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ABSTRACT 

Prescriptive Maintenance strategies are emerging as potential 

next level of reliability and maintenance best practice. Likely 

outcomes of maintenance alternatives and their effects on e.g. 

cost and safety are comparatively evaluated by exploiting 

various sources of data, knowledge and models. By this 

means, optimized courses of actions are recommended to 

quickly resolve problems and to automate Maintenance, 

Repair and Overhaul (MRO) decisions. In this work, the key 

question is pursued as to how their dependability and 

potential business advantage can be assessed and improved 

in the presence of uncertainty and variability of various 

decision-influencing factors such as degradation and 

maintenance model parameters and cost sources. For this 

purpose, a step-by-step procedure to optimal solution 

prescription and potential / risk assessment is developed 

based on a probabilistic approach to cost-benefit analysis and 

on the definition of relevant metrics. By the help of a Wiener 

process degradation model capable of implementing random 

effects of imperfect repairs and a Monte Carlo simulation, its 

value is illustrated by a use case example – repair / 

replacement decision support in the aeronautical context. The 

probabilistic approach not only allows to determine, which 

decision option promises the higher profit and is thus 

preferred, but also with which risk and potential cost 

disadvantage it is associated. Furthermore, it uncovers, where 

higher-quality data or information, can gainfully reduce 

result uncertainty and hence be assigned a monetary value. It 

is argued that the presented approach could give industry 

practitioners directions for identifying and optimizing 

business cases for Prescriptive Maintenance, by pointing at 

which sources of data or information are particularly valuable 

and hence justify dedicated investments for acquiring it. The 

relevance of the results is discussed specifically with 

reference to emerging digitized and automated repair 

processes as well as more generally in the context of future 

data-trading schemes. 

1. INTRODUCTION 

The quest for continuous refinement of MRO strategies is 

driven by the increasing complexity of engineering systems 

and related MRO decisions as well as the large penalties 

arising for various stakeholders from unexpected 

maintenance needs, downtime and logistic effort. Adding to 

this is the growing importance of service-oriented business 

models and the need for competitive advantage. Examples 

include power-by-the-hour long-term service agreements 

between engine manufacturers and operators in the 

commercial aviation sector (Smith, 2013), which are based 

on a fixed price for the flown hour including all necessary 

MRO actions and possibly even the provision of the engine 

itself for the entire lifetime. The profitability of such business 

strategies strongly depends on the achievable level of 

performance and reliability. These demands for a high degree 

of predictability and decision quality in the advanced MRO 

business. 

One of the general expectations of Prognostics and Health 

Management is the translation of raw data related to the 

health state of engineering systems into actionable 

information to facilitate rapid and informed maintenance 

decision-making. Here, the availability of more and more 

data and advanced analytics technologies fosters the 

progressive shift from time-based to demand-based 

maintenance concepts, which continuously adjust the 

maintenance strategy based on the needs and condition of 

monitored equipment. For instance, in the aviation industry, 

Predictive Maintenance approaches are increasingly adopted 

to detect early signatures of impending failures of monitored 

components or systems to allow for reduced downtime and 

timely MRO actions (cf. Saxena et al., 2014; Wagner, 

Saalmann, & Hellingrath, 2016; Koops, 2018 and references 

therein).  

As a potential next level of reliability and maintenance best 

practice, Prescriptive Maintenance strategies are emerging 

(Bertsimas & Kallus, 2015; Sappelli et al., 2017; Diez-

Olivana et al., 2018). Building on the knowledge, when and 

why failures are likely to occur, they aim at producing 
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outcome-focused recommendations from Prescriptive 

Analytics. By comparing the chances of success of 

maintenance alternatives and their effects on e.g. cost and 

safety by using various sources of data, knowledge and 

models, optimized courses of actions are derived.  

Besides reducing the susceptibility to human errors, this 

“more data-driven approach” allows for optimizing business 

value of various stakeholders by increasing service 

reliability, efficiency, uptime and capacity, lowering logistic 

effort and overall costs and finally by improving support 

offers and future engineering design based on derived 

insights. Furthermore, the increasing degree of automation 

allows for business innovation for instance in the context of 

remote maintenance, particularly interesting for surveillance, 

rescue or military operations.  

However, maintenance model parameters are affected by 

uncertainties as well as variability. They arise from limited 

data, knowledge or contextual awareness, the stochastic 

nature of degradation and failure phenomena as well as from 

inherent heterogeneity or diversity such as due to 

environmental or operational factors (Compare, Martini & 

Zio, 2015; Pei et al., 2018). In the literature, different 

frameworks for uncertainty representation have been 

investigated such as probability distributions, fuzzy sets, and 

plausibility and belief functions (cf. Compare, Martini & Zio, 

2015 and references therein).  

Computational methods involving Monte Carlo tools and 

additional concepts have been developed to incorporate 

accordingly described imprecise parameters e.g. into Markov 

or semi-Markov multi-state (Hubbard, 2014) or continuous 

degradation models like the Wiener degradation process 

(Gorjian et al., 2010; Letot et al., 2017; Pei et al., 2018). The 

latter has attracted increasing attention in recent years due to 

its significance in Predictive Maintenance, e.g. for accurate 

Remaining Useful Life (RUL) prediction and the capability 

to consider both time-varying dynamics and unit-to-unit 

variability, the latter stemming from variations in operational 

conditions and initial degradation levels (Zhu, Zuo & Cai, 

2013; Letot et al., 2017; Pei et al., 2018). For instance, RUL 

estimation of an aircraft engine has been performed based on 

lifecycle and performance-deteriorated parameter data 

without failures (Zhu et al., 2013).  

Moreover, the Wiener Process has been applied to 

characterize degradation of mechanical components (Wang 

et al., 2018) and rotary machinery and its constituents 

including bearings as well as to gyroscopes in inertial 

navigation systems (cf. Zhang et al., 2018). 

Letot et al. (2017) have related the Wiener degradation 

process to operational reliability and derived strategies for 

cost-optimized maintenance planning.  

Regarding options for refurbishment, progress in repair 

technology and process automation offer increasingly (cost-) 

effective options for repairing equipment, instead of 

replacing it (Wang et al., 2015; Paquet et al., 2017; Guo & 

Brommesson, 2018; American Roller Bearing Company, 

2020). However, in general, repair is imperfect, such that the 

post-maintenance life after “repair” is typically reduced as 

compared with “replacement” (Pham & Wang, 1996). The 

implications of imperfect repair on the degradation path have 

been analyzed by Pei et. al., 2018 and Zhao, He & Xie, 2018 

considered random effects of imperfect repairs in the context 

of warranty cost optimization.  

As prior research works have hence demonstrated, the 

degradation path and thus the life span of engineering assets 

and their components and implications for maintenance 

planning and refurbishment are influenced by various sources 

of uncertainty and variability. While in some of previous 

studies the maintenance effect has been modeled as random 

(Compare, Martini & Zio, 2015; Letot et al., 2017; Pei et. al., 

2018; Zhao, He & Xie, 2018), resulting cost sources typically 

are considered as single-point values (Compare, Martini & 

Zio, 2015). Furthermore, to our best knowledge, the influence 

of random effects including sensible variations of cost factors 

on the quality of resulting MRO decisions and their business 

value has not been investigated before. 

The aim of this study is hence to develop a probabilistic 

framework for determining “best-action” solutions within 

Prescriptive Maintenance and for assessing and subsequently 

deriving strategies for enhancing decision-reliability and 

business value on the example of repair / replacement 

decision support. By exploiting realistic degradation and 

maintenance models implementing random effects of 

imperfect repair as well as possible variations in cost factors, 

valuable data and information sources are identified that are 

relevant in the context of future (fully) digitized and 

automated maintenance processes and potential future data 

trading schemes. 

For this purpose, the paper is structured as follows. In Section 

2, Prescriptive Analytics is introduced. In Section 3 a step-

by-step approach to prescribing “best action” solutions is 

presented on the example of repair / replacement decision 

support and the relevance of simulation-supported 

probabilistic cost-benefit analysis is discussed. Section 4 

considers the Wiener degradation process and lays the basis 

for implementing the effects of imperfect repair. In Section 

5, the considered maintenance scenario is outlined and 

assumptions and required inputs are elaborated on. In Section 

6, key metrics are introduced that allow to assess reliability 

and economic value of Prescriptive Maintenance solutions. 

In Section 7, different use cases defined by particular sets of 

parameter variations are motivated. These are subsequently 

exploited for the probabilistic cost-benefit analysis singling 

out “best action” solutions by means of a Monte Carlo 

simulation and by the evaluation of key metrics. Based on the 

results, strategies for supporting and improving Prescriptive 

Maintenance business cases are discussed. Finally, in Section 

8, we conclude and provide an outlook on future directions. 
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2. PRESCRIPTIVE MAINTENANCE – DEFINITION, 

REQUIREMENTS, CAPABILITIES 

In general, Prescriptive Analytics involves any combination 

of analytics, experiments, simulation, and / or artificial 

intelligence to improve the effectiveness of decision-making 

and to support new business models and opportunities 

(Bertsimas & Kallus, 2015; Sappelli et al., 2017; Diez-

Olivana et al., 2018).  

Typically, it provides enhanced business value by 

minimizing the amount of human input required for decision-

making and builds on integrated knowledge gained from 

other analytics technologies (cf. Figure 1). These include 

descriptive and diagnostic analytics focusing on past 

(historical / test) and present (run-time) data in recognizing 

anomalies and identifying root causes for impending failures 

of monitored equipment. Furthermore, Prescriptive Analytics 

proactively makes use of insights gained from 

aforementioned data sources by means of predictive analytics 

that allows using the known status of monitored equipment, 

combined with physics-of-failure models and statistics for 

forecasting e.g. future behavior, trends and outcomes such as 

likely time of failure (cf. Figure 1). While diagnostic / 

prognostic approaches may be conceptualized regarding 

three levels with varying degrees of complexity, i.e., 1) 

existing, 2) future failure mode prognostics and 3) post-action 

prognostics with a focus in the literature on the first (Taheri, 

Kolmanovsky & Gusikhin, 2019), in a Prescriptive 

Maintenance setting, typically all three of them are exploited. 

Accordingly, additional business value is gained from 

analyzing the impact of predicted failures on operational and 

maintenance activities, to quantitatively compare decision 

options and their effects on Key Performance Indicators 

(KPIs). From a methodological point of view, it is the aim of 

Prescriptive Analytics to not only provide different action 

alternatives, but to single out the optimal set of actions. As 

becomes clear later on, here, the application of (multi-

objective) stochastic optimization techniques is of paramount 

importance to incorporate measures of risk in the decision 

process. This provides the basis for recommending “best 

action” solutions and for automating decisions. Moreover, it 

allows tackling a broad range of questions within 

Prescriptive Maintenance placed at a system-oriented, 

business management level typically extending the decision 

support step in classical Prognostics and Health Management 

(PHM). Examples include optimized maintenance scheduling 

at fleet-level, planning of MRO work scope (e.g. order of 

execution of tasks or repair or replacement decision support, 

cf. the next section) as well as logistics / inventory 

management (e.g. spare parts ordering) under various 

constraints (cf. Koops, 2018 and references therein).  

 
 

Figure 1: Characterization of various analytics techniques finding application within Prescriptive Maintenance. 
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Requirements for making a Prescriptive Analytics approach 

sensible range from sufficient impact and complexity in 

terms of decision options for justifying the effort of the 

approach, over the presence of constraints limiting the 

decision space to the availability of data on possible actions, 

decisions and consequent situations (Sappelli et al., 2017). 

While in principle, in the MRO business, these requirements 

are typically fulfilled, the representativeness of results and 

hence the reliability of prescribed “best action” solutions can 

be strongly influenced by the quality of assumptions, data and 

models used, as will become apparent later on.  

3. STEP-BY-STEP APPROACH TO SOLUTION PRESCRIPTION 

The step-by-step approach to “best action” solution 

prescription outlined in the following provides a basis for 

identifying and optimizing business cases on an application-

by-application basis.  

As mentioned in the introduction, the approach is applied to 

the binary decision example “repair” or “replacement”. 

While in the MRO context often multiple (competing) 

business objectives are sought to be optimized within multi-

objective optimization schemes – like minimizing costs and 

simultaneously maximizing safety (Compare, Martini & Zio, 

2015) – here, for simplicity, a focus is placed on economical 

aspects only. As shown in Figure 2, with the aim of 

minimizing costs for evading failure, the following steps are 

required for determining the “best action” solution, which is 

associated with highest business value and lowest decision 

risk. These include besides a proper problem statement, 

singling out alternative decision actions and determining 

their consequences within a maintenance model. Their value 

can be assessed by means of cost-benefit analysis. For this 

purpose, in maintenance modeling, in many cases, single 

point estimates are employed for model parameters such as 

costs or degradation model inputs. This deterministic 

approach leads to a constant output for the decision model. 

By this means, the influence of e.g. inherent stochastic 

effects, measurement errors, modeling inaccuracies or 

inherent parameter spread on decision-outcomes are 

neglected. As will become apparent in Section 7.2, this may 

compromise the representativeness of outputs and hence the 

reliability of as determined “best actions” decisions and 

potentially lead to financial penalties.  

In this work, for properly dealing with various sources of 

uncertainty and variability in the context of Prescriptive 

Maintenance, a probabilistic approach to cost-benefit 

analysis based on a Monte Carlo simulation is pursued. It is 

outlined on the right hand side of Figure 2 and further 

described in the next section. 

3.1. Simulation-supported Probabilistic Cost-Benefit 

Analysis  

By means of a stochastic model, probability distributions of 

potential outcomes can be estimated by allowing for random 

variation in one or more inputs (Hubbard, 2014). 

A Monte Carlo simulation is one example for a stochastic 

model that is applied to allow for dealing with certain degrees 

 
 

Figure 2: Step-by-step approach to solution prescription. 
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of unpredictability and randomness by determining a range 

of outcomes of the two different maintenance alternatives 

considered, “repair” or “replacement”. The right hand side of 

Figure 2 summarizes the corresponding steps typically 

involved in a Monte Carlo approach that can be adopted for 

a simulation-based cost-benefit and risk analysis. Namely, by 

simulating a large number of draws from the given 

distributions of input variables to the cost-benefit model, the 

resulting distribution of outcomes is established. 

As indicated by Figure 2, first, the probability distributions 

of inputs have to be specified. In case real data is available, 

the underlying distributions can be fitted for each input 

variable and used as an input to the cost-benefit model 

(Hubbard, 2014). 

A further description of the degradation model considered in 

this work is provided in the next section and an overview on 

relevant data sources and assumptions regarding maintenance 

costs and their distributions can be found respectively in 

Sections 5.1 and 5.2. 

4. DEGRADATION MODEL BASED ON WIENER PROCESS 

Degradation, in general, refers to the reduction in 

performance, reliability, and hence RUL of engineering 

assets. Many failure mechanisms can be traced to an 

underlying degradation process, which is stochastic in nature. 

Probabilistic models with continuous state are widely used to 

characterize the degradation process. Besides the gamma 

process (Gorjian, 2010), frequently used models from this 

process family include the Wiener process (Wang et al., 

2018; Zhao, He & Xie, 2018), further considered in this 

study.  

The Wiener process can be expressed as drifted Brownian 

motion (Szabados, 2010; Zhao, He & Xie, 2018). It is 

particularly suited to represent the evolution of a degradation 

process, which exhibits an increasing trend over time with 

random Gaussian noise, both being functions of elapsed time, 

  

X(t) = 𝜂𝛬(𝑡) + 𝜎𝐵(𝛬(𝑡)), 

 

(1) 

where initial degradation is assumed to be zero and 𝛬(𝑡) = 𝑡 

such that the degradation path is linear. Further, 𝜂 > 0 and 𝜎 

denote the drift and diffusion coefficients, respectively 

related with the expected rate of degradation and the 

magnitude of the Gaussian noise perturbing the trend. 

Moreover, B is the standard Brownian motion. Accordingly, 

the Wiener process is characterized by continuous sample 

paths, being a sequence of successive independent random, 

normally distributed increments (Szabados, 2010).  

The importance of Brownian motion in probability theory 

amongst other things lies in a certain sense, in its constitution 

of a limit of rescaled simple random walk. 

For degrading units one typically defines the hitting time TD 

as the first passage time of X(t) with respect to a degradation 

threshold, D (Zhao, He & Xie, 2018; Pei et al., 2018). This 

corresponds to the failure time of the equipment, 

necessitating preventive / corrective maintenance actions 

somewhat before / thereafter. TD exhibits an inverse Gaussian 

(IG) distribution with mean D⁄𝜂 and shape 𝐷2/𝜎2 (Zhao, He 

& Xie, 2018), i.e.,  

  

𝑇D~ IG(
𝐷

𝜂
,

𝐷2

𝜎2). 

 

(2) 

Hence, the Probability Density Function (PDF) of 𝑇D reads 

  

𝑓𝑇𝐷
(𝑡; 𝐷, 𝜂, 𝜎) = (

𝐷2

2𝜋𝜎2𝑡3)
1/2

𝑒𝑥𝑝 (−
(𝑡𝜂−𝐷)2

2𝜎2t
). 

 

(3) 

For the case of “replacement”, Eq. (3) can be used to 

determine the reliability R(t), i.e. probability of zero failures 

in time t, as well as the failure function F(t), i.e. the 

probability of crossing the failure threshold at TD ≤ 𝑡 , 

according to (Letot et al., 2017) 

  

𝑅(𝑡) = 1 − 𝐹(𝑡), 

𝐹(𝑡) = 𝑃(TD≤ 𝑡) = 𝑃(𝑋(𝑡) ≥ 𝐷) = ∫ 𝑓𝑇𝐷
(𝑇)𝑑𝑇

𝑡

0
. 

 

(4) 

In the case of “repair”, both R(t) and F(t) depend on the repair 

effectiveness, defining the degradation value after 

maintenance. Therefore, in the next section, random effects 

of imperfect repairs are implemented within the Wiener 

process model. 

4.1. Imperfect Repair with Random Improvement 

Factor 

While the repair of equipment is typically more cost-effective 

than replacing it, in general, it is imperfect and can hence only 

restore the health condition of the equipment to a state 

between “as good as new” and “as bad as old” (Pham & 

Wang, 1996). Hence, the post-maintenance life after “repair” 

before the next required maintenance activity is typically 

reduced as compared with “replacement”.  

Assuming that the equipment exhibits no initial degradation, 

the respective degradation levels Xk and Xk
+ before and after 

kth repair may be expressed in terms of the improvement 

factor 𝛼𝑘 (Zhao, He & Xie, 2018), 

  

𝑋k
+ = (1 − 𝛼𝑘)𝑋k, 

 

(5) 

where 0 ≤  𝛼𝑘 ≤  1. Here, the two limiting cases respectively 

correspond to minimal repair (“as bad as old”) and perfect 
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repair (“as good as new”, i.e. resetting the degradation value 

to zero).  

It is sensible to assume that the effect of repair is subject to 

potential randomness and that the improvement factor can be 

modeled by a univariate random distribution. Following 

Zhao, He and Xie (2018), we use independent and identical 

truncated normal distributions in the range [0,1] to model 𝛼k, 

i.e. 𝛼𝑘~𝑇𝑁(𝑢, 𝑣, 0,1) for 𝑘 = 1, 2, … with PDFs given by 

  

𝑓𝛼𝑘
(𝛼𝑘; 𝑢, 𝑣, 0,1) = 𝑓𝛼(α; 𝑢, 𝑣, 0,1) 

                                =
𝜙(

α−𝑢

𝑣
)

𝜎(𝛷(
1−𝑢

𝑣
)−𝛷(

0−𝑢

𝑣
))

, 

 

(6) 

where 𝜙  and 𝛷  respectively denote the PDF and the 

Cumulative Distribution Function (CDF) of the standard 

normal distribution. As will be further discussed in Section 

7.1, the higher / lower the parameters u / v, the larger is the 

average repair quality and the smaller its spread. Further, 

since 𝛼k are independent and identically distributed, 𝛼 is 

taken to represent 𝛼k. Hence, the effect of repair is considered 

to be homogeneous and the kth hitting time 𝑇𝐷k
 for 𝑘 ≥  1 

can be expressed as (Zhao, He & Xie, 2018), 

  

𝑇𝐷k
~  

IG(
𝐷{1+(𝑘−1) log[𝐸(exp(𝛼))]}

𝜂
,

{𝐷(1+(𝑘−1) log[𝐸(exp(𝛼))]}2

𝜎2 ) 

 

(7) 

with 

  

𝐸(exp(𝛼)) = ∫ 𝑒𝛼𝑓𝛼𝑑𝛼
1

0
,  

 

(8) 

being a constant for fixed u and v according to Eq. (6). 

Furthermore, the mean and variance of 𝑇𝐷k
 are respectively 

given by 𝐷{1 + (𝑘 − 1) log[𝐸(exp(𝛼))]}/𝜂  as well as 

{𝐷(1 + (𝑘 − 1) log[𝐸(exp(𝛼))]}2/𝜎2. Note that for 𝑘 =  1, 
Eq. (7) corresponds to Eq. (2) from the last section. The 

reason is that the evolution from zero degradation state up 

until 1st maintenance is independent of the improvement 

factor, which is used to describe the effect of repair on the 

degradation after the first maintenance event.  

Moreover, the time between to maintenance events follows 

the distribution (Zhao, He & Xie, 2018), 

  

𝛥𝑇k~𝛥𝑇~ IG(
𝐷 log[𝐸(exp(𝛼))]

𝜂
,

{𝐷 log[𝐸(exp(𝛼))]}2

𝜎2 ), 

 

(9) 

which is independent of k. 

Let us for comparison and for later reference define the mean 

of 𝛼, 𝐸(𝛼), as constant improvement factor, where 

  

E(𝛼) = ∫ 𝛼𝑓𝛼𝑑𝛼
1

0

. 

 

(10) 

It is interesting to note that according to Jensen’s inequality, 

𝐸(exp(𝛼)) ≥ exp(E(𝛼)), it follows that log[𝐸(exp(𝛼))] ≥
E(𝛼) such that the effect of randomness in the improvement 

factor is to increase the mean and also the variance of the kth 

hitting time. The effect on result uncertainty will be further 

investigated in Section 7.2. 

5. CONSIDERED MAINTENANCE SCENARIO 

In this study, it is assumed that one of the two maintenance 

alternatives “repair” or “replacement” is to be singled out by 

the Prescriptive Maintenance approach as “best action” 

solution for all successive maintenance events. In order to 

take the decision, the assessment time horizon is chosen to be 

long enough such that effects of imperfect repair become 

apparent. In general, with respect to replacement, these 

include a cost difference for maintenance as well as 

modifications in failure times as demonstrated by the 

comparison of Eqs. (3) and (8), which can enhance the 

number of required maintenance events. In this study, the 

following maintenance scenario is considered 

 Preventive and Corrective Maintenance: fixed 

maintenance at time 𝑇𝑃 that is chosen within a 

reliability-centered approach such that replacement 

costs are minimized (cf. approach below). 

The cost-optimal time 𝑇𝑃  for performing preventive 

maintenance is determined by the trade-off between lower 

preventive maintenance frequency / costs and increased  

unexpected failures in between that cause typically elevated 

costs related with corrective maintenance (cf. the discussion 

in Section 5.1). Accordingly, 𝑇𝑃  optimizes the Expected 

Maintenance Cost Per Unit of Time (ECPUT) given by (Letot 

et al., 2017) 

  

𝐸𝐶𝑃𝑈𝑇 =
𝐸(𝐶)

∫ 𝑅(𝑡)𝑑𝑡
𝑇𝑃

0

, with (11) 

𝐸(𝐶)= 𝑅(𝑇𝑃) ∙ 𝐶𝑃 + 𝐹(𝑇𝑃) ∙ 𝐶𝐶, 

 

(12) 

where the denominator of Eq. (11) corresponds to the mean 

uptime and Eq. (12) corresponds to the expected maintenance 

costs, where 𝐶𝑃  and 𝐶𝐶  respectively denote preventive and 

corrective maintenance (i.e. failure) costs. Here, the 

degradation failure is assumed to be discovered and remedied 

immediately and that both repair and replacement time upon 

failure are negligible compared to the system lifespan. 

In a sense, this problem corresponds to the case, where the 

optimal maintenance action is to be singled out under 

constraints, namely, that the maintenance time is fixed (e.g. 

to accommodate other necessary system’s refurbishment, 

simultaneously) and not chosen according to the 
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economically most favorable time for the option “repair”. As 

will become clear later on, this tends to increase corrective 

maintenance costs for imperfect repairs as compared with 

replacements.  

In Section 7.2, the difference in expected maintenance costs 

between repair and replacement as preventive maintenance 

action is evaluated according to Eq. (12), using the respective 

distributions of hitting times specified in Eqs. (8) and (3).  

Corrective maintenance costs are for simplicity assumed to 

be the same for both options as significant contributions other 

than for refurbishment arise for both options (cf. the 

discussion in Section 5.1).  

It should be noted that the degradation model outlined in 

Section 4 could also be embedded into a Predictive / 

Prescriptive Maintenance setting with on-line monitoring of 

degradation indicators as is investigated in on-going work. 

This would allow for continuous update of the RUL as soon 

as new degradation data is available (Letot et al., 2017). In 

this case, maintenance events may be optimally planned in 

time to evade degradation failures and to optimize 

maintenance costs (i.e., here, corrective maintenance events 

could be evaded). 

5.1. Assumptions on Maintenance Costs 

For many applications such as for bearings or turbine blades, 

repair costs are reported to make up respectively only 20 to 

70% and roughly 50% of replacement costs (American Roller 

Bearing Company, 2020; Wang et al., 2015). Effectively, 

they involve any costs related with required labor and 

material (e.g. spare parts, tools), logistics as well as 

(potential) monetary penalties resulting from downtime of 

the considered equipment during refurbishment (e.g. for the 

operator of an aircraft) (Letot et al., 2017). Costs are impacted 

by the local conditions such as material / labor costs of the 

repair shop location (region) and by the required turnaround-

time. Furthermore, higher repair efficiency allowing for 

lower turnaround-time, is typically associated with higher 

repair costs (International Air Transport Association, 2015). 

Replacement of components or systems is often more time-

effective than repair with subsequent quality inspection, in 

particular when (a chain of) manual processes are involved 

(International Air Transport Association, 2015). This is why 

significant research efforts go into approaches for automating 

respective repair actions to save valuable (down)time and 

hence costs (Gardiner, 2011; Paquet et al., 2017). This also 

provides means to decrease the dependence of the repair costs 

on local conditions, like labor costs of the repair shop region. 

As will be discussed in Sec. 7.1, this can influence the 

variability of future repair costs. 

In addition, in the maintenance scenario described in the last 

section, unexpected failures can occur before the next 

scheduled maintenance event that are typically related with 

higher costs than for preventive maintenance. For instance, 

they comprise contingency damage and potential labor and 

logistic costs associated with component or system 

restoration as well as downtime-related costs (cf. Koops, 

2018 and references therein). Since in general, after imperfect 

repair, the component is not “as good as new”, the failure 

probability after maintenance action is larger than after 

replacement.  

For simplicity, in this study repair, replacement and 

unexpected failure costs are assumed to exhibit a normal 

distribution. Valuable data and information sources are 

discussed in the next section and meaningful parameter 

ranges are specified in Section 7.1. 

5.2. Valuable Data and Information Sources 

Financial data / information may be gained from  

• Financial reports 

• Cost models  

• Expert knowledge 

Technical data and information as needed to quantify the 

degradation model and repair efficiency by means of 

probabilistic modeling and inference includes 

• Degradation and usage data from equipment 

monitoring (historic, “on-line“)  

• Failure / maintenance / repair history 

• Repair process and quality control data 

• Expert knowledge 

Degradation data often provide more information than failure 

time data for assessing reliability and predicting the RUL of 

systems (Gorijan et al., 2010) and are easier to acquire in 

high-risk sectors like aviation. For instance, within Predictive 

maintenance approaches, prognostics may be based on a 

degradation process through available degradation data. 

More precisely, for instance prior degradation information 

can be used to determine prior distributions of Wiener 

process parameters. By means of on-line monitoring of 

degradation indicators and Bayesian methods, these can be 

updated to posterior distributions for accurate assessment of 

performance reliability and RUL, whenever new degradation 

data is available (Zhu, Zuo &,Cai, 2014; Zhao, He & Xie, 

2018). 

6. KEY METRICS FOR EVALUATING BUSINESS VALUE AND 

RISK 

In this study, various metrics originating from business 

analytics (Hubbard, 2014) are adopted to assess the impact of 

different sources of uncertainties generally arising e.g. from 

data measurement, modeling and costs, within the described 

framework of probabilistic cost-benefit analysis used to 
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prescribe “best action” solutions by means of a Monte Carlo 

simulation. These include  

 Mean cost difference E(Δ𝐶)  between both 

maintenance alternatives (i.e. profit or loss), 

determined from the cost difference Δ𝐶 and its PDF 

𝑓Δ𝐶 according to E(Δ𝐶) = ∫ Δ𝐶𝑓Δ𝐶𝑑Δ𝐶
∞

−∞
. Without 

loss of generality, we define E(Δ𝐶)  to be the 

expectation value of the cost difference between 

repair and replacement. 

 Risk of taking the wrong decision, i.e. the 

cumulative probability that the dismissed 

maintenance alternative leads to a higher benefit, i.e. 

∫ 𝑓Δ𝐶𝑑Δ𝐶
∞

0
 for repair and ∫ 𝑓Δ𝐶𝑑Δ𝐶

0

−∞
 for 

replacement, respectively 

 Expected Opportunity Loss (EOL), i.e. the cost of 

taking the wrong decision, determined as 

∫ Δ𝐶𝑓Δ𝐶𝑑Δ𝐶
∞

0
 and ∫ Δ𝐶𝑓Δ𝐶𝑑Δ𝐶

0

−∞
, respectively for 

repair and replacement 

 Expected Value of Information (EVI), i.e. the 

difference in EOL before and after the information 

is available 

Note that the “best action” solution is singled out as the one 

with highest benefit, i.e. repair for E(Δ𝐶)<0 and replacement 

for E(Δ𝐶)>0, and with smallest potential cost penalty, EOL. 

Clearly, the confidence in the prescribed solution increases 

with decreasing risk of taking the wrong decision and with 

decreasing EOL. Finally, the EVI is an important metric for 

assessing how gainfully specific sets of data or information 

can reduce result uncertainty. By assigning them a monetary 

value, this gives important indication as to how much 

investment effort is justified for acquiring them.  

7. MONTE CARLO ANALYSIS 

In this section, a Monte Carlo analysis is performed. It allows 

to determine input parameters, whose variation exhibits a 

large impact on output values, hence, indicating, which 

sources of data and information are particularly valuable for 

lowering decision-risk and enhancing benefit. As a 

prerequisite, in the next section, use case scenarios are 

defined with meaningful parameter ranges to be investigated. 

The results of the simulation can be found in Section 7.2. 

7.1. Definition of Use Cases 

In the following, a motivation is provided for considering 

particular sets of parameter variations defining different use 

case scenarios for the subsequent Monte Carlo analysis. 

As long as in the repair process (a series of) manual actions 

are involved, the quality of the repair is still largely dependent 

on the individual repair technician’s experience and skills 

(Gardiner, 2011).  

Accordingly, this translates into a source of spread in the 

resulting repair quality, or equivalently the lifetime of the 

repaired component after repair. In the last decade, emphasis 

is put on improving the automation level of repairing 

processes, e.g. for aero engine blades (Wang et al., 2015).  

Here, the reconstruction of a digital model of the damaged 

blade together with overlay welding and machining the 

welded excess are the three key technologies, positively 

affecting the automation level of repairing (Wang et al., 

2015). More generally speaking, automated (robotic) repair 

technologies are gaining momentum, e.g. in the context of 

composite structures inspection and repairs (Gardiner, 2011; 

Paquet et al., 2017; Guo & Brommesson, 2018). 

Further approaches for enhancing repair quality and 

decreasing its spread include the increasing number of new 

technologies now in development with the goal of improving 

process control and excluding for instance damage done 

during repair (Gardiner, 2011; Guo & Brommesson, 2018). 

They aim at both reducing cost of labor as well as risk of 

human error. Hence, they provide a handle for decreasing a) 

repair - and hence downtime and repair costs, b), variability 

of repair costs (cf. the discussion in Section 7.1) and for 

increasing c) repair quality. 

While a (more) digitally controlled repair process offers 

exciting possibilities to capture and exploit sources of 

accurate data for Prescriptive Maintenance purposes, an 

evaluation of the effects on maintenance model KPIs is 

important to justify associated investment effort / costs. 

Moreover, in some cases, there are alternative repair 

technologies that are associated with different repair 

effectiveness / variability and costs. Typically, there exists a 

trade-off between them, i.e. higher repair quality is associated 

with larger costs (International Air Transport Association, 

2015; Zhao, He & Xie, 2018).  

Hence, in this context, the probabilistic approach to cost-

benefit analysis can give valuable insights into what controls 

the output of corresponding MRO decisions. With this 

information at hand, it may be determined, where best to 

spend time and money for improving both engineering and 

data quality and reducing uncertainty and properly 

characterizing inherent spread in parameter values, e.g. 

arising from political, environmental or operational factors.  

Based on this motivation, the influence of average repair 

quality and its spread is investigated for different ratios 

between and variability of various maintenance costs. 

Meaningful parameter ranges are summarized in Table 1. By 

this means, 12 use case scenarios are defined (cf. Table 2) 

that are investigated within Monte Carlo analysis in the next 

section.  

In Figure 3, the PDF of the improvement factor is shown 

according to Eq. (6) for different choices of the parameters u 

and v defined in Table 1. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

9 

Accordingly, the higher / lower the parameters u / v, the 

larger is the average repair quality and the lower is its 

variability.  

7.2. Results of Monte Carlo Simulation 

In this section, the step-by-step approach to prescribing “best 

action” decisions outlined in Section 3 is applied for the 

action alternatives “repair” and “replacement”, considering 

the maintenance scenario outlined in Section 5 and the 

respective use cases defined in Section 7.1.  

Furthermore, the parameters defining the Wiener degradation 

path defined in Eq. (1) in Section 4 are taken to be 

  

𝜂 = 1, 𝜎 = 0.3, 𝐷 = 5. 

 

(13) 

According to Eqs. (11) – (12) and (3), this results in an 

optimal time for replacement after 𝑇𝑃 = 3.7. The results are 

evaluated considering an assessment horizon of  2 ∙ 𝑇𝑃 such 

that effects of imperfect repair come into play (cf. the 

discussion in Section 5). 

A spreadsheet example for use case 1a) is shown in Table 3, 

where the difference in expected maintenance costs for 

“repair” versus “replacement”, 𝐸(Δ𝐶),  is determined from 

Eq. (12) in Section 5.  

For each of the 12 use cases, the cost difference between 

“repair” and “replacement” is calculated for a representative 

sample of 104 possible combinations according to the 

statistics of all parameters considered to be variable. 

In Table 4, key metrics introduced in Section 6 are evaluated 

that allow to assess the impact of various sources of 

uncertainty and variability on the prescription of the “best 

action” solution either constituted by “repair” or 

“replacement”. These are determined by means of the bin 

frequency / cumulative bin frequency of occurrence in the 

respective spreadsheets for the 12 case studies performed. 

A selection of the corresponding results for the PDFs / CDFs 

of the cost difference of both decision alternatives is 

presented in Figures 4 – 7.  

Table 2: Assumptions for different case studies 

 

Case Study 
Failure costs 

(spread) 

Repair costs 

(average) 

Spread in repair 

costs 
Repair quality 

Spread in repair 

quality 

1a) Small 
Medium  Small Medium (on average)  Low 

1b)  Large 

2a) Small 
Medium Small Medium (constant)   None 

2b) Large 

3a) Small 
High  High High (on average)  High 

3b) Large 

4a) Small 
Medium  Small High (on average)  High 

4b) Large 

5a) Small 
Medium Small High (on average)  Low 

5b) Large 

6a) Small 
High  High  High (on average)  Low 

6b) Large 

 

Table 1: Parameter ranges chosen to investigate the impact of various sources of uncertainty and variability on the 

confidence and business value of “best action” solutions determined in Section 7.2. 

 

Ranges 

(90% 

confidence 

interval) 

Replacement 

costs [k$ per 

unit] 

Repair costs [k$ per 

unit] 

Failure costs [k$ 

per unit] 
Repair quality 

“medium / 

small 

spread” 

“high / 

large 

spread” 

“small 

spread” 

“large 

spread” 

“medium / 

small 

spread”  

(u=0.7, 

v=0.1) 

“Constant 

medium” 

“high / 

small 

spread” 

(u=0.9, 

v=0.1) 

“high / 

large 

spread” 

(u=0.9, 

v=0.3) 

Upper 

bound 
18.00 12.00 16.00 40.00 60.00 1.00 0.70 1.00 1.00 

Mean 17.00 10.50 13.50 35.00 30.00 0.70 0.70 0.87 0.72 

Lower 

bound 
16.00 9.00 11.00 30.00 10.00 0.00 0.70 0.00 0.00 
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Figure 3: PDF of the improvement factor, 𝑓𝛼(𝛼; 𝑢, 𝑣, 0, 1), 

for u=0.9, v=0.1 (solid), u=0.9, v=0.3 (dotted) and u=0.7, 

v=0.1 (dashed). 

 

The “best action” solution is singled out as the one with the 

largest profit and the lowest EOL. Accordingly, a negative / 

positive mean cost difference between “repair” and 

“replacement” indicates respectively that “repair” / 

“replacement” is the preferred alternative (cf. the fourth 

column of Table 4 and the definition in Section 6).  

The following general key results can be deduced 

 While in most cases “repair” is prescribed as more 

profitable solution, in some cases “replacement” is 

slightly preferred 

 In some cases, the risk of taking the wrong decision 

and the associated EOL are strongly increased in the 

presence of various sources of uncertainties / 

variability. 

More specifically, the lower the average repair quality and 

the higher the ratio of repair to replacement costs, the more 

important become variations in repair quality and 

uncertainties regarding failure and / or replacement costs.  

For instance, the comparison of case studies 1a) and 1b) 

demonstrates that choosing “repair” for a varying, but on 

average medium repair quality, a large spread in expected 

failures costs significantly enhances the risk of taking the 

wrong decision from merely 3 to 29% (cf. Figures 4-5) with 

associated strong increase of EOL from 30 to 660$ per unit.  

So here, basing the cost ranges e.g. on a set of historic data 

rather than for instance a less-informed, conservative expert 

estimate leading to a large cost spread, would allow to 

considerably reduce the amount of uncertainty in the risk-

based decision. Possibly, beyond that one may infer the best 

fit probability distribution function from the data, which does  

Table 3: Excerpt from Monte Carlo Layout for use case 1a).  

 

Scenario 

# 

Repair 

costs 

[k$ per 

unit] 

Replace-

ment costs 

[k$ per 

unit] 

Failure 

costs 

[k$ per 

unit] 

𝐸(Δ𝐶) 
“repair” vs. 

“replacement” 

1 10.18 17.17 37.99 -2.41 

2 9.60 17.22 31.91 -2.21 

3 96.38 17.72 34.31 -1.99 

4 10.02 16.86 34.59 -1.92 

5 96.88 15.78 31.74 -0.15 

6 99.32 15.98 33.60 -2.50 

7 93.41 16.68 39.95 -4.26 

8 10.47 17.03 30.77 -2.96 

9 96.0 17.11 33.23 -2.52 

10 85.89 17.56 33.64 -0.65 

… … … … … 

9,997 10.77 16.50 41.33 +0.51 

9,998 10.10 17.03 36.94 -1.34 

9,999 9.45 16.58 35.54 -1.68 

10,000 10.42 16.72 30.78 -2.01 

 

not necessarily have to be a normal one as assumed here for 

simplicity. This approach directly translates into a higher 

confidence associated with the prescriptive approach and a 

lower potential loss. Hence, this information can be assigned 

a monetary value. It is with 630$ per unit equivalent to the 

difference in EVI for the two use cases, if repair is chosen. 

It is particularly interesting to note that in case for imperfect 

repair of medium quality instead of a randomly varying α as 

in use case 1), its mean is taken as constant improvement 

factor as in use case 2), the prescribed “best action” solution 

changes from “repair” to “replacement”. Moreover, the risk 

of taking the wrong decision significantly increases from 

merely 3 / 29 % to 28 / 39% (respectively for low / high 

spread in failure costs, cf, Figures 6-7). 

As mentioned in Section 4.1, the randomness in improvement 

factor α increases the mean time until the kth failure for k≥2, 

while also increasing its variability. The first effect 

beneficially reduces the failure probability within the 

predefined time horizon for assessment (i.e. 2 ∙ 𝑇𝑃) and hence 

in comparison leads to lower costs for corrective 

maintenance.  

This example hence demonstrates that gaining knowledge on 

the actual distribution of the improvement factor such as by 

means of test / operational (life time) degradation data instead 

of assuming a reasonable average value could prevent taking 

a sub-optimal decision. Namely, in other words, if the 

decision for replacement is placed on the premise of a 

constant improvement factor α, while actually, imperfect 

repair is best described by a randomly varying α, instead, 

repair would be more cost-effective. Accordingly, this would 

on average lead to a loss of 1270 / 1330 $ per unit, namely 

the mean cost difference between “repair” and “replacement” 

in case studies 1a) and b), respectively. 
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Figure 4: Left PDF of use case 1a) and right of use case 1b) with respectively small and large spread in failure costs. 

 
Figure 5: Left CDF of use case 1a) and right of use case 1b) with respectively small and large spread in failure costs. 

 

 

 
Figure 6: Left PDF of use case 2b) and right of use case 5b) with respectively large spread in failure costs. 

 

 

 
Figure 7: Left CDF of use case 2b) and right of use case 5b) with respectively large spread in failure costs. 
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Importantly, the example hence demonstrates that the quality 

of assumptions, data or information used for prescribing “best 

action” solutions influences the representativeness of the 

result and hence the reliability of these prescriptions . 

Further, if on the one hand, the repair quality is on average 

high, but on the other hand subject to a fairly large variation 

like in use case 3a) and 3b), respectively, then this leads to a 

highly uncertain decision for “replacement” in case repair 

costs are comparatively high. The risk of taking the wrong 

decision is further increased from 37 % in use case 3a) to 42% 

in use case 3b), since here, in addition, failure costs are rather 

uncertain. If, however, the cost difference between “repair” 

and “replacement” is more pronounced like in use case 4), 

then – only in combination with uncertain failure costs – the 

variation in repair quality results in a slightly negative impact 

on decision risk (cf. use case 5b) in Figures 6-7). 

While in general, variability stemming e.g. from 

environmental or operational factors, can hardly be reduced, 

one may imagine that the spread in repair quality could be 

controlled by more effective process / quality control 

technologies. Moreover, fully digitizing the repair process 

itself bears promise with respect to achieving higher repair 

quality (cf. the discussion in the last section). As 

demonstrated by the above example, this is particularly 

valuable, if the cost difference between repair and 

replacement is less pronounced. Since enhanced repair 

quality typically is associated with higher repair costs, the 

presented analysis can be used to quantitatively analyze this 

trade-off on an application-by-application basis. 

It should finally be noted that for on average high repair 

quality with comparatively low spread, both medium and 

even high repair costs (cf. use cases 5) and 6)) respectively 

lead to a vanishing or very low risk of just 2% for taking the 

wrong decision, when option “repair” is selected. This is the 

case, even if failure costs are rather uncertain like in use cases 

5b) (cf. Figures 6-7) and 6b), respectively. Here, the ratio of 

repair to replacement costs determines the mean profit, which 

increases with decreasing cost ratio from roughly 3k$ to 

about 6k$ per unit for use cases 5) and 6), respectively.  

This again underlines the above argument that investing in 

technology for decreasing variations in repair quality can 

make repair / replacement decisions much more predictable, 

less risky and promises higher gains as the comparison of e.g. 

use cases 3) and 6) or 1b) and 5b) demonstrates (of course, 

provided the exploited data is accurate). 

Hence, the last two examples show that enhancing average 

repair quality and reducing its inherent spread can support 

Prescriptive Maintenance business cases, as solutions with 

lower associated decision risk can be deduced and be 

implemented e.g. in future automated maintenance settings. 

In summary, strategies for mitigating risk and enhancing 

business value of MRO decisions include 

 Identifying risk variables within sensitivity analysis i.e. 

input parameters, whose variation exhibits a large impact 

on output values; this points at which sources of data are 

particularly valuable for lowering decision-risk and 

enhancing benefit 

 Clearly characterizing inherent variability in decision 

model factors that cannot be reduced per se 

 Properly dealing with incomplete data e.g. by means of 

Machine Learning techniques (Paluszek & Thomas, 

2017) 

 Evaluating the EVI in order to specify, which additional 

data to acquire and how much to invest into doing so 

Regarding the last point, it is important to note that in a 

situation with large uncertainty, even little data can help to 

reduce the latter significantly (as e.g. the comparison of use 

Table 4. Results from the Monte Carlo simulation for the different case studies specified in Table 2 in Section 7.1. 

 

Case Study 

Mean cost difference 

E(Δ𝐶)“repair” vs. 

“replacement”) [k$ per 

unit] 

EOL (“repair” / 

“replacement”)  [k$ 

per unit] 

Prescribed “best 

action” solution  

Risk of taking 

wrong decision 

[%] 

Difference in EVI 

[k$ per unit] 

1a) -1.27 0.03 / 1.30 Repair 3 0.63 

1b)  -1.33 0.66 / 1.98 Repair 29 

2a) +0.20 0.49 / 0.29 Replacement 28 0.98 

2b) +0.17 1.47 / 1.30 Replacement 39 

3a) +0.03  0.58 / 0.55 Replacement 37 0.38 

3b) +0.05  0.96 / 0.92 Replacement 42 

4a) -2.81  0.00 / 2.81 Repair 0 0.09 

4b)  -2.52  0.09 / 2.62 Repair 7 

5a) -5.61 0.00 / 5.61 Repair 0 0.00 

5b) -5.59 0.00 / 5.59 Repair 0 

6a) -2.79  0.02 / 2.81 Repair 2 0.00 

 6b) -2.79  0.02 / 2.81 Repair 2 
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cases 1a) and 1b) indicates). However, in a situation with low 

uncertainty, a large amount of data is needed to reduce it even 

further (Hubbard, 2014). 

8. CONCLUSIONS AND OUTLOOK 

In this work, a probabilistic framework for determining “best-

action” solutions within Prescriptive Maintenance and for 

assessing and subsequently deriving strategies for enhancing 

decision-reliability and business value has been presented on 

the example of repair / replacement decision support.  

Using realistic degradation / maintenance models that 

implement random effects of imperfect repair, the approach 

was shown to identify input parameters, whose variation 

exhibits a large influence on resulting decision quality.  

For example, an increase in average repair effectiveness and 

reduction of inherent spread, possibly achievable by 

digitizing and automating repair and quality control 

processes, was demonstrated to bear potential for making 

repair / replacement decisions much more predictable, less 

risky and potentially more profitable. For example, lowering 

the spread of on average high repair quality was shown to 

change the “best action” solution from “replacement” to 

“repair” at the same time lowering the risk of taking the 

wrong decision from as much as 42% to merely 2%. This was 

the case, even though the mean cost ratio assumed between 

repair and replacement was with 80% above the current 

“Beyond Economic Repair” rule of thumb of 60-70% 

(International Air Transport Association, 2015) and in 

addition exhibited a large spread, i.e. uncertainty. 

As a further key result, it was demonstrated that the 

appropriateness and quality of assumptions, data or 

information determines the representativeness of the 

distribution of outcomes and hence directly relates with 

decision quality. An example showed that gaining knowledge 

on the actual distribution of the improvement factor for 

imperfect repair – such as by means of test / operational (life 

time) degradation data – instead of assuming a reasonable 

average value could prevent taking sub-optimal decisions 

related with significant cost penalties.  

Importantly, the Expected Value of Information was shown 

to give a quantitative measure for determining, where and 

how much to invest for improving engineering quality as well 

as for acquiring accurate, high-value data to reduce decision-

influencing uncertainty and enhance business value.  

The relevance of the presented approach hence also lies in 

providing a quantitative way for assigning data / information 

sources a monetary value in the maintenance business. This 

seems particularly valuable in the context of novel business 

models such as Data-as-a-Service, or specifically, possible 

new forms of service contracts between Original Equipment 

Manufacturers (OEMs) and operators, i.e. “OEMs selling 

efficiencies, operators selling operational data”.  

In summary, the probabilistic approach may hence give 

industry practitioners directions for designing and improving 

business cases for Prescriptive Maintenance on an 

application-by-application basis, e.g. by fully exploiting 

available high-quality data sources and models, by 

appropriate, dedicated measurements, by further digitizing 

and automating (repair) processes, and by investing in high-

value data, possibly within future data trading schemes. In the 

context of service-oriented business model innovation like 

power-by-the-hour service agreements for aero engines, this 

seems particularly valuable for enhancing MRO decision 

quality and predictability of related costs. 

In the same line of thinking, acquiring and connecting data 

within Prescriptive Maintenance from different areas such as 

maintenance, operations, planning and logistics could be key 

for optimizing data-enabled decisions with respect to e.g. 

MRO efficiency, fleet availability and supply chain agility. 
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