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ABSTRACT 

The current development of the smart grids has considerably 

increased the amount of research studies around new 

exploitation paradigms focused on the electrical distribution 

systems. One of the key elements of electrical  distribution 

networks is the distribution transformer that supports the load 

that has to feed the consumer needs. This paper aims at 

characterizing the life of the distribution  transformers using 

clustering techniques. This will make it possible to focus the 

attention of the Distribution System Operator on particular 

groups of distribution transformers reducing the amount of 

information to be analyzed. Also this classification combined 

with the study of stress indicators for each distribution 

transformer can be used to complement the criteria used for 

the network planning and operation. 

 

1. INTRODUCTION 

Recent years have been marked by important development 

and investments in the field of smart grids. They have 

fostered research which is oriented to a better analysis and 

study of the distribution network operation by the 

Distribution Systems Operators (DSOs). Smart grids are 

characterized by a two-way flow of power and information 

(Wang et al., 2015). The Advanced Metering Infrastructure 

(AMI), which is installed in a distribution network, is a key 

element of the smart grids and the number of installations is 

growing. As an example, in Europe it is expected that in 2020 

(European Commission, 2014) 200 million smart meters will 

be installed for electricity measurement. Similar effort is 

being carried out in the rest of the world. This growing flow 

of up-going information provides interesting indications 

about the patterns of electricity consumption. These 

indications, when correctly analyzed, can lead to significant 

improvements in network operation. The Smart World 

concept can be defined as an integrated environment with 

smart grids, homes, buildings and with new infrastructure and 

tools (Hernandez et al., 2012). Its goals are efficient 

maintenance and operation, security, mobility, energy 

savings and quality of life.  In order to reach these objectives, 

the load at the distribution network has to be carefully 

studied. This can be done from several perspectives that 

range from the particular consumer load profile till a high 

level, such as the points of electricity distribution or 

secondary power substations. The contributions of this paper 

are not concerned with theoretic aspects, but rather practical 

ones. Now the DSOs are receiving more and more 

information from smart meters that are located in customers 

and secondary power substations. Such a huge amount of 

information is difficult to analyze without convenient tools. 

The contributions of this paper are on the DSO practical 

perspective and are focused on the proposition of analysis 

methods able to give support in the process of taking 

decisions in operation and maintenance of a smart 

distribution network.  These methods are based on the 

characterization of the load in the distribution transformers 

(DTs) and the possible health conditions of them. Also, this 

information can be used in other aspects of energy 

management such as Demand Side Management (DSM) by 

different agents. It is possible that the DSO has a general idea 

of the load profiles than the DTs have, but now using the 

information coming from the smart meters, the DSO could 

obtain a more accurate view. The knowledge of the 

characteristic profiles in the low voltage side of the DTs can 

contribute to a better balance of load at the medium level, to 

a more accurate view of the relationships between load 

profiles of consumers as observed in the DT, to a better 

detection of energy losses due to different causes, and, in 

general, to improving the capability of operation and 

management of the low voltage network.  
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Extended literature about methods characterizing the life 

observed in a DT, one of the objectives of this paper, does not 

exist. However load forecasting is a well known area of 

interest in the electrical field and the methods used there will 

be taken into account and extended to the context of this 

paper. Two main families of them can be found in the 

scientific literature that has been applied to characterizing the 

electrical consumption in DTs: the methods based on load 

forecasting and the methods based on load profiling. 

Forecasting the electrical load at the distribution level can 

often be a challenge due to possible different requested 

scenarios of load. In (Amjady et al.  2010), a bilevel strategy 

with an Artificial Neural Network is used to forecast the 

hourly load of a microgrid, and  (Chen et al. 2014) forecasts 

the electrical load of a secondary power substation of the 

distribution network in China. In this reference, as 

measurement errors are common at the substation level, the 

authors propose a two-stage bad data identification method to 

improve the forecast accuracy. Load profiling is a key tool 

used to characterize the electrical consumption and the 

behavior of the electrical customers. It is necessary for 

establishing efficient demand-response programmes and for 

tariff setting. Load profiling can be applied to households  

(McLoughlin et all, 2015, Mahmoudi  et al.  2010, Kwac et 

al. 2014 and Albert et al. 2015) or to industrial consumers 

(Mutanen et al., 2011 and  Panapakidis et al. 2012) . In (Verdú  

et al., 2006)  the electrical customers are sorted according to 

three load shape indices by using a classification tree. The 

authors of  (Panapakidis et al., 2012) focus their contribution 

on the design of Real Time Pricing options for industrial 

customers. Yearly profiling and seasonal profiling are 

compared. The results show that considering the seasonal 

variations, the potential benefits increase. 

Thus, in the area of distribution networks, the behavior of the 

final electrical consumer has been extensively studied, 

however, very few studies can be found concerning the load 

profiles in one of their key elements such as the DTs and for 

this reason this paper tries to cover this gap. In order to reach 

this objective, characterization of the load in DTs will be 

based on similar techniques used for the analysis of the final 

electrical consumer consumption. The analysis of the DT 

load can provide the DSO with guidelines for the operation, 

maintenance and management of the distribution network. 

The data used in this paper and the methods and results 

described are part of a project titled “Real proven solutions to 

enable active demand and distributed generation flexible 

integration, through a fully controllable low voltage and 

medium voltage distribution grid”, in short UPGRID, which 

received funding from the European Union’s Horizon 2020 

research and innovation programme under the grant 

agreement No 646.531.  

This paper is organized around the following sections. 

Section II focuses on the clustering of the real daily load 

profiles of the DTs used as a data set. Section III proposes 

guidelines for the DSO. Finally, the conclusions are drawn in 

Section IV and ideas for future research are suggested.  

2. CLUSTERING DISTRIBUTION TRANSFORMERS 

ACCORDING TO THEIR DAILY LIFE LOAD PROFILES 

A distribution network contains an important number of DTs. 
Usually if the distribution network consists of a total or 
partial Smart Grid, the amount of data received is huge even 
when SCADA systems and other tools are in charge of 
processing and showing the most relevant information in an 
efficient way. Clustering the DTs according to their daily 
load profiles makes it possible to reduce an important amount 
of information available for the DSO in groups of DTs with 
similar load demand from the consumers. This data mining 
technique permits the DSO to have a quick view of those DTs 
that carry out similar work. The categorization of a DT by its 
particular contribution to the distribution network in terms of 
typical load profile managed is knowledge that is useful in 
the cases of fault solutions, better balance of load at the upper 
level of medium voltage, planning or new investments 
required as simple examples of its benefit. This section 
presents an application of a clustering method using the daily 
load profiles from a set of DTs of a real distribution network. 
This is only an application to a small part of an actual low 
voltage network in order to present the potential of the use of 
traditional clustering techniques for the DSO.  In subsection 
II-A, the data set and its preparation process are introduced. 
In subsection II-B, different clustering approaches are 
presented. The daily load profiles are clustered using as a first 
step the k-means algorithm (Hartigan, 1975) and then 
hierarchical clustering (Kaufman, 1990) to reduce the 
number of clusters previously obtained. Observe that the load 
profile of a DT is not extensively studied in scientific 
literature due to the lack of availability of data taken in real 
time till now. 

2.1. Characteristics of the data set used and data 

preparation 

This paper will use a data set that consists of hourly load 

measurements of 59 DTs. They are located in a distribution 

network in several secondary substations and they have a 

nominal power rating of 630 kVA. For each DT, the hourly 

active and reactive powers are known for a period spanning 

over one to three years. These measurements were collected 

by supervision meters located in the low voltage side of the 

DTs. The hourly apparent power was computed since it is 

directly linked to the capacity limit of the DTs. As a first step, 

the load data was prepared. The main outliers were detected 

using basic statistical and visual methods and then 

eliminated. Also, for each DT, the days with missing values 

were eliminated. 

2.2. Clustering the load daily profiles per DT 

The daily load profiles of the DTs were then clustered. 

Two main types of clustering approaches can be 
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distinguished: direct clustering and indirect clustering. In 

indirect clustering, data-reduction techniques, such as 

Principal Component Analysis (PCA) (Jolliffe, 1986) or 

Curvilinear Component Analysis (CCA) (Demartines, 1997) 

are applied prior to the clustering process. These methods 

reduce the data set size and thus the computational burden of 

the clustering process (Chicco et al., 2006). Since all DTs 

have the same nominal power rating, no normalization is 

applied to the load measurements prior to clustering. The 

main algorithms are: k-means, fuzzy k-means, follow-the-

leader, Self-Organizing Maps (SOM) and hierarchical 

clustering. In (Granell et all, 2015), the performances of 

hierarchical clustering, k-means and the Dirichlet Process 

Mixture Model are compared using different known validity 

indices: Mean Index Adequacy (MIA), Davies Bouldin Index 

(DBI) and Clustering Dispersion Indicator (CDI). The 

hierarchical clustering is implemented with different 

distances. The best scores are obtained with single link 

hierarchical clustering. Nevertheless, the authors must point 

out that hierarchical clustering leads to unbalanced clusters, 

which is often not a recommendable feature for this type of 

process. K-means leads to more balanced clusters and it is the 

fastest technique.  

In (Kwac et al., 2014), a load shape dictionary is 

developed for the classification of household load profiles. 

The load shapes are obtained through adaptive k-means, the 

number of elements being then reduced by hierarchical 

clustering. Taking this procedure as a reference, a similar 

approach has been applied in this paper. The daily load curves 

from all DTs were first clustered using the k-means 

algorithm. The number of clusters was decided using the 

Elbow method (Kodinariya et al., 2013) as starting point and 

testing several optional values around trying to keep the most 

important characteristics of the resulting profiles in the 

clusters obtained. Finally, the number of clusters selected was 

15 which corresponds to a reduction of 75% with respect to 

the original number of DTs analyzed showing a reasonable 

grouping capability. The clusters provide information about 

how similar the DT load profiles are, and if the information 

coming from the 59 DTs can be reduced to a few significant 

patterns, to 25% or 15 groups in this case. This grouping of 

DTs allows the DSO to reduce the information available and 

to better know at a quick glance the details of the different 

characteristics of the electrical distribution in the region that 

is managed. This is a practical contribution for helping the 

DSO. Of course this information is also useful from a 

different perspective such as DSM because it is possible to 

observe DTs where the variation of load could be important 

during the day and where this is not occurring, permitting or 

not the feasibility of a DSM programme. 

As mentioned, the daily load curves from all DTs were 

first clustered using the k-means algorithm with the 

Euclidean distance. In order to check the credibility of the 

results, the same daily load curves were also clustered using 

a Self-Organizing Map (SOM) algorithm (Kohonen, 2001, 

Kohonen, 2014) which is an alternative method of clustering. 

The results after applying  SOM were almost identical to 

those obtained with k-means. That is, 99.6% of the days 

distributed among the clusters were the same for the SOM 

and k-means algorithms confirming the results of grouping. 

The centers of the clusters obtained with k-means are 

represented in Figure 1 for the 24 hours of the day. Many 

clusters with low load values are very close together at the 

bottom of Figure 1. It is possible that the experienced DSO 

already has an idea about the results obtained in this reduction 

of information, but it is difficult to keep in mind its accuracy, 

and for this reason this method contributes to a practical 

explanation of the real observed load patterns in the DTs. 

 
Figure  1.  Centers of the clusters obtained with the k-means 

algorithm 

 
Figure 2.  Dendrogram of the hierarchical clustering of the 

centers obtained with the k-means algorithm 

 

Furthermore, observing that very close patterns were 

obtained with 15 clusters, there was an attempt to reduce the 

number of clusters even more, however still explaining the 

main core of information. In order to do this, a hierarchical 

clustering based on Euclidean distance, was carried out using 

the centers of the clusters previously obtained with the k-
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means algorithm. The result of the hierarchical clustering is 

shown by the dendrogram in Figure 2 where the closest 

centers or similar daily load patterns are those with the lowest 

load mean values (clusters 9 to 15). Observing Figure 2 the 

original 15 clusters were reduced to 10. This corresponds to 

cutting the hierarchical tree at the level of the red dotted line 

(see Figure 2) which was the threshold of similarity selected. 

The first eight clusters (1 to 8) on the right side of the x-axis 

of Figure 2 remain unaffected. The new cluster 9 is the result 

after merging the former clusters 9 and 10, whereas the new 

cluster 10 is the result after merging the former clusters 11 to 

15. 

 
Figure 3.  Centers of the clusters obtained with k-means and 

hierarchical clustering 

 
The centers of the clusters obtained by first applying k-means 

and then reduced by hierarchical clustering, are represented 

in Figure 3. The clusters are sorted according to the  

decreasing value of their load mean value. Figure 3 shows 

different types of daily load profiles in the DTs studied that 

are briefly commented about in the next lines.   

The DTs in clusters 7 and 10 have a load profile relatively 

constant all day long, but at different levels of load. However, 

for most clusters there is a significant difference between day 

and night hours. This difference is strongly marked for the 

DTs in clusters 1, 2, 3 and 5. The highest difference is 

observed for the DTs in cluster 3, whose night load is 

particularly low compared to its day time load.  

The cluster centers generally have two peaks: the first one 

near 2 pm and the second one, less pronounced, near 9 pm. 

The latter is slightly pronounced for clusters 1, 5 and 9 

whereas it is strongly pronounced for clusters 2, 4, 6 and 8. 

In cluster 8, there are three different peaks: one at 1 pm, one 

at 4 pm and another at 9 pm. All these characteristics are very 

valuable for increasing the knowledge about the 

characteristics of load profiles demanded and this can be used 

for a better distribution network management because it helps 

to anticipate  the evolution of the load at each DTs. 

The patterns (centers of the clusters) represented in Figure 

3 for the different load profiles in the DTs and the area around 

them covered by the real individual load profiles belonging 

to each cluster are represented in Figure 4. The deviations 

between the patterns and their associated individual load 

profiles of the DTs are generally more pronounced during day 

time hours than during night time hours. This difference is 

emphasized for clusters 1, 3, 5 and 8. The maximum 

difference between individual load profiles in DTs belonging 

to a same cluster ranges from 100 kVA for cluster 6 (16 % of 

the total power of the DT) to nearly 160 kVA for cluster 3 (25 

% of the total power of the DT).  

 
 

Figure 4.  Patterns in Figure 3 (blue lines) and area of the 

individual load profiles of the DTs that are covered (yellow 

area) 

 

An alternative approach would have been to directly apply 

the k-means algorithm with a smaller number of clusters (10 

for example) instead of a combination of k-means and 

hierarchical clustering methods. This option leads to more 

balanced clusters. However, in this case, the variability inside 

the clusters with a high load is very important. Distinguishing 

high daily load profiles is more important than distinguishing 

low daily load profiles, since the first ones put a higher stress 

on the distribution network. When successively applying k-

means and hierarchical clustering, the intra-cluster variability 

is more important for clusters of a low load and less important 

for high load clusters. Since the objective is to distinguish 

high values clusters, the second approach was finally chosen. 

3. PRACTICAL INFORMATION FOR DSO NETWORK 

OPERATION 

The analysis of the load profiles at the distribution 

transformer level provides interesting recommendations or 

guidelines for the DSO network operation. In subsection III-

A, the relation between the groups of DTs previously 

established and the aging of the DTs due to their workload is 

studied. In subsection III-B, an analysis is developed showing 

how the DTs are distributed among the clusters obtained for 

similar load profiles. Finally, in subsection III-C, the 

potential to coordinate the network operation with some 

DSM actions is analyzed. 
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3.1. Aging of the DTs due to their workload 

One of the main aging factors for distribution transformers is 

their temperature due to their workload. The mechanical 

breakdown of the insulation materials, due to thermal aging, 

is responsible for an important part of the transformer faults 

(Feng et al., 2012). In general, distribution transformers 

undergoing the highest load are those enduring the highest 

temperatures and thus are the ones with the lowest life span.  

The study of the load and time of DTs gives some insight 

about their life span and the stress they have to bear. This is 

important from a network operation point of view because 

this information can help to map, a priori, strongest and 

weakest points within the distribution network in the area 

managed by the DSO. The following life span indicators were 

proposed in order to be compared and later selected as the 

most convenient: the maximum load observed, the 99% 

quantile value, the 97% quantile, the 90% quantile, the load 

median value and the percentage of hours above a given 

threshold of load. After a detailed study, the quantile values 

are more robust and reliable indices than the maximum value, 

which is highly sensitive to the outliers. The percentage of 

hours above a given threshold of load is also an interesting 

indicator.   

In Figure 5, the values of the life span indicators for each 

DT are represented. The DTs were sorted by increasing mean 

yearly load. The values for the life span indicators were 

normalized by the nominal capacity of each DT, i.e. 630 

kVA. Generally, these indicators are coherent with one 

another. Nonetheless, for some DTs (the cases of DTs 

number 48 and 56 for example), the load median values have 

an evolution different from their own quantile values. The 

maximum value for the most stressed DT remains under 70% 

of its maximum capacity. 

The percentages of hours above two given thresholds 

(30% and 40% of the maximum capacity of the DTs) were 

computed for each DT as examples of a sensibility analysis. 

As shown in Figure 6, the majority of the DTs never reach 

the lowest threshold. 

 
Figure 5.  Normalized life indicators tested for the DTs. 

 

 
Figure  6.  Percentage of hours above a given threshold by 

the DTs. 

 

The DTs in Figure 6 were sorted by increasing the mean 

yearly load profile. There are two DTs (the cases of the DTs 

numbers 56 and 59) which are above the 40% of the load 

threshold more than 15% of the time observed. Six other DTs 

are between 30% and 40% for nearly 20% of the time.  This 

means that the DTs analyzed are not suffering a significant 

degradation due to temperature because the load managed is 

usually far away from the maximum level for what they are 

designed for.  

3.2. Analysis about how the DTs are distributed among 

the clusters obtained for similar load profiles 

In order to give the DSO information about the robustness of 

a particular DT to a cluster, the distribution of the clusters 

among the DTs was studied. The objective is to classify the 

DTs with similar behavior by group according to the load 

profiles observed in the DTs. In the previous section, a 

definition was provided explaining how a DT belongs to a 

particular cluster. However, it is possible that during some 

days the load profile of a DT could be closer to the pattern of 

other clusters and this is convenient to take into account in 

order to have an idea as to the reliability of the cluster for 

representing a DT. For each DT, the percentage of days 

belonging to each cluster was computed. The DTs were 

sorted by increasing daily mean load observed. The results 

show that then DT number 1 has the lowest mean load 

observed whereas DT number 59 has the highest one.  
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Figure  7.  Percentage of days observed that belong to a 

particular cluster for each DT. 

 

The obtained heat map in Figure 7 highlights some 

interesting features. The scale of grey colors on the right side 

corresponds to the percentage of days belonging to each 

cluster (1 is 100%). As expected, in Figure 7 DTs with low 

mean load profile always belong to low load clusters, 

whereas DTs with high mean load profiles belong to high 

load clusters. The dispersion among the different clusters 

seems to be more important for DTs that usually have high 

load levels. There is an important number of DTs whose days 

only belong to cluster 10, which is a cluster characterized by 

a relatively constant load throughout the day. This is a special 

contribution of the paper identifying the DTs where the 

profile of load is more stable than others, and in this case, 

what the changes expected on theirs loads are. 

 

Table 1. DTs per group. 

Composition and number of DTs in each group 
Group of DT Clusters Number of DTs 

1 10 24 

2 9, 10 15 

3 9 4 

4 8 1 

5 7,10 1 

6 6,9 4 

7 5,9 1 

8 5 1 

9 4,6,9 1 

10 4,6,7 3 

11 4,6 1 

12 3,10 1 

13 2,4 1 

14 1,2,4 1 

 

A methodology was developed to regroup the DTs in a 

limited number of groups, building on the repartition of the 

DTs between the different clusters. For this purpose, only the 

main clusters, which each DT belongs to, were considered. A 

particular cluster was labeled as the main cluster of a DT if 

there were more than 1 day out of 7 of the DT belonging to 

that cluster. It is then possible to classify the DTs according 

to their main clusters: a group of DTs is constituted by the 

DTs which have the same main clusters. Table 1 shows the 

composition of the groups of DTs and the number of DTs 

each one contains.  

The first group contains DTs which belong to cluster 10; 

the second group contains DTs whose days belong to cluster 

10 and 9, and so on. Fourteen groups of DTs are obtained. 

Table 1 suggest the types that are possible to find for a 

particular DT. It can be used for load balance and/or DSM 

strategies. The biggest group is the group with only cluster 

10, followed by the groups with clusters 9 and 10. There are 

several groups with a single DT. The DTs were then sorted 

according to the group they belong to, from groups 1 to 14. 

 

 
Figure  8.  Normalized life span indicators (97% 

quantile) regrouped by group of DTs. 

 

In Figure 8, one of the life span indicator presented in the 

previous sub-section, the 97% load quantile, was plotted 

based on the group of DTs considered. The values of this 

indicator are coherent inside the same group of DTs. Thus, 

DTs from the same group are undergoing a similar life 

degradation. This also means that the DTs from the same 

group are aging in a similar manner due to their load profiles. 

The classification of the DTs emphasizes the different level 

of stress that the DTs are submitted to throughout their lives. 

3.3. Potential to coordinate the network operation with 

some DSM actions  

If the peak load of some DTs is too important and sustained 

over time, some new investments may be necessary to 

reinforce the network in order to give a good quality of 

service. These expenses can be avoided or reduced if the peak 

loads are reduced by coordinating the network operation and 

some DSM actions oriented to the consumers. Therefore, as 

is well known, DSM could be applied to diminish or shift the 

peak load of some DTs which are close to their capacity limit.  

The DTs analyzed in this paper have a maximum load far 

below their capacity limit. Therefore, applying here DSM 

actions coordinated with network operation does not make 
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any sense and this would not reduce the investments required 

by the current distribution network. Just as a simple example, 

if the capacity limit of the DTs was lower (smaller 

transformers), the first DT to be considered for a possible 

attempt of load reduction, would be the DT whose main 

cluster is cluster 1, which also corresponds to the DT with the 

highest stress scores (see Figure 5 and 6). 

Consumers with low entropy and large relative load peaks 

during peak hours have greater potential for DSM programs 

(Kwac et al., 2013). Taking this fact into account, consumers 

fed by DTs belonging to clusters 1, 2 and 3 seem to be good 

candidates for DSM actions.. The centers of these clusters are 

indeed characterized by a sharp difference in load level 

between daytime and night time. Their peak load is well-

defined and localized near 2 pm. These clusters correspond 

to the DTs 57 to 59 of Figure 7. As has been pointed out 

previously, the application of DSM in the study case would 

nevertheless not help in avoiding current investments in the 

distribution network as the DTs studied are far below their 

capacity limit. 

4. CONCLUSION 

 In this paper, part of the distribution transformers of a low 

voltage electrical distribution network was studied. It belongs 

to one of the four demonstration areas of the UPGRID project 

funded from the European Union’s Horizon 2020 research 

and innovation programme. The first contribution of the 

paper is the practical analysis of load profiles in DTs using 

measurements coming from smart meters. First, the daily 

load profiles from all DTs under study representing their lives 

were clustered in order to reduce the huge amount of 

information and obtain the most representative load patterns 

(clusters). Then, the DTs were regrouped depending on their 

main clusters, that is to say, the clusters to which a significant 

part of their days belong to. This methodology is a 

contribution that presents advantages for network operation 

and management of the DTs in several areas such as better 

balance of load at the upper level of medium voltage network, 

improvement in the accuracy of the characteristic load profile 

of DTs, better knowledge for DSM actions and the possibility 

to detect energy losses due to technical and fraudulent causes 

in contrast to the DT load profiles  with the  aggregated 

measurements coming from the customers meters.  

The classification of the DTs can be used by the DSO to get 

a quick visualization as to how the load is distributed in its 

managed area and their typical life profiles reduced to a few 

patterns. Another contribution of the paper was the analysis 

of the robustness of the cluster assigned to each DT 

identifying possible close different load profiles that 

sometimes could exist due to a different use of energy by the 

customers supplied. Two other important added values were 

studied from the knowledge included in these load patterns.  

First, some life indicators for the DTs were proposed and 

tested in this paper in order to know how their workload can 

affect their life expectancy.  A second added value obtained 

from the patterns of load identified is that it can be used to 

target consumers and geographical areas for possible DSM 

actions. In the case analyzed, the benefits from a possible 

application of DSM programs are very limited given that the 

load of the DTs is far below their limit of capacity.  
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