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ABSTRACT

Wind turbines generally operate under adverse conditions mak-
ing them prone to relatively high failure rates. Due to the
direct exposure of the blades to dynamic and cyclic loads of
wind, the rotor and the blades unsurprisingly represent the
most common major component damages of a wind turbine
system, which is especially enhanced when located offshore.

This paper presents a new model-based prognosis procedure
based on a zonotopic Kalman filter (ZKF), which combines a
physical model with observed data to assess the system degra-
dation. Using this information and the model of the system,
the end of life (EOL) and the remaining useful life (RUL)
with its uncertainty can be predicted. The proposed prognos-
tic method is applied to monitor the state of health of a wind
turbine system specifically, its blades. The remaining useful
life prediction will help in scheduling optimal maintenance
and reducing the cost caused by wind turbine damage and
unplanned shutdown.

1. INTRODUCTION

In recent years, due to the safety and cost benefits involved in
adopting a predictive maintenance strategy, research on fail-
ure prognosis has been a topic of considerable interest, moti-
vating a plethora of applications to various industrial systems
(Ferreira, Balthazar, & Araujo, 2003). Prognostic methods
are aimed at predicting the remaining useful life (RUL) of a
monitored system, which represents the time before the sys-
tem reaches a failure state. These methods can be mainly
classified into data-driven approaches, model-based approaches
or a hybrid of both. Data-driven approaches which is compre-
hensively reviewed in (Tsui, Chen, Zhou, Hai, & Wang, 2015)

Khoury Boutros et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

use data collected from sensors to extract features which is
then used to model the degradation behaviour. On the other
hand, model-based approaches use physics-based model of
the degradation to assess the RUL of the system. The model-
based method has an advantage of incorporating the physical
understanding of the monitored system, broadening the scope
of investigation, even though the process of development and
validation may be tedious and is based on the assumption of a
complete knowledge of the physical model (Madhav, 2015).
Finally, depending on available output data, a combination
of both approaches in a hybrid scheme can be undertaken
to achieve an improved predictive performance as done in
(Zhang, Kang, & Pecht, 2009).

Prognostic methods should account for the different uncer-
tainties that can influence and affect the predicted RUL which
should be as reliable as possible. Uncertainty sources are due
to sensor inaccuracy (measurement uncertainty), model un-
certainty and future uncertainties due to unknown environ-
ment and operating conditions (Gu, Barker, & Pecht, 2007).
The main challenge in prognosis is to take these uncertainties
into account to obtain a measure of the RUL uncertainty.

In this paper, damage on the blades of wind turbines after
repetitive cycle of wind loadings is selected as the health in-
dicator owing to the importance of decreasing cost curves as-
sociated with the operation of wind turbines to boast its at-
tractiveness as an alternative source of energy to predominant
fossil-based sources, as blades and rotor account for 20% of
total cost of wind turbines (IRENA, 2012). By providing im-
portant information on RUL, efficient operational planning
can be done by operators, decreasing unplanned operational
costs.

A model-based prognosis procedure based on the estimation
of the EOL and hence the RUL is investigated taking into
account damage propagation on the wind turbine blade root.
The damage is modelled from stress degradation (Vassilopoulos,
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Brøndsted, & Nijssen, 2010) which is a function of the wind
speed. Due to the fact that the system states and parame-
ters are essential to this exercise, a zonotopic Kalman filter is
designed to estimate the states under the influence of distur-
bances and noise, with associated bounds accounting for un-
certainties which are propagated during prognosis. By eval-
uating the associated bound, various maintenance decisions
can be undertaken, for example, lower bounds can be chosen
by operators for conservative purposes. The procedure is then
compared with prognosis using the standard Kalman filter for
estimation.

2. MODEL-BASED PROGNOSIS

The proposed prognosis approach is primarily based on the
model-based architecture as described in (Daigle, Saha, &
Goebel, 2012), which has been adapted to the case of a set-
based description of uncertainties. When the system in Fig-
ure 1 is subject to an input vector u(k), output data y(k)
and information from the model, (x(k), θ(k)|yk) under un-
certainty is used in the estimation of damage aided by the
ZKF such that the damage is computed as a bounded set,
�D(x(k), θ(k)|yk) from the description of the unknown but
bounded uncertainty sets.

This bounded sets’ information is subsequently used to calcu-
late the EOL and RUL at a specific time instant kp that take
their values from resultant feasible bounded uncertainty sets,
considering their centers as a reference point of estimation,
�EOL(x(kp), θ(kp)|y(kp)) and �RUL(x(kp), θ(kp)|y(kp)),
respectively.

Figure 1. Model-based prognostics architecture.

Given the generic discrete-time model description at time in-
stant k

x(k) = f(x(k), θ(k), u(k), w(k), k), (1a)
y(k) = h(x(k), θ(k), u(k), v(k), k). (1b)

where x(k) ∈ Rnx , θ(k) ∈ Rnθ , u(k) ∈ Rnu and w(k) ∈
Rnx are the states, time varying unknown parameters, inputs
and disturbance, respectively, with y(k) ∈ Rny and v(k) ∈
Rny as output and measurement noise at each time instant
k. The operation of a model-based prognosis involves pre-
dicting forward in time the EOL, based on a physics-based
criterion, considering TEOL ∈ Rnx × Rnθ as a threshold of
failure of a unit under test (UUT), with the main objective of
indicating failure over a time history of the UUT when per-

formance of the monitored system is outside the region of
the failure threshold TEOL. With the evolution of the per-
formance of the system, (x(k), θ(k)) under the influence of
known inputs u(k) and unknown variables, w(k) and v(k),
the TEOL : Rnx × Rnθ → B maps to a Boolean domain ∀
B := [0, 1], such that a violation of the failure threshold re-
sults in TEOL = 1 and 0 otherwise. The time of this event
of failure of the UUT, at a particular time instant kp, when
system dynamics evolution (1a) in time triggers TEOL = 1
is known as the end of life of UUT which is formalised in
(Daigle et al., 2012) as

EOL(tp) := inf{k ∈ N : k ≥ kp∧TEOL(x(k), θ(k), u(k)) = 1},

The time before the event of failure, i.e. when TEOL = 1, in
the present state of the UUT at kp in future time, is thus given
as:

RUL(kp) := EOL(kp)− kp.

3. ZONOTOPIC KALMAN ESTIMATION

Considering the fact that the process of estimation of states
is crucial in various procedures such as prognosis of systems,
the effect of uncertainties on observed states are essential to
examine. This warrants state estimation methods, such as the
well-established Kalman filter which has seen an abundance
of applications over the decades with variant modifications,
to enhance its efficiency and alternative uses.

3.1. Background

Different methods of representing these uncertainties moti-
vates different types of estimation schemes. These are mainly
through the stochastic paradigm and set-based formulations
with the latter involving unknown disturbances and noise that
are considered bounded in compact sets. Various geomet-
rical representation for bounded uncertainty sets have been
used in a number of works yielding good results. The re-
sultant estimate of set-membership methods are feasible sets
that are consistent with the states, inputs and model output
data, with the center of the resultant sets representing the ref-
erence point of the estimate (Le, Stoica Manui, Alamo, Ca-
macho, & Dumur, 2013). It is therefore necessary to rep-
resent them with compacts sets that provide less complex-
ity from a computational point of view. Convex sets such as
the interval-based set (Xiong, Jauberthie, Travé-Massuyès, &
Le Gall, 2013), ellipsoidal (Liu, Zhao, & Wu, 2016), poly-
topic or zonotopic sets (Wang, Alamo, Puig, & Cembrano,
2018) have been used which enables estimation of sets of ad-
missible values of states at every time instant enabling ro-
bustness to the worst-case scenario with designated a priori
bounds on uncertainties (Jaulin, 2009). Some works (Combastel,
2018) goes a step further in merging the two paradigms of
stochastic and set-membership methodologies to formulate a
somewhat ”hybrid” state estimation. Each geometrical rep-
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resentation offers different characteristics which may result
in ease or setbacks in computation of propagated uncertainty
sets in set-based Kalman filter formulations. Zonotopes, a
special class of polytopes, offer simplicity in computation of
sets and flexibility in operation.

Consider the Minkowski sum of two sets S1 and S2 as S1 ⊕
S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2}, with a unitary box of r
unitary elements, Br ∈ Rr given as Br = [−1, 1]r. Then,
a zonotope can be defined as a class of geometric set with a
center p and a generator matrix H ∈ Rn×r in a linear affine
image as

Z := 〈p,H〉 = p⊕HBr, (2)

The Minkowski sum of two zonotopes Z1 = 〈p1, H1〉 and
Z2 = 〈p2, H2〉 is thus given as:

Z1 ⊕ Z2 := 〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1H2]〉, (3)

The linear mapping of a zonotopic set, Z by a vector or a
matrix K is given as :

K � 〈p,H〉 = 〈Kp,KH〉, (4)

and the smallest box (interval hull) containing the zonotope is
described by �Z = p⊕ rs(H)Br, where rs(H) is a diagonal

matrix such that rs(H)i,j =
m∑
j=1

|Hi,j |. Hence, Z ⊂ �Z.

Figure 2. Zonotope in R3.

A linear discrete-time uncertain system with additive distur-
bance and noise, wk and vk, respectively, is considered such
that:

x(k + 1) = Ax(k) +Bu(k) + Eww(k), (5a)
y(k) = Cx(k) + Evv(l). (5b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are states, input and
output vectors, respectively. A ∈ Rnu×nu , B ∈ Rnx×nu ,
and C ∈ Rny×nx are time invariant matrices of appropri-
ate dimensions. The process disturbance wk ∈ Rnx and the
measurement noise vk ∈ Rny are unknown but bounded in
a compact set W and V, respectively, with a priori specified

bounds (w̄ and v̄) that can be formulated in a polytopic form
as:

W := {w(k) ∈ Rnx : |w(k)− cw| ≤ w̄, cw ∈ Rnx , w̄ ∈ Rnx},
(6a)

V := {v(k) ∈ Rny : |v(k)− cv| ≤ v̄, cv ∈ Rny , v̄ ∈ Rny}.
(6b)

cw, cv , w̄ and v̄ are independent component-wise constants
values. Zonotopic representations of the sets (6) assumed to
be centered at the origin is therefore given as:

W := 〈0, Rw〉, (7a)
V := 〈0, Rv〉. (7b)

The disturbance w and noise v are assumed bounded in a uni-
tary hypercube , ∀w ∈W := 〈0, Inw〉 and v ∈ V := 〈0, Inv 〉,
respectively. Henceforth for purposes of notation, c andR are
the center and generator matrix of zonotopes, respectively.

Assumption 3.1. The pair [A,C] of the model (5) is observ-
able.

3.2. The ZKF algorithm

The recursive procedure of the classic Kalman filter (Kalman,
1960) involves prediction of an a priori state estimation x−(k) =
Ax−(k−1)+Bu−(k−1) and a posterior estimate, corrected
by a gain Kkf , x+(k) = x−(k) +Kkf (y(k)−Cx−(k)) un-
der stochastic assumptions of uncertainties. In the zonotopic
paradigm, the initial state is such that, x0 ∈ X0 = 〈c0, Rx0〉.
From the dynamic model (5), the matrices Ew and Ev are
adapted as diagonal matrices with the prespecified bounds (w̄
and v̄) as their entries. Assuming a transition from x(k) ∈ Xk
to x(k + 1) ∈ Xk+1, the a priori and posterior estimates
considering zonotopic bounded uncertainty with Kalman gain
Kzk are given as follows
A priori estimate

c−x (k + 1) = Ac−x (k) +Bu(k), (8a)

R−
x (k + 1) = [ARx(k), EwRw]. (8b)

Posterior estimate

cx(k + 1) = c−x (k + 1) +Kzk(y(k)− Ccx(k)), (9a)

Rx(k + 1) = [(I −Kz(k)C)R−
x (k + 1),−Kz(k)Ev].

(9b)

The approach is summarized in Algorithm 1.
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Algorithm 1 Zonotopic Kalman filter algorithm

1: Initialization: x(0)⇐= x0, Rx ⇐= R0, Rw
2: for k = 0 : N do
3: c−x (k + 1) = Ac−x(k) +Bu(k) . Predict center
4: R−

x (k + 1) = [ARx(k), EwRw] . Predict generator
matrix

5: Compute the Kalman gain, Kz(k)
6: Measure the output y(k)
7: cx(k + 1) = c−x (k + 1) +Kz(k)(y(k)− Ccx(k)) .

Compute the center of the zonotope.
8: R−

x (k+1) = [(I−Kz(k)C)Rx(k+1),−Kz(k)Ev]
. Compute the generator matrix

9: Xk = 〈cx(k).rs(Rx(k))〉 . Compute the state
bounding zonotope.

10: x(k + 1) = cx(k + 1) + rs(Rx(k + 1)) .
Maximum estimated state.

11: x(k + 1) = cx(k + 1)− rs(Rx(k + 1)) . Minimum
estimated state.

12: end for

4. DAMAGE ESTIMATION OF WIND TURBINE BLADES
USING STIFFNESS DEGRADATION

4.1. Fatigue estimation background

Wind turbine blades and nacelles are commonly made of com-
posite fibre-glass materials that ensure target static strength
levels and longer service of life. As with any material, con-
tinuous exposure to stress results in a gradual loss of strength
over the material lifespan eventually leading to levels below
an acceptable operational condition. A number of methodolo-
gies have been used in an attempt to model a suitable dam-
age model which predicts the eventual end of operation of
wind turbine blades such as in (Leon, Kim, & Helga, 2017).
Predominant amongst these methods have been the rain flow
counting (RFC) and the stress degradation methods. Stiff-
ness degradation algorithm on wind turbine blades has been
comprehensively studied in (Vassilopoulos et al., 2010). This
algorithm is a fatigue crack growth modelling which involves
modelling and predicting the fatigue life of a composite ma-
terial by considering a damage metric, usually the residual
stress or residual stiffness of the material (Zhang, Vassilopou-
los, & Keller, 2008), such that failure is considered when one
of these metrics declines to a specified limit. This methodol-
ogy considers both compressive and tensile stress functions.

4.2. Stiffness degradation method

According to (Vassilopoulos et al., 2010), the modulus decay
of most fibre reinforced composite materials occurs in three
stages as shown in Figure 3: E0 is undamaged stiffness, E
is the stiffness at a specific point in the material fatigue life
cycle,N is the total test cycles andNf is the fatigue life in cy-
cles. In the first stage, there is a rapid degrading of stiffness of
about 2-5% mostly due to transverse matrix cracks. Stage two
involves a gradual degradation over fatigue lifetime. Damage
here is mostly caused by edge delaminations and additional

longitudinal cracks. Eventually in the final state, degradation
occurs in abrupt steps, culminating in an overall fatigue fail-
ure of the specimen.

Figure 3. Curve showing stages of stiffness degradation.

From (Van Paepegem & Degrieck, 2002), under the assump-
tion that the blade is a solid beam, the damage model consid-
ering compressive stress can be described as:

dD

dN
= fi(φ,D) + fp(φ,D), (10)

where fi is the initial stage function of steep decline in stiff-
ness, fp is the damage propagation function of the second and
final stages and φ. These two functions are given by

fi(φ,D) =

[
C1Σ(φ,D) exp(−C2

D√
Σ(φ,D)

)

]3
, (11a)

fp(φ,D) = C3DΣ(φ,D)2

[
1 + exp(

C5

3
(Σ(φ,D)− C4)

]
.

(11b)

where failure index Σ(φ,D) is a function of the damage D
resulting in material strength reduction and the stress value φ

Σ(φ,D) =
φ

(1−D)Xc
. (12)

The constant Xc is the comprehensive static strength. The
damage growth model from initiation to final fatigue failure
is thus given as :

dD

dN
=

[
C1Σ exp(−C2

D√
Σ

)

]3
+C3DΣ2

[
1+exp(

C5

3
(Σ−C4)

]
(13)

whereC1 andC2 are the material constants, C3 is the damage
propagation rate, C4 is a threshold below which there is no
initiation of fibre fracture. When the threshold C4 is crossed,
the initial fibre fracture occurs on the specimen, which causes
an exponential rapid decrease in strength and enables the fi-
nal fatigue failure of the material. As long as the failure in-
dex is below the threshold C4, the parameter C5 assumes a
large value to ensure a strongly negative exponential func-
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tion. When C4 is crossed, it assumes a large positive for ac-
celerated degradation of the material. The third power is used
for compressive stress as they show from experiments to have
considerably less effect than tensile stress (Sanchez-Sardi et
al., 2016). From (Van Paepegem & Degrieck, 2002), the pa-
rameters for a damage model for a fibre-reinforced composite
of which wind turbine blades are made up of with the stiffness
degradation algorithm is given in the Table 1

Table 1. Parameters for stiffness degradation model.

Parameter Value Unit
C1 0.002 (1/cycle)
C2 30 -
C3 4× 10−4 (1/cycle)
C4 0.85 -
C5 93 -
Xc 341.5 Mpa

4.3. Prediction of end of life

The events in time, the EOL and RUL are calculated as bounded
sets of possible values, which are calculated at a specified
time kp, with predicted states from the ZKF considering un-
certainties. Therefore, the prediction of �EOL(x(kp)|y(kp))
and �RUL(x(kp)|y(kp)) is dependent on the estimation of
bounded states for damage propagation using the stiffness
degradation method in (13). From the ZKF, the estimated
center of the zonotope is used for the prognosis procedure,
where it is propagated in future time till it reaches a pre-
defined threshold. Keeping in mind that future evolution of
states in this prognosis is subject to uncertainty, the uncer-
tainties are assumed unknown but bounded in a zonotope,
such that the resultant EOL and hence the RUL is bounded
in a set. Given {x(kp) := cxkp )}Ni=0, which is the estimated
center from the Kalman filter, an estimate of the propagated
damage from the stiffness degradation method is evaluated
until the strength of the UUT degrades to a predefined limit.
Hence, when TEOL(D(x(k)) = 1, which is dependent on
the strength degradation function D(x(k)). With states and
bounds evaluated from Algorithm 1, the prediction of the
EOL is summarised in Algorithm 2.

5. CASE STUDY

In this section, the monitored system under study, a wind tur-
bine of rated power 5MW is described. Subsequently, a con-
trol oriented model which captures key dynamics of the sys-
tem is then presented.

5.1. Wind turbine model

A wind turbine functions by utilizing energy from wind to
produce electric power. The aerodynamics of the wind tur-
bine is governed by the wind turbine’s blade by means of the

Algorithm 2 Prediction of EOL

1: Inputs {(x(kp), Rx(kp), Rw}
2: Output {EOL,EOL,EOL}
3:4: c(k)←− x(kp)
5: [kcen, kmin, kmax]←− kp
6: for i = k : N do
7: while TEOL(Dkmin(k)) = 0 do
8: Dcen(k)←− D(c(k)) . Propagation of damage

center
9: Dmin(k)←− D(c(k)− rs(Rx(k))) .

Propagation of damage lower bound
10: Dmax(k)←− D(c(k) + rs(Rx(k))) .

Propagation of damage upper bound
11: c(k + 1) = Ac(k) +Bu(k) . Propagation of

states
12: Rx(k + 1) = [ARx(k) RwEw] . Propagation

of uncertainty bounds
13: if TEOL(Dkcen) = 0
14: then kcen ←− kcen + 1
15: if TEOL(Dkmin) = 0
16: then kmin ←− kmin + 1
17: if TEOL(Dkmax) = 0
18: then kmax ←− kmax + 1
19: End while
20: EOL←− k
21: EOL←− kmin
22: EOL←− kmax
23: End for

blade pitch angle β, producing speed in the rotor with an asso-
ciated aerodynamic torque. This aerodynamic torque is then
transferred from the rotor to the generator through the drive
train to produce electric power at different operating condi-
tions by manipulating the blade pitch angle and the generator
torque. The wind turbine operates in three regions, dependent
on the magnitude of the wind speed to produce electric power
from captured wind. Considering rated wind speed Vrated as
12m/s, when wind speeds, vs(t) ≤ 12m/s, the pitch angle
is maintained at 0◦, allowing for maximum exposure of the
blades to wind for utmost energy available. Therefore below
Vrated, only the reference torque actuator is operational. For
vs(t) ≥ 12m/s but less than the cut-off wind speed, 25m/s,
the blade actuator varies accordingly to information of the
varying wind, such that the blade angle of attack is reduced
accounting for less and regulated energy from wind to ensure
rated power without overspeeding, protecting plant compo-
nents. In this region, both the torque (Tg) and the rotor speed
(wr) is kept at their respective rated values. At wind speeds
greater than the cut-off, the wind turbine ceases to operate.
Neglecting torsion angle and friction and with the assumption
that the low and high speed shaft are one complete model, the
non-linear model of the wind turbine is described as:
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ẇr =
1

J
(Ta −NgTg), (14a)

V̈t =
1

Mt
(Tr −KtVt −BtV̇t), (14b)

β̇ =
1

τp
(−β + βr), (14c)

Ṫg =
1

τg
(−Tg + Tgr ), (14d)

where wr is the rotor speed, Tg is the generator torque, β, the
pitch angle for capturing wind depending on wind speeds, Vt
and V̇t is the the nacelle fore-aft velocity from the tower os-
cillations. The model parameters J , Ng , Mt, Kt, Bt, τp and
τg are the rotor inertia, gear ratio, the tower fore-aft inertia,
the tower fore-aft rigidity, the mechanical damping, the time
constant of the pitch and the time constant of the generator,
respectively. The rotor and aerodynamic torques (Tr and Ta)
which are dependent on the power and thrust coefficients Cp
and Cq , both of which are functions of the pitch angle β and
blade tip speed λ are given as:

Ta =
1

2
ρπR3Cp(λ, β)

λ
v2s , (15a)

Tr =
1

2
ρπR2Cq(λ, β)v2s , (15b)

λ =
Rwr
vs

. (15c)

5.2. Linearized model

For purpose of the Kalman filter, a suitable linearized model
is presented at the following working points, v∗s = 14m/s,
w∗
r = 1.2571hz, T ∗

g = 43093.5Nm and β∗ = 4◦. With
parameters from (P.F. Odgaard & Kinnaert., 2009), the non-
linear model (14)-(15) can be estimated by a discrete linear
model with a sampling time of Ts as:

x(k + 1) = Ax(k) +Bu(k) + Ew(k), (16a)
y(k) = Cx(k). (16b)

such that the linearized time invariant system matrices using
the Euler discretization are given as follows:

A =


−0.0556 0 −0.0263 −0.008 −2.3× 106

0 1 0 0 0
0.815 −4.240 −0.2094 −0.1427 0

0 0 0 −50 0
0 0 0 0 −50

 ,

B =


0 0
0 0
0 0
0 50
50 0

 ,

E =
[
0.0263 0 0.1871 0 0

]T
,

C =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 .
6. RESULTS

Simulations are performed considering wind speeds, 12m/s ≥
vs(t)m/s ≤ 25m/s; at the region of rated power. The ref-
erence pitch angle βr, is kept constant and hence the con-
trol inputs u(t) = [Tgr , βr] are kept constant throughout the
simulation with a corresponding wind speed of 14m/s ≥
vrated, such that only the states vary under the presence of un-
known uncertainties. To evaluate the efficacy of the proposed
scheme, it is compared with estimation from the generic Kalman
filter, where states in both cases are estimated for purposes
of damage propagation using the stiffness degradation model
(13). For comparison purposes, the predefined bounds are
chosen based on the statistical properties of the Kalman filter,
such that symmetric interval bounds are considered, wi(t) ∈
R ⊆ [−3σwi , 3σwi ] and vi(t) ∈ R ⊆ [−3σvi , 3σvi ],∀i =
[1, 3].i ∈ N, where σwi and σvi are standard deviations from
the Kalman filter. These bounds are used for description of
the zonotopic sets and random selection of uncertainty values
for simulations.

The blade root moment is chosen as the the stress function φ
for the damage model (13), which is modelled by (Sanchez-
Sardi et al., 2016), as a first order time varying linear function
of the generated power, P = ngTgwr, and wind speed vs.
The stress input is therefore taken as:

Mb(k) = a1P (k) + a2vs(k) + a3 (17)

with parameters, a1 = 757.52, a2 = −248.83 and a3 =
6468. The EOL of the blade composite material is chosen as
0.8, which signifies the number of cycles of stress inputs until
an 80% reduction in the blade material’s strength as shown in
Figure 4.

Performance of the estimation is compared at different con-
ditions of varied noise magnified by factors (N ) of 1,10,100
and 500. The comparison criterion for estimation is evalu-
ated using the percent root mean square error. From Tables 3
and 4 on the robustness of the Kalman filters to scaled noise
values, it is could be realised that performance as expected
deteriorates when the magnitude of noise is increased but the
ZKF shows better performance under these conditions due its
lesser conservativeness as compared to the generic Kalman
filter. The relative accuracy (RA) as proposed in (A Saxena
& Saha ., 2009) is used as a performance metric for the RUL.

From the Tables 3 and 4, on the values of the RA, the ZKF
proves to be more accurate and precise in calculating the RUL
under scaled noise values. Simulation is run for 3000 secs

6



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4. Stiffness degradation to a predefined threshold.

with sampled estimated states used every 60s for the pre-
diction of the EOL and thus the RUL. Such that predicted
states which are inputs to the degradation function is propa-
gated with uncertainties in the prognosis procedure as shown
in Figure 7, where the bounded estimated power propagation
failure is shown. The average of these EOL estimates is used
together with its bounds for evaluating a bounded RUL in
Figure 8.

Table 2. Performance of ZKF

N PRMSEwr PRMSEβ PRMSETg RA

1 1.15 0.32 0.97 98.7
10 1.18 0.31 0.96 98.5

100 1.35 1.74 2.29 98.2
500 2.05 3.59 4.23 97.3

Table 3. Performance of KF

N PRMSEwr PRMSEβ PRMSETg RA

1 0.41 0.21 0.75 98.9
10 1.3 0.42 1.31 98.2

100 3.92 18.53 36.7 95.1
500 13.65 55.89 137 62.4

7. CONCLUSIONS

It is important to take into account the effects of uncertain-
ties when predicting the EOL and thus the RUL of a UUT,
due to the critical nature of these information for operational
decisions. Therefore, in this paper a zonotopic Kalman fil-
ter for the purpose of estimating states for prognosis of a
wind turbine blade is designed. Uncertainties from process
disturbance and noise are assumed unknown but bounded in
zonotopic sets from predefined symmetric bounds. These sets
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Figure 5. ZKF estimation of states with bounds.
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Figure 6. KF estimation of states with bounds.

enables a bounded estimation of states by means of the recur-
sive Kalman filter process using a set-based method, with the
center and bounds of these sets subsequently used as inputs
to the nonlinear function of a stiffness degradation model to
evaluate a bounded EOL and RUL of of wind turbine blades.
The process of estimating the states and therefore the EOL
and RUL is compared with a prognosis procedure using the
generic Kalman filter under the same conditions of distur-
bance and noise from the statistical properties of the stan-
dard Kalman filter. Observations from this study showed a
similar performance in prediction of damage under nominal
conditions, but the zonotopic Kalman filter showed more ac-
curacy when noise levels were increased and therefore an ac-
curacy in estimation of states. The resultant bounded RUL
will therefore aid in enabling optimal operational decisions
on the health of wind turbine blades, for example to consider
the lower bound of the RUL when conservative decision on
the blade’s health are to be taken.
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Figure 7. Propagated power in one sample of prognosis.
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Figure 8. Bounded RUL using ZKF.
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