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ABSTRACT 

Even though prognostics has been defined to be one of the 

most difficult tasks in Condition Based Maintenance 

(CBM), many studies have reported promising results in 

recent years. The nature of the prognostics problem is 

different from diagnostics with its own challenges. There 

exist two major approaches to prognostics: data-driven and 

physics-based models. This paper aims to present the major 

challenges in both of these approaches by examining a 

number of published datasets for their suitability for 

analysis. Data-driven methods require sufficient samples 

that were run until failure whereas physics-based methods 

need physics of failure progression. 

1. INTRODUCTION 

Condition based maintenance (CBM) is a preventive 

maintenance strategy, in which maintenance tasks are 

performed when need arises. The need is determined by 

tracking the health status of the system or component 

(Camci and Chinnam, 2010: Eker et al., 2011). CBM is a 

proactive process involving two major tasks: diagnostics 

and prognostics. Diagnostics is the process of identification 

of faults, whereas prognostics is the process of forecasting 

the time to failure. Time left before observing a failure is 

described as remaining useful life (RUL) also called 

remaining service or residual life (Jardine et al., 2006).  

An example of degradation in health level of an asset is 

shown in Figure 1. The P-F interval is the time interval 

between potential failure which is identified by health 

indicators, and an eventual functional failure. With CBM 

it’s necessary that the P-F interval is long enough to enable 

corrective maintenance action to be taken (Jennions, 2011).  

 

Figure 1. P-F curve of an asset 

 

Diagnostics is a more mature field than prognostics. Once 

degradation is detected, unscheduled maintenance should be 

performed to prevent the failure consequences.  It is not 

uncommon to spend more time in maintenance preparation 

than in performing the actual maintenance due to lack of 

resources.  In prognostics on the other hand, maintenance 

preparation could be performed when the system is up and 

running, since the time to failure is known early enough. 

Thus, the actual maintenance duration becomes the major 

contributor of the downtime. Figure 2 illustrates the 

comparison of diagnostics and prognostics.  

Performing maintenance preparation when the system is up 

and running has a great effect on reducing the operation and 

support costs. In addition to the reduced down time, the 

inventory cost will be reduced since more time will be 

available for obtaining required parts. The efficiency in 

logistics & supply chain will be increased due to the better 

preparation for maintenance. The life cycle cost of the 

equipment will be reduced, since they are used until end of 

their lives.  
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Figure 2. Comparison of failure diagnostics and prognostics 

maintenance scenarios 

 

Despite the potential value in prognostics, it is considered to 

be one of the most challenging tasks in CBM (Zhang et al., 

2006: Peng et al., 2010). Prognostics involves two phases as 

shown in Figure 3. The first phase of prognostics aims to 

assess the current health status. Severity detection, health 

assessment, or degradation detection are the terms used for 

describing this phase in the literature. This phase could also 

be considered under diagnostics. Pattern recognition 

techniques such as classification or clustering can be 

utilized in this phase. The second phase aims to predict the 

failure time by forecasting the degradation trend and by 

identifying remaining useful life (RUL). Time series 

analysis, trending, projection or tracking techniques are used 

for this phase. 

 

Figure 3. Phases of prognostics and diagnostics 

 

Many academic papers with prognostics titles only consider 

the first phase (Qiu et al., 2003; Ocak et al., 2007). 

However, prognostics without the second phase will not be 

complete and will not lead to RUL estimation. This paper 

focuses on the second phase of prognostics.  

Prognostics methods can be analyzed in two major 

categories: Data-driven and physics-based models. Data-

driven models utilize past condition monitoring data, current 

health status of the system, and degradation of similar 

systems. Physics-based models employ system specific 

mechanistic knowledge, defect growth formulas, and 

condition monitoring data to predict the RUL of systems 

(Heng et al., 2009). 

This paper aims to discuss the challenges for data-driven 

and physics-based prognostics and presents several case 

studies. Section 2 reports the requirement analysis and 

challenges of data-driven and physics-based prognostics 

models. Section 3 discusses several prognostic case studies. 

Finally section 4 concludes the paper with an emphasis on 

future research tasks. 

2. CHALLENGES IN PROGNOSTICS MODELING 

Both data-driven and physics-based models have different 

requirements to model the degradation and predict the RUL 

of a system. Challenges and requirements of both 

approaches are given in distinct sub-sections below. 

2.1. Data-Driven Models 

Data driven models intend to model system behavior using 

regularly collected condition monitoring data instead of 

using comprehensive system physics or human expertise 

(Heng et al., 2009). Data-driven approaches are classified 

into two categories in general. These are statistical and 

machine learning approaches. Statistical approaches 

construct models by fitting a probabilistic model to the 

available data.  Machine learning approaches attempt to 

recognize complex patterns and make intelligent decisions 

based on empirical data.  

Both statistical and machine learning methods use the 

degradation patterns of sufficient samples representing 

equipment failure progression. This requirement is the 

major challenge in data-driven prognostics since it is often 

not possible to obtain samples of failure progressions. 

Industrial systems are not allowed to run until failure due to 

its consequences especially for critical systems and failure 

modes. However quality and quantity (sample size) of 

system monitoring data has a high influence on data-driven 

methods. Sample sizes of prognostic datasets in the 

literature range from 10 to 40 (Camci and Chinnam, 2010; 

Baruah and Chinnam, 2005; Huang et al., 2007; Gebraeel et 

al., 2005; Eker et al., 2011). In this paper datasets will be 

compared to sample sizes provided in the references above 

as quantitative analysis. 

Most of the electro-mechanical failures occur slowly and 

follows a degradation path (Gebraeel et al., 2009). Failure 

degradation of such a system might take months or even 

years. This challenge has been addressed in the literature in 

the following ways:  

1. Accelerated aging: Equipment is run in a lab environment 

with extreme loads and/or increased speed to allow faster 
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failure. Structural health monitoring applications are a good 

example of this type of failure progression. Test specimens 

are subjected to cyclic loading experiments so that cracks 

are propagated faster than normal degradation process 

(Camci et al., 2012: Diamanti & Soutis, 2010: Papazian et 

al., 2009). Camci and Chinnam, (2010) used imitations of 

real components which are made by vulnerable materials so 

that failure progresses faster than normal.  

2. Unnatural failure progression: A predefined degradation 

formula is used to define the discrete failure states and 

duration to be spent in each state. Failure progression in a 

railway turnout has been modeled using exponential 

degradation (Eker O. F., 2011).  

Each solution has its own strengths and weaknesses with 

some level of failure degradation representation capability. 

2.2. Physics-Based Models 

Physics-based models employ a physical understanding of 

the system in order to estimate the remaining useful life of 

an asset. Even though samples of failure degradation are not 

essential in physics based prognostics, the physical rules 

within the system should be known in detail. The first phase 

in physics based prognostics is to employ residuals that 

represent the dispersion of sensed measurements from their 

expected values of healthy systems (Namburu et al., 2003). 

The second phase in physics based prognostics requires 

mathematical modeling of failure degradation. 

There exist two major challenges in physics based 

prognostics: 1) the lack of sufficient knowledge on physics 

of failure degradation and 2) the inability to obtain the 

values of the parameters in the formulations. Thus, 

sufficient component/system information and good 

understanding of failure mechanisms are essential and 

skilled personnel is also required in physics based models 

(Zhang et al., 2009). Environmental and operating 

conditions might be used as inputs and constitute added 

dimensions to be considered.  

3. BENCHMARKING DATASETS 

Several publicly available datasets are analyzed in this 

section for their suitability in testing prognostic approaches. 

As mentioned in section 2, a prognostic dataset is expected 

to have a minimum sample size around 10 in order to 

perform data-driven modeling effectively. Regarding 

physics-based prognostics side, datasets will be examined 

with regards to: 1) If a mathematical degradation model 

exists for the specific application and 2) whether parameters 

in the model are provided with datasets or not. The 

applicability of data driven and physics based prognostics 

methods have been studied and results are presented in 

following subsections. 

3.1. NASA Data Repository (5 dataset) 

NASA Ames prognostics data repository (2012) is a 

growing source covering several sets of prognostic data 

contributed by universities, companies, or agencies. 

Datasets in the repository consist of run-to-failure time 

series data representing the case study under examination. 

There are seven sets of prognostics dataset available. In this 

section analysis of five datasets for data-driven or physics-

based modeling is presented.  

3.1.1.  Milling Dataset 

Sixteen milling inserts were degraded by running them at 

different operating conditions (Agogino and Goebel, 2007). 

Once the flank wear on the milling insert exceeded a 

standard threshold level the tool was considered to have 

failed. Flank wear was observed by a microscope on the 

flank face of the cutting tool caused by the abrasion of hard 

constituents of workpiece material which is commonly 

observed during the machining of steels or cast irons. 

Measurements of acoustic emission, vibration and current 

were collected as indirect health indicators. There are eight 

different operating conditions leading to only two samples 

for each operating condition.  

Effective data-driven modeling is very difficult, if not 

impossible, using only two samples of failure degradation. 

Several tool life or tool-wear rate models, mostly based on 

Taylor’s formula (Yen et al., 2004), have been selected for 

physics based prognostics and are displayed in Table 1. 

Tool Life Models Tool Wear Rate Models 

       (1) 

 

     (2) 
 

   (3) 

 

         (4) 

     

 

(5) 

 
 

 

 
 

 

 
 

 

 

 

 

 
Table 1. Tool life and wear models 
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In physics-based prognostics side, Taylor tool life (Eq. 1) 

and its extended versions in Eqs. 2-3, are well known life 

models employed in machining applications. Each of them 

can be applied into tool degradation scenarios separately. 

Tool life is the duration in which a tool can be operated 

properly before it starts to fail. In machining applications a 

predetermined flank wear upper level is used as a failure 

criterion. Tool life and rate of wear are sensitive to changes 

in cutting conditions. The relationship between tool life and 

machining parameters (e.g. cutting speed, feed, and depth of 

cut) are described by these equations. Cutting speed is 

considered as the difference in speed between the cutting 

tool and the workpiece. Feed rate is the velocity of a tool 

moving laterally across the workpiece which is 

perpendicular to the cutting speed. The depth of cut is how 

deep a workpiece is penetrated. Takeyama and Murata’s 

tool wear rate model, shown in Eq. 5, describes the 

relationship between rate of volume loss on the tool insert, 

cutting distance and diffusive wear per cycle. Even though 

parameters specific to tool material or workpiece (e.g. 

cutting tool hardness) can be found in machining tool 

handbooks,  operating or environmental condition 

parameters such as cutting temperature and sliding speed are 

not provided with the dataset.  

For the above reasons this dataset is found to be not suitable 

for data-driven and physics-based prognostic models. 

3.1.2. Bearing Dataset 

Three sets (each set consist of four bearings) of tapered 

rolling element bearings have been run to failure at the same 

operating conditions (Lee et al., 2007).  Accumulated mass 

of debris was collected for each experiment, the amount of 

debris being considered a direct health indicator of the 

bearing health (Dempsey et al. 2006). In contrast to the 

milling dataset, the direct health indicator (amount of debris 

collected) was not provided with the dataset. Vibration data 

was collected regularly as an indirect health indicator. After 

exceeding 100 million revolutions the bearings were failed 

due to a crack or outer race failure (Qiu et al., 2006). 

Yu-Harris (Y-H) and Kotzalas-Harris (K-H) models were 

selected to be used in a physics-based prognostic approach. 

Both bearing spall initiation and spall progression models 

found in (Orsagh et al., 2003: Yu, and Harris, 2001) are 

shown in Table 2. Yu and Harris’ bearing stress-based spall 

initiation formula is a function of dynamic capacity ( ) and 

the applied load ( ) as shown in Eq. 6. Dynamic capacity is 

also a function of bearing geometry and stress. Once 

initiated, a spall grows very quickly and a bearing has only 

3% to 20% of its remaining useful life left (Kotzala and 

Harris, 2001). The Kotzala-Harris spall progression rate 

model is a function of spall progression region width ( ), 

and is described with regards to maximum stress , 

average shearing stress , and spall length . 

Similar to the previous dataset some parameters to be used 

in physics based modeling are not found in the dataset 

(e.g. ). 

Challenges emerge in this dataset are: 

 Three run-to-failure sets of samples are considered 

insufficient for data-driven modeling when 

compared to dataset sample sizes found in 

literature. 

 Lack of parameters to be used in physics-based 

modeling. 

Spall initiation model 

                                 (6) 

where: 

                              (7) 

                   (8) 

Spall progression model 

                               (9) 

where: 

                    (10) 

 
  

  

  

  

  

  

 ,   

 

 

 

 

 

Table 2. Bearing fatigue life models 

 

3.1.3. Li-ion Battery Dataset 

Electric unmanned aerial vehicle (eUAV) li-ion batteries 

were used in this prognostic approach (Saha and Goebel, 

2007). The batteries were charged and discharged at 

different ambient temperatures and different load currents. 

There are 4 samples under the same operating conditions 
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and in total 36 samples are provided. Battery capacity fade 

is chosen as a failure indicator for these experiments. It was 

assumed that 30% of battery capacity fade, for example a 

reduction of 2000 to 1400 mAH was considered as failure. 

Voltage, current and battery temperature measurements are 

provided with the dataset as indirect health indicators. 

Impedance and capacity measurements were given with the 

dataset as damage criteria which are direct health indicators. 

Only four set of batteries under the same operating and 

environmental conditions are not enough to apply data-

driven prognostics in an effective way.  

Typically battery capacity or end of life (EOL) modeling is 

done for physics-based prognostics purposes. A remaining 

battery capacity model can be found in the literature (Rong 

and Pedram, 2006). All parameters, other than constant 

coefficients which are determined from experimental testing 

by curve fitting, are available to be employed in their model. 

This dataset was therefore found to be eligible for physics-

based modeling. 

3.1.4. Turbofan Engine Degradation Simulation Dataset 

This dataset contains 4 sets of data each of which is a 

combination of 2 failure modes and 2 operating conditions. 

Each set has at least 200 engine degradation simulations 

carried out using C-MAPSS which are divided into training 

and test subsets (Saxena and Goebel, 2008). Twenty one 

different sensor measurements as well as RUL values for 

test subsets are given (Saxena et al., 2008). However, health 

indicators were not provided with the dataset. 

Degradation in the HPC and Fan of the turbofan engine is 

simulated and dataset consists of multiple multivariate time 

series data. The simulations employ several operating 

conditions. The model that the dataset owners applied is 

exponential degradation shown in Eq. 11 where ( ) is initial 

degradation, ( ) is a scaling factor, ( ) time varying 

exponent, and ( ) is upper wear threshold. The model is a 

generalized equation of common damage propagation 

models (e.g. Arrhenius, Coffin-Manson, and Eyring 

models).  

 

The dataset is eligible for data-driven approach since 

sufficient data and RUL values are available with dataset. 

Either statistical or machine learning data-driven models can 

be employed to predict the RUL of turbofan engines. On the 

other hand, it is not appropriate for physics based modeling 

since the health index parameters are not given and no 

physics-based model found for whole engine system 

degradation. 

3.1.5. IGBT Accelerated Aging Dataset 

The dataset involves thermal overstress aging experiments 

of Insulated Gate Bipolar Transistors (IGBTs). IGBTs are 

power semiconductor devices used in switching applications 

such as traction motor control, and switched-mode power 

supplies (SMPS). Five IGBTs were aged with a squared 

signal at gate and one was aged with DC waveforms 

(Celaya et al., 2009). The experiments were stopped after 

thermal runaway or latch-up failures were detected. 

Collector current, gate voltage, collector-emitter voltage, 

and package temperature measurements are given as indirect 

health indicators.  

There are five run-to-failure samples under the same 

conditions. The dataset owners also declared that they 

experienced several problems with aging systems 

(Sonnenfeld et al., 2008). Thus, it is difficult to claim that 

the dataset could be employed for data-driven prognostics 

effectively.  

The Coffin-Manson model (Eq. 12) is used as a physics-

based model for thermal cycling applications (Cui, 2005).  It 

is a function of temperature parameters and Arrhenius term 

( ). Arrhenius term is evaluated when the maximum 

temperature ( ) is reached in each cycle. Temperature 

parameters to be used in the model are given with the 

dataset. The dataset was therefore found to be eligible for 

employing a physics-based approach. 

Coffin-Manson Model 

                      (12) 

                 (13) 

 

 

 

 

 

 

 

 

 

 

Table 3. Physics-based models for temperature cycling 

 

3.2. Virkler Fatigue Crack Growth Dataset 

Structural health monitoring (SHM) is the process of 

implementing damage identification for typically civil, 

aerospace or mechanical engineering infrastructure (Farrar 

and Worden, 2007). In the SHM field, fatigue cracks are 

defined as one of the primary structural damage 

mechanisms caused by cyclic loadings. Cracks at the 

structure surface grow gradually. Once a crack has reached 

the critical length (determined by standards), the structure 

will suddenly fracture and it may cause the system to fail 

catastrophically. Therefore prediction of fatigue life or 

fatigue crack growth in structures is necessary. 
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The Virkler fatigue crack growth dataset (Virkler et al., 

1979) contains 68 run-to-failure specimens. Specimens used 

for experiments are center cracked sheets of 2024-T3 

aluminum. Each specimen had a notch of 9mm initial crack 

length and experiments were stopped once the crack lengths 

reached about 50 mm. The crack length information is 

provided as a direct health indicator of the specimens and is 

given in the dataset. Each specimen has 164 crack length 

observation points as shown in Figure 4. However indirect 

sensory measurements such as vibration, acoustic emission 

etc. is not provided. 

 

Figure 4. Crack length propagation samples under the same 

loading conditions 

 

The Virkler dataset is eligible for data-driven and physics 

based prognostics, since there are sufficient run-to-failure 

samples and crack growth equations compared to prognostic 

dataset sample sizes mentioned in section 2. Sixty eight 

samples are sufficient to develop data-driven methods. 

Crack growth formulation as shown in Eqs. 14 and 15 can 

easily be used in physics based prognostics (Paris and 

Erdogan, 1963: Cross et al., 2006). The Paris & Erdogan 

crack growth rate ( ) formula consists of the material 

specific constants ( ) and the range of intensity 

factor ( ) where ( ) is range of cyclic stress amplitude, 

( ) geometric constant, and ( ) is crack length.  

 

 

Challenge and requirement analysis of six different dataset 

has been performed both considering data-driven and 

physics-based modeling demands. As a result, it’s found to 

be 4 out of 6 datasets can be modeled employing a physics-

based approach easily while only two of them are applicable 

for a data-driven prognostics approach.  

A summary table of all datasets is shown in Table 4. 

Compared to other datasets, the Virkler dataset was found to 

be the most applicable considering the requirements of both 

data-driven and physics-based approaches. 

Dataset Data-Driven 

Modeling 

Physics-based 

Modeling 

Milling Dataset Hard Applicable 

Bearing Dataset Hard Hard 

Battery Dataset Hard Applicable 

Engine Dataset Applicable Hard 

IGBT Dataset Hard Applicable 

Virkler Dataset Applicable Applicable 

Table 4. Prognostic approach applicability table 

 

4. CONCLUSION 

Physics-based and data-driven models are two major 

prognostic approaches which have been employed in several 

case studies found in the literature. This paper attempts to 

conduct requirement analysis for prognostic methods and 

reports the challenges of applying the two major approaches 

into different datasets. In general, physics-based models 

require the presence of a mathematical representation of the 

physics of failure degradation and the parameters used in 

degradation modeling. Data-driven models require 

statistically sufficient run-to-failure samples. Several 

datasets were examined both considering physics-based and 

data-driven approaches and eligibility of datasets are 

summarized. The Virkler dataset was found to be the most 

suitable with the data-driven and physics-based models. The 

Virkler dataset has therefore been selected to be used in a 

hybrid prognostic approach in the future. 
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