, 

depending on the criticality of the selected component. 

From the other hand, a strict inspection schedule has to be 

programmed in order to guarantee structural health, due to 

the uncertainties in the design assumptions for damage 

nucleation and evolution (material non-uniformities, 

manufacturing tolerances, not easily predictable load 

spectrum, uncertainty in stress field knowledge in hot spots, 

etc.). Moreover, maintenance stops often require 

dismounting large portions of structure, thus reducing the 

availability of the aircraft and raising the operative costs.   

Real time Structural Health Monitoring (SHM), as part of a 

complete Prognostic Health Management system (PHM), 

could potentially reduce the aircraft operative costs, while 

maintaining a high level of safety (Boller, 2001). A lot of 

research is thus directed to the development of systems for 

automatic fault detection, able to perform a continuous on-

board inference on structural health. The evolution of 

Diagnostic Monitoring Systems (DMS) has led to the 

recognition that predictive prognosis is both desired and 

technically possible. As a matter of fact, the availability of a 

huge amount of data coming from DMS, once statistically 

treated, would allow for a stochastic estimation of the 

structure Residual Useful Life (RUL) as well as for the 

estimation of the Probability Density Function (PDF) 

relative to the current damage state. The approach would 

allow deciding in real time whether a component must be 

substituted or repaired, according to some predefined safety 

parameters. 

Bayesian updating methodologies perfectly fit the PHM 

target (Arulampalam, Maskell, Gordon & Clapp, 2002). 

Their approach consists in updating the a priori information 

on RUL (based essentially on material characteristics) 

according to the actual observations (treated stochastically) 

taken in real time by the DMS, thus coming to the 

estimation of the posterior required distributions, 

conditional on the measures. Unfortunately, it is impossible 

to analytically evaluate these posterior distributions apart 

from the cases when the degradation process is linear and 

the noise is Gaussian (like happens when using Kalman 

Filters). Focusing on fatigue damage, being crack evolution 
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not a linear process and all the involved uncertainties 

(comprehending also the measure error) not Gaussian, a 

numerical approach is suggested. Monte Carlo Sampling 

(MCS) methods are a valid tool to approximate the required 

posterior distributions (Cadini, Zio & Avram, 2009). 

Among them, Particle Filters, also known as Sequential 

Importance Sampling (SIS) are a MCS method taking its 

name from the fact that the continuous distributions of 

interest are approximated by a discrete set of weighted 

particles, each one representing a Markov Process trajectory 

of evolution in the state space, being its weight an index of 

probability of the trajectory itself (Arulampalam et al., 

2002). It is however important to consider that, though as 

the number of samples becomes very large, the MCS 

characterization of the PF approaches the optimal Bayesian 

estimate. In addition, Sequential Importance Resampling 

(SIR) algorithm is a similar technique which allows for 

particle resampling when the initially drawn samples are not 

able to describe with sufficient accuracy the system 

dynamics. In this case, new particles are usually sampled 

taking into account the information about the system gained 

up to the resampling instant.  

It is however important to consider the two main differences 

raising when considering real time DMS based upon a 

network of sensors installed over the structure with respect 

to classical Non Destructive Technologies (NDT) used to 

manually scan the structure during maintenance stops 

(scheduled or unscheduled). The first point is related to the 

target damage dimension that can be identified. NDTs can 

detect cracks at a very early stage of propagation, often 

detecting anomalies in the length order of 1mm or less. On 

the other hand, the on-board DMS is expected to be 

designed for a longer target crack length (typically an order 

of magnitude greater, however strictly dependent on the 

allowed number and position of sensors as well as on the 

geometry of the structure that is going to be monitored), like 

reported by Sbarufatti, Manes and Giglio (2011). This is 

however in compliance with actual specification 

requirements for damage tolerance (JSSG, 2006), at least for 

the aeronautical panel structure which is going to be tested 

inside this framework (Figure 1). The second point concerns 

the uncertainty related to the provided measure. Obviously, 

the variance of damage inference that can be obtained with a 

manual scan over the entire structure is by far more precise 

with respect to the PDF of the damage state estimated with a 

smart sensor network, due to the complicated algorithms for 

data fusion and damage characteristic evaluation. 

The work reported inside this paper is about the 

development and testing of a Particle Filtering algorithm for 

the prognosis of aeronautical stiffened skin panels. The aim 

of the work is to appreciate the advantages due to the 

application of PF for the estimation of RUL, as a 

comparison with a classical methodology for the estimation 

of fatigue crack evolution. Moreover, this work represents 

the final testing of a complete PHM system that also 

comprehends an automatic DMS for the real time evaluation 

of damage. A real dynamic crack propagation test has been 

executed, with acquisition from a network of 20 FBG strain 

sensors (Figure 1), with contemporaneous manual crack 

length track. A detailed and validated Finite Element model 

of the structure under monitoring has been developed and 

used in a massive way inside both the DMS and the PF 

algorithm. PF has been applied separately to two cases. The 

former, namely off-line PHM, consists in providing as input 

for the PF the crack lengths manually recorded (with an 

hypothesis of the associated distribution). Concerning the 

second case, namely on-line PHM, as anticipated, the output 

of the real time DMS (processing the signal from the sensor 

network) is given as input to the PF algorithm. The two 

approaches have been compared, providing some comments 

on relative performances. To be noticed that the present 

article is focused on the prognostic part of the SHM, while 

the interested reader could refer to the work of Sbarufatti, 

Manes and Giglio (2012) for a detailed description of the 

DMS design and performances (taken as input for the 

current paper).   

In particular, a brief overview of PF theory is provided in 

section 2 of the present paper, followed by a description of 

the stochastic crack propagation model and the 

measurement model, respectively presented in sections 3 

and 4. The PF theory has been tested for the off-line and on-

line PHM, reporting results inside section 5. A conclusive 

section is also provided.  

2. OVERVIEW OF PARTICLE FILTER THEORY 

When modeling the behavior of dynamic systems under 

degradation, at least two models are required (Cadini et al., 

2009). Firstly, a model describing the sequential evolution 

of the state (or the system model) and, second, a model 

relating the noisy measurements to the state (or the 

measurement model). The former consists of a hidden 

Markov process describing the health state ���; � � 1:	
, 

Figure 1. (a) Test rig for dynamic crack propagation test 

starting from a notch artificially initiate on the aluminum 

panel structure. (b) Typical aeronautical stiffened skin panel 

structure with sensor network for diagnosis installed (20 

FBG strain sensors) 
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or the Transition Density Function (TDF) f that relates the 

health state at time k-1 to the condition at instant k. It 

consists in a Discrete time State Space (DSS) model. The 

latter is the equation describing the distribution of the 

observations ���; � � 1:	
, or the statistical function h that 

relates the condition of the monitored component to its 

noised measure at time stamp k. In a Bayesian framework, 

all the relevant information about the state can thus be 

inferred from the posterior distribution of the state xk, given 

the history of collected measurements y1…k. This is true also 

concerning Particle Filters, apart from the fact that the 

posterior distributions are estimated by means of MCS from 

f and h. What follow are the basic steps of the mathematical 

formulation of PF theory, while for a deeper description the 

interested reader could refer to a tutorial on particle filter 

theory (Arulampalam et al., 2002). The DSS and 

measurement models will be thoroughly defined inside the 

following section. 

Given the stochastic damage evolution can be described 

through the TDF, the aim of the PF is the selection of the 

most probable damage state xk at current time k (or in 

alternative the entire damage state history up to k), 

according to the noisy measurements that have been 

collected up to the current discrete time k. This means 

estimating the posterior PDF of the health state at k, like 

reported in Eq. (1), which is valid for the entire state 

sequence up to k. 

p��:�|��:�� � �p��:�|��:��δ��:� − ��:��d��:� (1) 

Equation (1) indicates that the posterior PDF of the health 

state can be expressed as an integral inside the space of all 

possible damage evolutions ��:� , where only those 

propagations similar to the target evolution ��:�  give 

contribution. According to MCS theory, the integral could 

be solved by sampling ��:�  from the true posterior PDF 

p��:�|��:��. Unfortunately, this is not possible, being that 

distribution the objective of the inference. Thus, SIS-SIR 

technique is a well-established method to overcome this 

problem. The method allows generating samples from an 

arbitrarily chosen distribution called Importance Density 

Function (IDF) ���:�|��:��, allowing to rewrite Eq. (1) in 

the form of Eq. (2), without applying any bias to the 

required p��:�|��:��. 

p��:�|��:�� � 

� �q��:�|��:�� p��:�|��:��
q��:�|��:�� δ��:� − ��:��d��:� (2) 

An estimation of Eq. (2) can be derived through MCS 

(based on q distribution), thus coming to Eq. (3), where 

��:�� , i � 1,2, … , N�  is a set of Ns independent random 

samples (particles) drawn from q��:�|��:�� and δ is the so 

called Dirac delta function. Finally, w�
��

 are the importance 

weights calculated as the ratio between p and q 

distributions, each one relative to the i
th

 particle (possible 

propagation history) and valid for the k
th

 discrete instant.  

p ��:�|��:�� � 1
N�

! w�
∗��δ#��:� − ��:�

�� $%&

�'(
 (3) 

Equation (3) expresses the required posterior PDF as a 

combination of the weights associated to each particle (or to 

each damage propagation sample). After some mathematical 

transformations available in literature (Arulampalam et al., 

2002), one could express w�
∗��

 as a recursive formula 

dependent on the weights that have been calculated at 

previous discrete time k-1, as reported inside Eq. (4), where 

w�
��

 are called Bayesian Importance Weights and are 

calculated like in Eq. (5). 

w�
�� � w�)(

�� p#y�+x�
��$p#x�

��+x�)(
�� $

q#x�
��+��:�)(

�� , ��:�$
 

(4) 

w�
�� � w�

∗��p��:�� (5) 

Inside Eq. (4), p#x�
��+x�)(

�� $  is the TDF (f) indicating the 

statistical correlation between two consecutive steps of 

damage evolution. Moreover, p#y�+x�
��$ is the probability of 

having a certain measure at k, given a state sample is 

considered among the particles propagated up to k. This is 

available once the measurement model (h) is statistically 

described, like described inside section 4. Finally, 

q#x�
��+��:�)(

�� , ��:�$ is the IDF from which one has to sample 

in order to generate particles, or the random Markov Process 

describing the damage evolution, which can be arbitrarily 

selected. 

The choice of IDF distribution is a crucial step for the PF 

algorithm design. In fact, the algorithm convergence is 

mathematically demonstrated to be independent from the 

choice of IDF given a sufficient number of samples is 

generated. If the allowed number of samples is limited, due 

to computational requirements, the algorithm performances 

are dependent on the choice of the importance density 

function. However, as a first approximation, it is often 

worth trying to select the IDF equal to the TDF (Bootstrap 

approximation (Haug, 2005)). This would allow for a strong 

complexity reduction of Eq. (4) as IDF and TDF will be 

simplified. This means generating particles according to the 

prior knowledge on material properties (however 

statistically defined), then updating weights identifying the 

most suitable samples according to the measure distribution 

and history. Nevertheless, it could happen that the real 

propagation that is measured behaves like an outlier with 

respect to the stochastic damage propagation, thus forcing 
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almost all the particle weights to zero. When this happens, 

resampling of particles is required, from a different IDF, 

somehow taking into account the history of measurement 

collected up to the resampling instant. 

Finally, once the health state PDF is approximated assigning 

an importance weight to each particle, also the distribution 

of the Failure Cycle (Nf) can be updated and refined, 

conditioned on the health state, like expressed in Eq. (6), 

thus allowing for the estimation of the updated RUL 

distribution.   

-#	.+/�:0$ � 1
	1

! 20
∗3�4	. − 	.,0

3��56

3'(
 (6) 

3. THE DISCRETE TIME STATE SPACE MODEL 

DSS is the model describing the a priori knowledge of 

probabilistic damage evolutions (particles). In other words, 

it represents the possibilities for damage evolution (given 

the uncertainties in material characterization as well as the 

noise inevitably present inside the operating environment), 

from which the algorithm selects the samples that best fit 

with the measures. The model used inside the current 

framework for damage propagation is based on the 

NASGRO Eq. (7), though other less complicated models 

such as Forman law or Paris equation (Budynas & Nisbett, 

2006) have been usually adopted in literature for crack 

propagation prognosis (Cadini et al., 2009). NASGRO law 

allows describing not only the stable crack propagation, but 

also damage initiation and the unstable crack evolution. It 

also takes into account the load ratio (R) of the applied 

spectrum, defined as the ratio between the valley and peak 

values of the load cycle, as well as the crack closure effect 

induced by plasticity near the crack tips. 

78
7	 � 9 ∙ ;<1 − =

1 − >? ∙ ∆AB
C

∙ D1 − ∆AEF∆A GH

D1 − ∆ACIJAK GL (7) 

Inside Eq. (7), 8  is the crack dimension and 78 7	⁄  

represents the crack growth rate per cycle (N). ΔK  is the 

variation of the Stress Intensity Factor (SIF) inside one load 

cycle, calculated as the difference between the SIFs 

evaluated in correspondence of the maximum and minimum 

load. Moreover, ∆Kth is the threshold variation of SIF (crack 

shouldn’t propagate below ∆Kth), Kc is the critical value of 

SIF (fracture toughness) and f is the crack opening function. 

Finally, C, m, p and q are parameters defined for material 

characterization. The interested reader could refer to 

NASGRO reference manual (2005) for a deeper insight to 

the parameter definition.  

Equation (7) allows calculating the crack growing rate as a 

function of the applied load cycle, given the needed constant 

are defined. Some comments arise relative to the work 

presented hereafter. First of all, to develop a methodology as 

general as possible, SIFs have not been calculated with 

simple analytical formulas (usually valid for simple skins). 

A large database of FEM simulated damages has been 

generated, collecting SIF parameters for each case. An 

Artificial Neural Network has been trained in order to fit the 

function that relates the crack position and dimension to the 

SIF at crack tips. The method would allow evaluating crack 

propagation also for complex geometries, obviously given a 

validated FEM is available (the subject of current 

monitoring is an aluminum skin, stiffened through some 

riveted stringers, with crack propagating on the skin). 

Moreover, Eq. (7) has been stochastically described by 

means of some experimental data available in literature 

[Giglio & Manes, 2008]. In particular, C and m parameter 

distributions have been derived from a crack propagation 

test campaign made on aluminum structures. While 

simulating crack propagation with Eq. (7), C and m are 

randomly sampled at each step of crack evolution, thus 

obtaining a model that relates the health state at discrete 

instant k-1 to the condition at k, or the Transition Density 

Function shown in Eq. (8). A Gaussian noise has also been 

introduced, like described by Cadini at al. (2009).  

px�|x�)(�, ∀k R 0 (8) 

Thus, the probabilistic a priori information on damage 

evolution is shown inside Figure 2, where the real crack 

propagation (over structure presented in Figure 1) is 

reported together with the random Markov Process 

evolution of the simulated damage. In particular, the initial 

Figure 2. NASGRO DSS model for off-line PHM. 

Comparison of particles with real crack propagation 

measured during experiments. Particles have been 

generated starting from a 16mm measure, corresponding 

to the length of the artificially initiated crack. 
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crack length has been set to 16mm, corresponding to the 

artificial notch introduced to fasten crack nucleation and to 

control crack position. As one could notice, the random 

simulated crack propagation covers a very wide range of 

possibility, including also the real case measured during 

test. An efficient algorithm (based on probability theory) is 

thus needed in order to select which are the particles that 

best fit the reality, given some measures (with noise and 

uncertainty) have been taken, thus reducing the uncertainty 

on the RUL estimation. The DSS model presented inside 

Figure 2 will be adopted when considering the application 

of PF to the off-line PHM system (measurements are 

manually collected during maintenance stops). On the other 

hand, Figure 3 shows the stochastic simulation of crack 

propagation for the on-line case (measures of crack length 

are estimated by a sensor network installed over the 

structure). Simulated crack propagation has been initiated 

after the anomaly detection is performed by the automatic 

diagnostic system (about 60mm for the sensor network Vs. 

damage configuration shown in Figure 1). The first thing to 

be noticed is the reduced dispersion of particles in Figure 3 

with respect to Figure 2, being the model initiated in 

correspondence of a longer crack length. Moreover, the 

random process of simulated crack propagation appears to 

be centered on the real damage evolution in Figure 3, where 

the randomness of damage evolution from 16mm to about 

60mm has not been considered. 

4. THE MEASUREMENT SYSTEM  

Two measurement systems have been adopted, trying to 

analyze the PF algorithm performances when off-line and 

on-line PHMs are going to be considered (Figure 4). 

Off-line PHM simulates the case when the aircraft is 

stopped for maintenance and the structure is manually 

scanned by operators for crack identification. In the case a 

damage tolerant structure is considered, the aim is to 

identify if it is possible to postpone dismounting and 

repairing until the prognostic system declares a critical 

condition. In order to statistically characterize the off-line 

measure, it has been decided in first approximation to 

consider the measurement system PDF Gaussian, with mean 

value equal to the real crack length (measured with a caliber 

during the real test). Nevertheless, a standard deviation (σoff) 

has also been selected so that the 95% confidence band is 

inside the ±3% range with respect to the measure. 

On the other hand, the on-line PHM simulates the case when 

the structural health condition is automatically inferred by 

means of a diagnostic unit that processes data coming from 

a smart sensor network. The concept consists in maintaining 

the aircraft operative until the PHM system declares further 

operations unsafe, given a predefined safety parameter. The 

diagnostic unit used inside the current framework has been 

thoroughly described by Sbarufatti et al. (2012). It basically 

consists of two Artificial Neural Networks (ANN), trained 

with FEM simulations in order to understand the complex 

functions that relate the damage parameters (existence, 

position and length) to the strain field modifications due to 

damage. The first ANN (anomaly detection algorithm) 

receives strain data as input and generates an alarm when 

the damage index (ranging from 0 to 1) falls above 0.5. The 

second algorithm (damage quantification), activated in 

series to the anomaly detection, receives again strain data 

and gives crack length distribution
1
 as output (a deeper 

explanation about diagnostic unit output is again provided 

by Sbarufatti et al. (2012)).  

                                                           
1
 The quantification algorithm is composed by 50 ANNs, 

trained with randomly selected damage samples (with 

random position and length). Each one receives the strain 

pattern from the FBG acquisition system and returns an 

estimation of crack length. 

Figure 3. NASGRO DSS model for on-line PHM. 

Comparison of particles with real crack propagation 

measured during experiments. Particles have been 

generated starting from a 60mm measure, corresponding 

to the length of the crack in correspondence of the 

anomaly detection by the automatic diagnostic unit. 

 

Figure 4. Comparison between (a) the Off-Line PHM 

procedure and (b) the On-Line PHM process. The On-

Line process is based upon the diagnosis performed 

through an on-board SHM system that detects and 

characterizes structural faults.   
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The PF algorithm is thus activated after the anomaly is 

detected and an estimation of the damage state distribution 

is provided from the diagnostic algorithm. 

A comparison of the on-line vs. off-line measurement 

system is provided in Figure 5. It can be noticed that the 

±2σ-band adopted to simulate the behavior of a generic 

system for manual surface scan is by far narrower with 

respect to the uncertainty correlated to the real-time 

automatic diagnostic system. For instance, considering a 

70mm target crack length, the ±2σ-band ranges between 

63mm and 86mm for the on-line diagnosis, while ranging 

between 67.5mm and 72.5mm for the off-line measure. 

However, it can be noticed that the average value of the 

quantification distribution correctly estimate the target crack 

length. The strong degeneracy for the σ-band of the on-line 

measure of longer cracks is due to the fact that the database 

of simulated experience used to train the ANN algorithms 

for diagnosis has been limited up to 100mm cracks.  

5. COMPARISON OF ON-LINE VERSUS OFF-LINE RESULTS  

The performances of the PF algorithm when applied to the 

two maintenance approaches introduced above are now 

deeply investigated. The main output of the PF probabilistic 

calculation is the estimation of the health condition of the 

structure, like reported inside Figure 6 relatively to both off-

line and on-line PHM. In few words, the main advantage of 

the PF technique is that it allows to update the posterior 

PDF for the damage condition, taking into account the 

history of all the measures taken up to the k
th

 discrete time 

instant, as well as the analytical a priori knowledge given by 

the underlying model for damage evolution. This becomes 

particularly attractive when autonomous diagnostic systems 

are considered. As a matter of fact, they could provide 

continuous information relative to damage existence and 

level; nevertheless they are characterized by a robustness 

and precision inferior with respect to classical NDT 

technologies (herein simulated with off-line measures). In 

practice, PF could filter the most suitable states at k
th
 

instant, inside the database of possible damage evolutions 

(particles) calculated a priori with respect to any measure. 

Particles relative to the off-line and on-line PHM have been 

shown in Figure 2 and Figure 3 respectively. Once the 

actual state distribution is updated and refined, the 

distribution of the RUL could also be updated, becoming 

conditional on the whole history of the monitored 

component, and consistent with the analytical and empirical 

knowledge which is inside the TDF.  

The state posterior PDF estimation is shown inside Figure 6, 

relatively to the off-line (Figure 6(a)) and on-line (Figure 

6(b)) cases. PF has been applied to a real crack propagation 

test, with contemporaneous manual acquisition of crack 

Figure 5. Measurement system uncertainties. Comparison 

of the on-line diagnostic system performance with respect 

to the off-line manual structural scan methodology. The 

on-line diagnostic system has been trained with FEM 

damage simulations, with crack length up to 100mm. 

 

Figure 6. Filtering of the health state distribution. (a) Posterior PDF of the health state for the off-line measure and (b) 

Posterior PDF of the health state for the on-line structural diagnosis. The real crack propagation is shown, as well as the 

collected measures. The posterior 95% σ-band is also plotted, to be compared with the a priori σ-band reported inside 

Figure 5. The instants when the algorithm required particle resampling have also been indicated. 
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length measures (processed in Figure 6(a)) and automatic 

estimation of crack measure by means of an on-board smart 

sensor network based upon strain field (processed in Figure 

6(b)). It is immediately clear that, while the manual 

structure scan would allow to detect and to measure shorter 

cracks (the inferior limit is imposed herein by the length of 

the artificial damage for crack initialization, set to 16mm), 

the anomaly detection threshold for the sensor network and 

damage configuration reported in Figure 1 is around 60mm. 

On the other hand, off-line measures are available at 

predefined scheduled intervals, while the on-line health 

assessment is retrieved in continuous every 1000 load cycles 

through the diagnostic unit developed by Sbarufatti et al. 

(2012). However, on-line measures are affected by a large 

uncertainty if compared to the off-line case, like described 

into Figure 5.  

Concerning the off-line PHM system, the health state 

estimation (Figure 6(a)) appears to characterize precisely the 

damage evolution, being the 95% σ-band mostly centered 

on the real damage condition. However, it is clear from 

Figure 2 that the damage evolution occurred during the test 

is not centered with respect to the stochastic model used to 

define the TDF. This resulted in resampling requirement 

after few updating iterations, as the available particles were 

not enough to describe the posterior PDF of the health state 

(only few particles retains a weight which is significantly 

different from zero).  

Relating to the on-line PHM system, it can be noticed that 

the posterior PDF of the health condition is by far narrower 

with respect to the output of the diagnostic algorithm shown 

inside Figure 5. For instance, relatively to a 70mm crack, 

the 95% σ-band of the quantification algorithm (Figure 5) 

ranges from 63mm to 86mm, while after the PF updating 

process it ranges from 68mm to 72.5mm (Figure 6(b)). 

However, the estimated σ-band sometimes doesn’t 

comprehend the real state evolution. This is mainly due to 

the fact that the measures are affected by a higher error 

(with respect to the off-line system), which is in part 

confirmed by the evolution of some stochastic particles. 

This means that, if a lot of measures over/underestimate the 

real damage condition and their assumptions are also 

confirmed by the DSS model, the PF precision will 

decrease. However, under the reasonable assumption 

(Figure 5) that the measure PDF is centered on the target, 

the PF inference will converge toward the real damage 

evolution. In other words, PF tends to interpolate the 

measures, nevertheless taking into account the a priori 

knowledge which is inside the DSS model. Though the DSS 

model used for the a priori description of the damage 

evolution for the on-line PHM results centered on the real 

crack propagation (Figure 3), particle resampling was also 

required, due to the fact that the updating process focused 

on a particular set of particles.  

Some specifications are required concerning the adopted 

resampling technique. As a matter of fact, the DSS model 

used to initialize the algorithm has been kept as general as 

possible (considering the distribution of material parameters 

inside the NASGRO law), in order to be representative of 

many experimental tests for crack propagation on the same 

material (aluminium). The resulting DSS spreading is high, 

thus provoking premature particle degeneracy and 

requirement for resampling. Nevertheless, if a sufficient 

number of iterations have been concluded, it is possible to 

generate new particle samples from a different importance 

density q#x�
��+��:�)(

�� , ��:�$ , taking now the history of 

measures into account but preventing from the possibility to 

adopt Bootstrap approximation. Concerning the work herein 

reported, new particles are generated considering a TDF 

with deterministic material parameters (C and m are now 

obtained by fitting the specific measures taken relatively to 

the specimen under monitoring) and random white noise. 

From one hand, this would allow to reduce the uncertainty 

Figure 7. Effect of NASGRO parameter dynamic fitting. A sudden (unpredicted) change in the slope of the crack 

propagation curve cannot be described before it has happened. 
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related to prognosis. From the other hand, like described 

into Figure 7 (where the noise has been eliminated for just 

description purposes), this method is less robust to 

unexpected changes in the system dynamics. It is clear from 

Figure 7 that, if C and m are considered to be deterministic, 

they cannot take into account for sudden changes in the 

curve slope (Figure 7(a)), unless a new resampling is 

executed fitting the propagation curve with new measures 

(Figure 7(b)). The effect is visible in the RUL estimation, 

relative to the off-line PHM case (Figure 9(a)); the error in 

RUL estimation with PF increases after resampling is 

executed at 250000 load cycles, until a new resampling is 

executed at about 300000 load cycles, taking into account 

the unexpected change in the crack evolution slope.  

Once the PDF of the health state is filtered by the PF 

algorithm, also the RUL of the component under monitoring 

can be updated according to Eq. (6). In order to appreciate 

the advantages and drawbacks of the PF algorithm, it has 

been compared with a second technique. The method 

consists in evaluating the RUL PDF by performing a 

stochastic crack propagation based on the NASGRO law. In 

few words, given the PDFs of the material related constants 

are provided, 3000 crack propagations (particles) have been 

simulated, sampling at each step the material constants from 

the available distributions. Once the target crack length is 

identified (120mm have been selected as limit crack length, 

due to the limits of the FEM database), the RUL can be 

stochastically defined with a PDF. The same procedure is 

repeated each time a new estimation of the crack length is 

provided either from the on-line or the off-line diagnostic 

system. To be noticed that this method just depends on the 

last measure provided by diagnostic and doesn’t take into 

account the trend of historical measures (which is, on the 

contrary, the advantage of PF). Each inference is thus 

completely uncorrelated to the previous ones. Moreover, it 

requires simulating many crack propagation every time a 

new RUL PDF is needed. Stochastic NASGRO (SN) and 

Particle Filter RUL evaluations are respectively reported in 

Figure 8 and 9, again relatively to the on-line and off-line 

Figure 8. 95% σ-band for RUL estimation with stochastic NASGRO law. Comparison of off-line PHM (a) versus on-line 

PHM (b). 

 

Figure 9. 95% σ-band for RUL estimation with Particle Filtering algorithm. Comparison of off-line PHM (a) versus on-line 

PHM (b). 
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PHM. The estimated RUL (intended hereafter as the 

remaining number of cycles before reaching the 120mm 

long crack) is reported during the component life (as a 

function of load cycles). The real RUL is shown as well as 

its estimation calculated with SN law (Figure 8) and PF 

(Figure 9). In particular, the expected value of the RUL PDF 

has been reported, as well as the 95% σ-band. The first thing 

to be pointed out is that SN only depends on the knowledge 

of material properties (and applied load); for this reason, if a 

discrepancy between the DSS and reality is present at the 

beginning, there won’t be an updating process on the basis 

of the collected measures, thus maintaining the same error 

during life, as clearly appreciable from Figure 8(b). 

Moreover, the SN prognosis is very sensitive to the quality 

of the measure, being an issue especially when the on-line 

PHM is considered, where the inevitable fluctuations in the 

inference on structural condition (due to the high level of 

uncertainties) will be reflected in an unstable prognosis 

(Figure 8(b)). On the other hand, PF technique is able to 

filter these uncertainties (Figure 9(b)), thus estimating a 

RUL which is dependent on the entire trend of measures 

that have been collected since the anomaly is identified. The 

variance of the RUL PDF evaluated with the two prognosis 

methods appears to be of the same order, unless resampling 

is performed in PF algorithm. As explained above, the 

information retrieved from the collected measures would 

allow decreasing significantly the uncertainty in prognosis 

(as at least the uncertainty related to material properties can 

be by far reduced). This is well reflected in Figure 9(b) 

where an important reduction in the variance of PF 

estimation of RUL is obtained. After 275000 load cycles, 

only few particles remained with a non-negligible weight, 

thus provoking degeneracy of the algorithm. New particles 

have thus been generated, nevertheless without considering 

the material uncertainty inside the DSS (C and m parameters 

inside the NASGRO equation are deterministic and obtained 

through a non-linear fitting of the historical data available 

up to resampling instant). Nevertheless, the resampling 

technique has to be improved in order to avoid focusing in a 

too narrow region inside the DSS. In fact this is the reason 

for the deviation of the estimated RUL PDF from real RUL 

inside Figure 9(a), like described in Figure 7.  

Finally, two comments arise while comparing off-line 

versus on-line PHM. Firstly, the 95% σ-band of the RUL 

based on the off-line measure is narrower due to the more 

precise measuring system. Nevertheless, the disposal of a 

real-time diagnostic tool would increase the availability of 

data relative to the health state, thus reducing the time 

needed to the PF algorithm to converge on the correct 

estimation. 

6. CONCLUSIONS 

A Particle Filtering (PF) Bayesian updating technique has 

been used inside this framework for the dynamic estimation 

of component Residual Useful Life. Two applications have 

been compared. The first one consists in applying particle 

filters to a Condition Based Maintenance where the 

structural health monitoring (SHM) has been off-line 

performed by maintenance operators. The second one 

consists in an automatic SHM performed on-board by a 

diagnostic unit trained with Finite Element damage 

simulation to recognize crack damage existence and length, 

based upon strain field measure. The methodology has been 

tested in laboratory on a specimen representative of a typical 

aeronautical structure, constituted by a skin, stiffened 

through some riveted stringers. Though the uncertainty 

related to the on-line structural diagnosis is by far larger 

than the one associated to the off-line measure, PF 

algorithm proved to correctly describe the posterior RUL 

distribution (conditional on the measures) in both cases. The 

additional uncertainty in the on-line measures resulted to be 

compensated by the availability of a continuous measure, 

thus allowing the algorithm to reach convergence in a 

relatively inferior time. PF algorithm has also been 

compared to a simpler technique based upon stochastic 

NASGRO (SN) law propagation. The advantage of PF with 

respect to SN is that it takes into account the whole history 

of measures taken on the monitored component as well as 

the prior knowledge coming from the propagation model. 

This results in a more robust and precise estimation of the 

health state as well as of the RUL PDF. Finally, the 

adoption of a robust filtering methodology that merges the 

information coming from a wide sensor network with the 

numerical or analytical knowledge about the phenomenon 

subject of monitoring appears to be a suitable technique for 

the performance increase of automatic SHM systems, thus 

leading toward the real on-board PHM. 

NOMENCLATURE 

ANN Artificial Neural Network 

DMS Diagnostic Monitoring System 

DSS Discrete State-Space  

FBG Fiber Bragg Grating 

FEM Finite Element Model 

IDF Importance Density Function 

MCS Monte-Carlo Sampling 

NDT Non Destructive Technology 

PDF Probability Density Function 

PF Particle Filter 

PHM Prognostic Health Management 

RUL Residual Useful Life 

SHM Structural Health Monitoring 

SIF Stress Intensity Factor 

SIR Sequential Importance Resampling 

SIS Sequential Importance Sampling 

SN Stochastic NASGRO 

TDF Transition Density Function 
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