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ABSTRACT

In this paper, we present classical machine learning algo-
rithms enhanced by quantum technology to classify a data
set. The data set contains binary input variables and binary
output variables. The goal is to extend classical approaches
such as neural networks by using quantum machine learning
principles. Classical algorithms struggle as the dimensional-
ity of the feature space increases. We examine the usage of
quantum technologies to speed up these classical algorithms
and to introduce the new quantum paradigm into machine di-
agnostic domain. Most of the prognosis models based on bi-
nary or multi-valued classification have become increasingly
complex throughout the recent past. Starting with a short in-
troduction into quantum computing, we will present an ap-
proach of combining quantum computing and classical ma-
chine learning to the reader. Further, we show different im-
plementations of quantum classification algorithms. Finally,
the algorithms presented are applied to a data set. The results
of the implementations are shown and discussed in the last
section.

1. INTRODUCTION

FCE Frankfurt Consulting Engineers GmbH and DB Sys-
temtechnik GmbH (DB ST) work together in the field of pre-
ventive maintenance for the last seven years. In particular,
the continuous analysis of fault memory data is an essential
part of our work. We use maintenance information to cate-
gorize operational data into relevant error classes, which act
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as output variables. Further, we take the entire fault mem-
ory (or a subset of it) as input variables. After substantial
extraction and state vector labeling, we use neural networks
to calibrate the input-output relationship. The training dura-
tion depends of the size the corresponding network and the
amount of data. The so-called ’curse of dimensionality’ is a
limiting factor and influences the computing time.

Quantum computing seem to solve problems with large so-
lution spaces in less computing time as conventional com-
puters. While conventional computers solve computing tasks
in a row, quantum computers can operate highly parallel. A
conventional computer with for instance 50 bits, can be in ex-
actly one (of 2°°) state in time, and only operate iteratively.
A quantum computer with 50 fully connected qubits can be
in 250 states at the same time. This is the reason for an im-
mense speed-up using quantum technology. Because many
industrial problems are of high combinatorial complexity (so
called ’NP-hard problems’) the installed algorithms probably
find local (sub-) optimal solutions. Sub-optimal because it is
unknown, if there is another better solution for the problem
(limited by the finite computing time). Quantum computers
enable to find global solutions for certain NP-hard problems.

2. DATA SET

The data set used in the paper includes the fault memory data
of 46 vehicles operated by DB ST. The training set contains
the time period from July 2014 until end of December 2018.
The evaluation set contains data from the beginning of 2019
until end of September 2019 (see figure 1). Fault memory
data is binary, recording positive flag if a previously defined
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Figure 1. Overview of period including predictions (red) and maintenance events (blue) for whole fleet.

barrier within a measured value (here we are talking about
continuous sensor data) is exceeded. The fault memory data
also include measurement series from approx. 6500 sensors.
Accordingly, the state space is highly dimensional.

The response data are the observed problem classes collected
by the maintenance units of the underlying industry. The op-
erating year 2019 (until end of September) includes exactly
twenty failures (of eight failure classes). The following figure
2 shows the line current module and its different components.
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Figure 2. Line current module at the top of a train.

For the analysis in the following sections, fault memory data
is reduced on the basis of physical and vehicle-specific rela-
tionships. In a further pre-processing step, the amount of in-
puts is also automatically restricted using statistical criteria.

All further pre-processing steps are described in the sections
on the classical and quantum-based approach.

3. CLASSICAL APPROACH

In the first part of this paper we deal with a classical approach
to classification using neural networks. Before we take a
closer look at the neural networks and the pre-processing of
the data, we would like to talk briefly about the classification
in the context of this paper.

Classification, as a sub-area of supervised learning, deals with
the objective of assigning a data point from an underlying
data set to a specific class. In the training step, an attempt is
made to learn the best possible connection between input data
(images, time series data, etc.) and output data (a class, here a
binary characteristic). This relationship can be mapped using
a mathematical classification (such as logistic regression) or
methods from the field of artificial intelligence (such as neu-
ral networks). Ultimately, it is an input-output relationship.
The output data is complete (and usually error-free) in the
training step. In the application step, an unknown data point
is evaluated and automatically assigned to one of the classes
learned. The better a classification procedure, the more data
points are classified correctly, and the fewer errors occur dur-
ing the classification. The classification is used in many ar-
eas, such as image recognition (differentiation between ’dog’
and ’cat’) or preventive maintenance (to predict the failure of
large systems).

In this paper, as described in the previous section, we exam-
ine a data set from the area of preventive maintenance. Before
the data can be evaluated using a neural network, the data has
to be pre-processed. To do this, we combine all input data
into several input vectors as follows.
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Figure 3. Multi dimensional forecast of maintenance events for a certain vehicle.

In the pre-processing step, the neural network sweeps across
the entire amount of data with a fixed step size (in this paper it
is six hours) and the number of events occurring within a time
interval is counted by sensors. Furthermore, there is the pos-
sibility of taking the time development within a sensor into
account. This is done by dividing a time interval into two sub
intervals. As before, the number of events is counted within a
sub interval. The two counters (from the respective sub inter-
vals) are also saved as two vector entries. Thus, the number
of vector entries of each vector is doubled by the addition of
a simple temporal pattern. In addition to summing the events
within a time interval, further aggregations are possible.

Each input vector is labeled using an output vector. Each
component of the output vector represents a different class of
error. This depends on the choice of the user or the number
of error types recorded. We cover two cases in the paper. In
the first case we work with all available error classes and in
the second case we generate a one-dimensional output vector
for the quantum computer example. Figure 3 shows a detailed
part of the evaluation. The vertical red line represents a main-
tenance action and the small red rectangles are representing a
warning.

The neural networks used here are part of the open source
project “TensorFlow’ from Google. These can easily be con-
trolled and used via a Python interface. The user can build
and test his own neural network with a high degree of flexi-
bility.

This paper uses a neural network with the following configu-
ration:

e Number of input neurons equal to dimension of input
vector
e Three hidden layers (128, 64 and 16 neurons)

e Number of output neurons equal to dimension of output
vector

e 25 training epochs

The evaluation of our best configuration was evaluated in co-
operation with DB ST from January to September 2019. We
have the following key figures:

e 24 vehicles

e 20 maintenance events during period (January - Septem-
ber 2019)

e 8 of 20 predicted events before occurrence (40% detec-
tion rate*)

e 53 warnings depending on neural network

e 37 of 53 successful warnings (70% Precision := tpfffp)
(* Detection rate: Ratio of detected maintenance events ver-
sus all maintenance events. As opposed the well-known key
performance indicator recall := wiﬁ.)

4. QUANTUM APPROACH

In this section we give a brief introduction to the subject of
quantum computers. First, we will dive into the theory of
quantum computing. Then we will discuss the pre-processing
steps necessary and finally we will present a first approach to
an implementation on a quantum computer. The underlying
theory can be mainly found in Fahri (2018). Furthermore, we
use the conventional Dirac notation from Rieffel (2011) or
Scherer (2016) to describe the mathematical processes within
quantum information technology.

Conventional computers and quantum computers are funda-
mentally different. While classical computers are based on
physical elements such as integrated circuits (the flow of in-
formation takes place via the flow of electricity), quantum
computers are based on the principles of quantum mechan-
ics. The fundamental elements in this case are called qubits.
Qubits can be implemented in various ways. The particu-
lar representation is not relevant for the rest of this paper.
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The main difference between classical architecture (bits) and
quantum computers (qubits) are the respective properties of
bits and qubits. While a classic bit can only be in one state
(0 or 1), qubits can be in both states at the same time. This
phenomenon is called ’superposition’. Furthermore, n classi-
cal bits can be in exactly one of 2" possible states. In a way,
qubits, on the other hand, can be in all 2" states at the same
time.

The second property, which distinguishes qubits from con-
ventional bits, is called "entanglement’. Two (or more) qubits
can be entangled. This means that one qubit affects another
qubit. If we measure the state of the first qubit, we can imme-
diately make a statement about the state of the second qubit
without measuring it. Mathematically speaking, the state of
a pair of entangled qubits cannot be written as the product of
the individual state vectors. Measuring a qubit, however, de-
stroys the superposition property and provides a unique value.
Before measurement, a system of qubits is in any of its possi-
ble states with a certain probability. This means that conven-
tional computers perform arithmetic operations one by one,
while quantum computers work in parallel to a high degree.

We write a qubit that is in a superposition and we assume
the two states 0 and 1 with the same probability, as follows

1
NoR (10) + 1) M

The system of two entangled qubits could look like this:

1
75 (100) +[11) @)

While the first digit in the ket notation |00) represents the
state of the first qubit, the second digit represents the state of
the second qubit. It can quickly be seen that reading the first
qubit provides immediate information on the second qubit: If
the first qubit is in state 0, then the second qubit is also in
state 0. The various terms |zx) correspond to the states of the
underlying state space.

If we now connect several qubits to a system, one speaks
of a quantum register or quantum computer. Various oper-
ations, such as the creation of superpositions, are carried out
via quantum gates: interfaces for manipulating qubits. For a
more detailed theory on the physical principles of quantum
theory, see Nielsen (2010) or Yanofsky (2008).

Research creates hope that quantum computers will assume
substantial progress in the area of solving combinatorial op-
timization questions, molecular biology (especially materials
science) and some more. Furthermore, attempts are being
made to implement existing algorithms from the field of arti-

ficial intelligence on quantum computers. So now we come to
the main focus of this paper, the neural networks on quantum
computers.

Our analysis is heavily influenced by the work as presented
in Fahri (2018). Let us start with pre-processing the data. As
already presented in the second section, we use the same but
reduced data set for the calculations on the quantum com-
puter. However, since actual quantum computers are not yet
able to handle such large amounts of data, we reduce the in-
put data to sixteen parameters. Then the vector entries are
converted into binary variables. If the value is above a certain
limit, the entry is set to one, if the value is below the limit, the
entry is set to minus one.

Now we come to the mathematical approach of this work.
Let the data be prepared as above. Then each input vector
can be written as a sixteen-dimensional bit string z = 27...2,.
Furthermore, exactly one label is assigned to each bit string
I(z) = {—1,1}. Exactly sixteen qubits are therefore re-
quired. A seventeenth qubit, which is the output qubit, is
also used. We are now looking for a collection of L unitary
matrices U (6), which approximate the relationship between
the input data z and the label (z). We construct the input for
the quantum computer as follows

|2,1) = |z122. .. 2, 1) (3)
and search
U(T) = UL01) ... - Ur () 4)
so that
U(d)[2,1) = i(2). (5)

Y, 41 is the measurement of the (n + 1)-th qubit, which cor-
responds to the function value. In order to get a probability
distribution of the output, we repeat the calculations several
times and measure Y, ;. We get the averaged result

(U0 U(0) |2,1) ©)

In the calibration step, the following objective function must
be minimized

— — —
loss(6,2) =1—1(2) (z, 1|1 U ()Y, U(H)|2,1) (7)
This can be achieved through a gradual gradient process:

1) Start with a random set 6 of unitary matrices.
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2) Choose a string z!. .
3) Initialize the quantum computer with U ( ¢
sure Yy, 41.

)z! and mea-

4) Calculate the objective function loss( 7 ,Z).

5) Change 6 according to the steepest descent algorithm.
6) Repeat steps 2) to 5) for all further strings 22 to 2.

We set some requirements for the unitary matrices. For more
details, see Fahri (2018). The following then applies to the
calculation of the first derivative for the k-th unitary matrix

Aloss(?, 2)

o :ZIm(<z HUD) |z, 1>) ®)

with

_)
UCl)=Ul--UlYorrUp - U1 SkUs - U (9)
With a little trick we can measure the right side of the term

with the auxiliary of a help qubit

2:1) 7= (10) + 1) (10)
q

multiply by imaginary 4 - U( 6 ) to the auxiliary qubit

2.1) = (10) + - U(F)[2,1) 1)) (11

\[

and then insert a Hadamard gate. So, we get the following
state

5 (120 +i-u(@) 1z 1) |0)

5 (I 0+ u(@) ). (12)

If we now measure the auxiliary qubit, we get the value zero
with the probability of

1 1

S ZIm (<z HUD) |z, 1>) (13)

2 2
By repeating the previous step and measuring the auxiliary
qubit again, we get a good statement about the k-th compo-
nent of the gradient and can change them.

The procedure just presented depends heavily on the number
of qubits available and the decoherence time. The application
has shown that the first approach is currently difficult to im-

plement. Accordingly, we present a second approach, which
can be implemented in the current state of research. We use
this approach in this paper for the further classification of the
data set. At the beginning, the pre-filtered data is placed in a
single superposition (see figure 4). This is done by iteratively
reading in the individual data points

+1) =cp - > exp (i) ]z, 1) (14)

z:l(z)=1

[~ =c - Y exp(ith)|z1) (15)

z:l(z)=-1

where c; and c_ are factors for normalization. Figure 4
shows a schematic representation of the above initialization.

%
In order to find an optimal set of unitary matrices _l)] (6) the
following term must be minimized with regard to 6

1= (T (F)YaraU(7) 1)

1 — —
+5 (CUUI(@OYaraU(D)]-1) . (6)
This can be implemented using a gradual gradient process.

The theory listed is implemented with the help of the open
source project “TensorFlowQuantum” (TFQ) from Google.
A detailed introduction to the technology of TFQ is described
in Broughton (2020). The calibration step (gradient method)
is implemented in the TFQ package in the background and
cannot be viewed more precisely. This remains a secret from
Google.

[0}

1)
Figure 4. Quantum data in a superposition - Bloch sphere.
(Source: Fahri (2018))
5. RESULTS

The original data set contains approximately 6500 different
event codes of 46 vehicles over five years with eight differ-
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ent failure classes. For the quantum computer experiment,
the size of the set is significantly reduced. We do this in
two steps. First, we only use system depending fault memory
codes. Secondly, the analysis of the conditional probabilities
of every diagnosis code led to a choice of the 16 most impor-
tant codes. The number 16 is a power of two, which fits to the
architecture of the quantum computing technology. Further,
as seen at the end of section 4, the number of qubits is a lim-
iting factor. In many time periods there are no occurrences of
diagnostic codes, so that a lot of zero vectors are filtered out.
Furthermore, we only consider nine vehicles within six IGBT
explosion for the selected time period. The number of state
vectors decreases to 253 samples. It should also be noted that
a high occurrence frequency of a certain event code is not
counted multiple times resulting in a binary state space.

Property Whole data set | Reduced data set
time period 60m 18m
vehicles 24 9

inputs 6.500 16
outputs 8 1

Table 1. Comparison of data sets.

The periods before the failures are marked as critical so that
misclassified samples can be included in the critical set. La-
beling each vector is very important regardless of the method
and this misassignment of individual vectors cannot be avoided.
This is the reason why we do not only use "Recall’ and ’Pre-
cision’ for the analysis. In addition, we use a kpi called *De-
tection Rate’, which is comprehensible for the operation.

Evaluate Gradients &
Update Parameters

——————— N, y=———————- 7 \
( ; : ' ' Eval
X S MEEN= valuate
R Ve I U(®y) . = ; Cost
: i :l U(®3) IES ; Function
| {
73 A ~ 1
: ‘/3 :I U((I)Q) ! ~ X !
T I ! 0 !
N\ e e e e o IN e e e /7 N e
Prepare Evaluate Evaluate
Quantum Dataset  Quantum Classical
Model Model

Figure 5. TFQ and CIRQ architecture. Optimization using
QAOA. (Source: Fahri (2018))

A multitude of programming languages, architectures and op-
timization approaches exists in the field of quantum comput-
ers. We chose the TensorFlowQuantum/ Cirq language from
Google, which work on a gate based QPU as the computing

core. The underlying calibration procedure is a QAOA illus-
trated in Figure 5.

In recent years, the QAOA framework has always been ex-
panded to include additional problem classes. The aim of
these is to find a low-energy state, which is represented by
Ising Hamiltonians.

In general, it is important to find a local (optimally global)
minima of a pseudo-Boolean function I(z) with z € {0,1}"
on n bits, which corresponds to the solution of the QAOA for
binary variables.

There are therefore two problems, namely a) training a pa-
rameterized quantum circuit for a discrete optimization prob-
lem and b) minimizing the cost function of the parameterized
quantum circuit. The TFQ should include a) the conversion
of simple circuits into TFQ tensors, b) the evaluation of gra-
dients for quantum circuits and c) the use of gradient-based
optimizers from TF Adam as basic functions.

In order to be able to calculate on the quantum computer cor-
rectly, we have created a small but representative data set as
described above. To verify our calculation, the classic neural
network (NN) competes against the hybrid calibrated quan-
tum neural network (QNN). Our focus was to ensure that as
many properties as possible are similar for both approaches.
This can be seen in the following table:

Property NN QNN
epochs 30 30

loss hinge hinge
optimizer adam adam
layer shape 16-64-32-16-1 (relu) | 16 - U(H)-1
# parameter 3713 32

# cross validation 10 10

# training samples 90% 90%

# test samples 10% 10%

Table 2. Overview of neural network parameter settings.

The key performance indicators are presented in the tables 3
and 4. The hinge loss function of the QNN in case of the
validation set is comparable with the result of the classical
approach. The hinge loss function of the QNN in case of the
training set is significantly higher as the results of the classi-
cal neural network. For both approaches, the standard devia-
tion is small. Note that the loss function is hard to interpret,
so that we analyze our results on derived kpis, which are in
the statistics well known as 'Recall’ and ’Precision’.
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NN loss standard deviation
training 0.3746 0.0767
validation | 0.7972 0.0784

Table 3. Overview of evaluation results for NN.

QNN loss standard deviation
training 0.9799 0.0949
validation | 0.7305 0.0434

Table 4. Overview of evaluation results for quantum-based
NN.

Figure 6 represents additional key performance indicators.
’RND’ is a completely random generated prediction. As ex-
pected, both approaches, NN and QNN, deliver better re-
sults than random prediction. In this paper, the key perfor-
mance indicators of the conventional neural networks are bet-
ter as the indicators of the quantum based neural networks.
Nonetheless, it is remarkable that the QNN perform nearly as
well as the NN. A reason for the worse prediction of the QNN
could be the computing exactness of the current hardware.

100%  100% NN = QNN = RND

74% 74%

64%
59%

2%
0%

6/6 6/6 s5/6 81/110 65/110 48/110 81/110 65/102 a8/98

Detection Recal Precision

Figure 6. Key performance indicators for NN and QNN.

6. OUTLOOK

As we saw in the previous sections, it is possible to classify
data sets on a quantum computer, in particular to calculate a
simple version of neural networks. Nevertheless, it will take
a while before larger data sets can be processed on a quan-
tum computer. This really depends on the development of the
quantum computing hardware.

In section 5 we saw that currently only small amounts of data

can be used with binary input and output formats. Here the
number of qubits currently available represents the limitation.
Google writes that progress in the number of controllable
qubits is expected in the next five to ten years and, as a result,
larger industry-related problems can be solved on a quantum
computer. Thus, we saw in section 5, that the QNN act very
similar to conventional NN on small examples. As long as
quantum computers can only operate on small data sets, there
are two ways to go on with research. One way is to learn and
understand the functionality and behavior of quantum com-
puters, identify complex (optimization) problems and solve
a small version of these problems on a quantum computer.
The other way is to find complex problems, which cannot be
solved using a conventional computer, but can be solved on a
quantum computer already this time.

Furthermore, we have not yet dealt with the implementation
of the calibration step in this paper. As written in the fourth
section, we use Google’s routines here. It is certainly of in-
terest to understand this step in detail. Within the PlanQK
initiative founded by the German government, we will ex-
plore further technologies in the area of supervised learning
on a quantum computer.
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