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ABSTRACT

One focus of the Industry 4.0 paradigm is to enable Smart
Factories with improved productivity and reduced down-times.
In this context, Predictive Maintenance (PM) is a proactive
approach to industrial services that optimises maintenance ac-
tions based on the system’s health. In order to monitor and
understand the system’s status, effective PM requires dedi-
cated tools capable of managing a large amount of data and
discern the right data set required for analysis. As an aid for
engineers, the software called MADe can be used. MADe
is a model-based platform that can optimise maintenance ac-
tions following the information provided by the software it-
self, concerning sensor selection and functional models. In
particular, among many others, MADe incorporates function-
alities for incipient fault detection, which may be extremely
useful when monitoring systems comprising fatigue or aging
sensitive components. In fact, early fault detection enables
scheduling of maintenance that will minimise the impact on
production outputs. Owing to these considerations, this paper
describes a technique for detection of incipient faults compo-
nents affected by fatigue using an Equivalent Damage Index
(EDI). This technique is tested on data taken from the litera-
ture in order to verify its potentials.

Keywords: Anomaly Detection, Incipient Fault, Residual Life
Estimation, Maintenance-Aware Engineering tool

1. INTRODUCTION

The goals of the Industry 4.0 paradigm are to improve the
flexibility, reliability, quality, and safety of production plants,
while minimizing inefficiencies due, for instance, to machine
downtime (McKinsey, 2015). Therefore, an ever-increasing
importance is devoted to the selection of maintenance actions.
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In this context, Predictive Maintenance (PM) may be defined
as a strategy based on monitoring the health condition of sys-
tems and components, in order to take appropriate action in
an improved timing. The effectiveness of this type of main-
tenance depends on when a change in the behaviour of the
system is detected, since early detection allows the schedul-
ing of actions that minimises the impact on the production
output. PM requires an in-depth system analysis for identify-
ing possible failures and then select/position a sensor set, with
consequent considerable expenses in terms of personnel train-
ing during both the plant design stage and its operating life-
time. Nonetheless, the reduction in downtime expenses and
the possibility of managing the related failures in an improved
manner makes this technique suitable for an increasing num-
ber of sectors and production areas. A possible PM concep-
tual workflow is depicted in Figure 1 and includes, in the pre-
liminary phase, a functional model that provide insight about
all the possible failures (thus, allowing an improved sensor
positioning) and, in the operational phase, the collection of
sensor data (and subsequent data) processing to perform sys-
tem diagnosis and prognosis in order to study the best main-
tenance strategy. In particular, during the plant design (or re-
design) phase a functional system model can be used to gen-
erate a failure diagram, namely a diagram for each component
clearly summarizing all the main failure possibly involved in
the component. As for this latter task, the Software MADe -
Maintenance Aware Design environment, developed by PHM
Technology, is perfectly suited for the purpose (Lindsey, Al-
imardani, & Gallo, 2020). This tool indeed provides several
modules that allow users to create functional models, identify
critical components, perform risk assessment, compare dif-
ferent maintenance strategies and carry out a sensor analysis
to ensure sufficient coverage of failures. Every item engi-
neered to provide a function, can also potentially fail, so it
is necessary to assign a failure diagram for every component
and sub-system. A failure diagram defines any fault that can
lead to functional failure outlining possible causes and failure
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Figure 1. PM possible workflow in the different stages of a plant life cycle (i.e. design stage or operating plant)(Jardine et al.,
2006)

mechanisms. A very simple example concerning a compo-
nent possibly subjected to fatigue is shown in Figure 2. After
a model has been created, MADe automatically provides a
sensor position analysis driven by the model itself. The tool
also include a customized library that contains different types
of sensors, each characterized by technical features as well
as dimensional and economical characteristics. The technical
characteristics of a sensor are linked to the Probability of De-
tection of the true positives with respect to all the anomalies,
and to the specificity, that is the percentage of true positives
detected with respect to all the warnings. A sensor can be
applied on a system variable (e.g. measuring angular veloc-
ity) or on a failure symptom (e.g. monitoring vibration on
a rotating component). The software produces all the logi-
cal diagnostic rules to identify a fault based on the available
sensor set. Finally, MADe provides a specific tool that al-
lows the users to compare different maintenance strategies,
such as scheduled maintenance or Condition Based Mainte-
nance, through a Maintenance Cost Estimation. Within all
the general-purpose MADe capabilities, whose in-depth de-
scription can be found in e.g. (Hess, Stecki, & Clark, 2008),
this paper focuses on the detection of incipient fault for com-
ponents subject to fatigue through the identification of the so-
called Equivalent Damage Index.

2. BASIC BACKGROUND

As known, fatigue is a destructive process that develops in all
materials subject to time-dependent states of tension, gener-
ally simplified as the sum of various cyclic states of stress.
Fatigue phenomena, causing approximately 90% of all me-
chanical service failures (Campbell, 2008) are generally dis-
tinguished in: i) High Cycle Fatigue (HCF), when the defor-
mation is small enough to allow the description of the phe-
nomenon in purely elastic terms, usually is valid for more
than 1000 cycles; ii) Low Cycle Fatigue (LCF), when the
plastic component of the deformation in certain critical ar-
eas of the material represents a significant proportion of the
total one. As for HCF, it is a long term failure that devel-
ops through three phases: i) Crack Nucleation, namely the
longest phase whose duration depends on geometrical factors
(e.g. roughness or notches) and physical factors (e.g. surface
hardness); ii) Crack Propagation, when the crack grows due
to edge sharpening and, thus, localised tension increase; iii)
Final Failure, when a brittle fracture occurs because the re-
sisting section is too small to support the applied load. As

Figure 2. Example of failure diagram for contact fatigue
mechanism

for the second phase, the crack proceeds and stops, depend-
ing on the state of tension, producing the typical beach marks
on the breaking surface. In practice, it is possible to identify
the symptoms of this fault because the section is reduced so
eventual vibration data slightly changes. The appearance of
the fracture surface appears very different from a classic brit-
tle fracture by presenting two different areas as shown in Fig-
ure 3: the first is a smooth area characterized by beach marks
representing the propagation of the crack in the second phase;
the second area shows a rough and bright appearance due to
the brittle fracture in the third phase. As previously recalled,
this paper deals with a method, based on Residual Life Esti-
mation, which consists of an analysis of the complete history
of the component subject to HCF to predict failure.
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Figure 3. Schematic fatigue fracture surface (Perez, 2016)

3. DATA PROCESSING

Let one suppose that a time history of experimental measure-
ments concerning a component that may fail due to HCF are
available (data collection phase in Figure 1. In this phase,
Data Processing is essential to create any diagnostic tool. Data
Processing algorithms manipulate a batch of data to reduce
the complexity of information and organize a data-set for the
diagnostic tool. In particular, two data processing methods
have been tested for incipient fault detection namely STatis-
tical Analog Monitor (STAM) (Decker, 1979) and Rainflow
method (Matsuichi & Endo, 1968). The latter has been fi-
nally chosen as it is best suited for fatigue analysis and pro-
vides quality resolutions. In practice, the Rainflow method
(Matsuichi & Endo, 1968), also known as pagoda roof method,
is a counting algorithm used for fatigue analysis. This data
processing technique consists in filtering the signal by obtain-
ing a series of periodic waves characterized by the number of
cycles, the average and the wave amplitude. In fatigue anal-
ysis, these cycles represent hysteresis cycles of the material.
Starting from the hypothesis of a significant random signal,
which is a portion of the signal that can represent the behav-
ior of the component, the algorithm selects peaks and valleys
that will represent the extremes of the half cycles performed
by the component; then it counts all the complete cycles, or
eventually the half cycles, generating a list similar to the ex-
ample shown in the Table 1 from raw signal data presented
in Figure 4(a). Usually, for the real signals, the mean range
and amplitude range are divided into regions to assimilate all
the cycles within the regions. This procedure allows to build
a histogram as in Figure 5 and simplifies the further step by
standardising the cycles in given regions (Nieslony, 2010).
The Rainflow method is an approach based on cycles which
provides quality resolutions, even on very small amplitude os-
cillations but loses any information on constant stress states.
For this reason it is widely used for fatigue analysis and for
vibration sensors where the necessary information concerns
the cycles.

Figure 4. (a) Example of raw data for Rainflow method (b) Il-
lustration of the rainflow counting technique.(Lee & Tjhung,
2012)

Table 1. Example of simple Rainflow processed data (Lee &
Tjhung, 2012)

amplitude mean number of cycles
9 -0.5 1
4 -1 1
7 -0.5 1
3 0.5 1

4. RESIDUAL LIFE ESTIMATION

Residual Life Estimation is an analysis technique that allows
to forecast a failure in a component subject to fatigue and it
aims at building a Cumulative Damage Index (CDI), namely
a parameter that describes the usage of the component. The
CDI may vary between 0 and 1, where 0 indicates a new com-
ponent and 1 should represent the failure occurrence. This
method is typically used with data from load sensors, although
more common and simpler sensors, like vibration sensor, can
be used to make an indirect measurement and then correlate
the measurement with the corresponding load. In any case,
the method is powerful but requires the knowledge of several
details about the component, hence being difficult to use for
general purpose on-field monitoring.
The procedure to develop an estimation is composed of sev-
eral steps. First of all, it is necessary to characterize the com-
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Figure 5. Example of histogram for Rainflow method

ponent in order to build a Wöhler curve, namely a logarithmic
curve that identifies three distinct zones as shown in Figure
6. The first zone, almost flat, concerns LCF that occurs with
large plastic deformations, which should be avoided during
the design phase; the third zone, also almost flat, concerns
infinite fatigue life design; the second area, the one of inter-
est for this discussion, concerns HCF. The Wöhler curve for a
generic component can be built, and then correctly employed,
by knowing:

• Employed Material. The values of tensile, σr, and fa-
tigue, σD, strengths are required.

• Type of stress and configuration. It is necessary to
know the type of stress involved and the constrain con-
figuration in order to correlate deformation signal and ac-
tual load. Also, the knowledge about the type of load al-
lows to use correlation between actual stress and testing
load.

• Additional component information. In a generic com-
ponent, there are three parameters that reduce the fatigue
strength, sigmaD of the material, i.e. notch factor, size
factor, surface factor. The following equations holds:

σ′
D =

KS KD

KF
σD (1)

where:
- σ′

D = corrected fatigue strength (σ′
D < σD);

- KF = Notch Factor;
- KD = Size Factor;
- KS = Surface Factor.
The values of σr and σ′

D can be used to retrieve the Wöhler
curve of the component, as shown in Figure 6. Subsequently,
after the mentioned data processing and (possibly) a defor-
mation signal being converted in stress data, it is necessary to
compute an equivalent stress amplitude, as follows:

σaeq =
σa

(1− σm

σr
)

(2)

Figure 6. Wöhler curve

where:
- σaeq = equivalent stress amplitude;
- σa = stress amplitude;
- σm = mean stress;
- σr = tensile strength.
Finally, the Palmgren-Miner Rule (Juvinall & Marshek, 1999)
is used to sum up the effects of all periodic signal packets
counted by the Rainflow method, in order to finally compute
the CDI as follows:

CDI =

k∑
i=1

ni
Ni

(3)

where:
- k = No. of batches;
- ni = No. of cycles of the ith batch;
- N= No. of cycles to failure of the ith batch according to the
Wöhler curve.
As it may be evident, given the large amount of information
required, it is rather difficult to retrieve a reliable CDI value
without spending a lot of resources. Therefore, a comparative
method may be preferable, namely the Incipient fault Identi-
fication technique described hereafter, that analyzes different
behaviors of the same component avoiding all the above men-
tioned hypotheses.

5. INCIPIENT FAULT IDENTIFICATION

This section describes a technique for the detection of incip-
ient fault in fatigue sensitive components. A feature of the
signal called Equivalent Damage Index (EDI) is used to com-
pare different working behaviours to identify incipient fault
or anomaly. This method is very similar to the previous one
but, being focused on the comparison between different duty
cycles, it does not need all the information and assumptions
foreseen for the Residual Life Estimation method.
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5.1. Data Set

The method developed has been applied on a test rig in which
the fatigue behaviour of ball bearings is analyzed. This data
set has been generated by the IMS center for Intelligent Main-
tenance Systems (Qiu, Lee, Lin, & Yu, 2006) and concerns
bearing run-to-failure experiments performed under normal
load conditions on a specially designed test rig. As shown in
Figure 7, the test rig consists of four bearings, each equipped
with 2 High Sensitivity accelerometers, placed on a shaft moved
at a constant speed of 2000 RPM by an AC motor coupled by
belt. A radial load of 6000 lbs is applied to the shaft by the
two central bearings with a spring mechanism. Data acquisi-
tion is performed by a DAQCard-6062E with 4 channels, one
for each bearing, using a sampling rate of 20 kHz for 20480
points every 10 minutes until failure. The data-sets are com-
posed of 984 batches of 1 second every 10 minutes allowing
to record the entire life of the bearings that lasts around a
week.

5.2. Build-up of Equivalent Damage Index

The process to be implemented to obtain an Equivalent Dam-
age Index starts from the use of the Rainflow method. Then it
is required to build a logarithmic curve with the same concept
as the Wöhler curve whose characteristic points are r instead
of σr, and d instead of σ′

D. Numerical values for r and d
have been empirically chosen so as to allow the analysis to be
performed with satisfactory results. Nonetheless, the depen-
dence of the final outcome on such parameters is included in
paragraph 5.3; these are the values chosen for r and d respec-
tively in terms of amplitude and number of cycles.:

r =
{
100; 103

}
d =

{
10; 106

}
Similarly to Eq. 2, the equivalent amplitude, aeq , for each set
of data obtained via the Rainflow method has been found as
follows:

aeq =
a

1− m
ra

(4)

Figure 7. Bearing test rig and sensor positioning (Qiu et al.,
2006)

where:
- aeq = equivalent amplitude;
- a = amplitude of the periodic wave;
- m = mean value of the periodic wave;
- ra = amplitude value of point r, set to 10.
By using a logarithmic plot (similarly to the Wöhler curve)
and the equivalent amplitude value, aeq , the maximum num-
ber of cycles Ni at failure can be found and employed with-
inthe Palmgren-Miner rule (as in Eq. 3. Finally, the computed
EDI value is normalized on the first 100 batches, in order to
obtain comparable and noise-free results.

5.3. Results

The proposed results are obtained by analysing the x-axis of
the first channel, i.e. the one referring to a faulty bearing. The
outcome will be compared with the available results through
a simple collection of maximum values for each batch. The
calculation time needed to carry out the EDI analysis is 33%
longer but it is still reasonable considering that 984 batches,
corresponding to 7 days, were analyzed in just over two min-
utes. The graphs containing the results do not show the first
400 batches to zoom in on the incipient fault. The first com-
parison concerns the first bearing, the faulty one. The data
analysed by the maximum value method is shown in Figure
8, where it is possible to notice the incipient fault barely start-
ing from batch 700 and the failure starting around batch 900.
As for the EDI method, results are shown in Figure 9, where
three behaviors are clearly highlighted:

• Normal behavior characterized by EDI close to 1;
• Incipient fault around batch 533 the EDI grows in two

batches by 50% and reaches values around 20 from batch
700;

• Failure from batch 900 in this phase the EDI reaches 1900.

Another important detail is described in Figure 10, where it
can be noted in channel four, referring to a healthy bearing,
the effect of the incipient fault found in channel one. This can
be useful, since the anomaly detected in channel four can val-
idate the measurements made by the sensor placed on channel
one, hence avoiding false positives and greatly improving the

Figure 8. Plot of maximum value for first channel
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Figure 9. Plot of EDI of first channel

Figure 10. Close-up to effect of incipient fault on healthy
channel

reliability of the sensors.
Since this method is comparative, some parameters have been
chosen arbitrarily. Therefore, the sensitivity of the method is
analyzed with respect to the following parameters:

• value ra used in Eq. 4;
• amplitude values of r and d in the EDI-related Wöhler

Curve.

As for the sensitivity analysis on ra, values 10, 50, 100 have
tested. Table 2 shows the results concerning the percentage
of difference of the EDI values: totals and subtotals in the In-
cipient fault and Failure sectors. Results indicate almost no
sensitivity in the incipient fault section and higher sensitivity
in the failure section, while maintaining an acceptable value.
The second sensitivity analysis regards the amplitude of value
r. This analysis highlights a strong influence of the r value on
the EDI calculation with a percentage difference around 50%,
However, as shown in Figure 11, the use of one of the three
parameters does not affect the effectiveness of the method al-

Table 2. Sensitivity of the method to the parameter ra;
mean percentage difference

ra value total incipient failure
50 0.16 1.26 0.17
100 0.19 1.41 0.20

Figure 11. Sensitivity of the method to the parameter r

Figure 12. Sensitivity of the method to the parameter d

lowing to detect the incipient fault around the batch 533. It is
important to note that reducing the r value increases the EDI
value at the expense of increased noise.
The third sensitivity analysis regards the amplitude value of
d; similarly to the previous analysis, the EDI value highly de-
pends on the d parameter as shown in Figure 12. It can be
seen that, even in this case, increasing the d parameter too
much leads to an excessive increase in noise.

6. CONCLUSION

Incipient fault identification has been tested by comparing re-
sults produced by an ”Equivalent Damage Index (EDI)” with
the ones produced by a second statistical method, i.e. the
highest value, confirming that an EDI-based investigation al-
lows to identify an incipient fault well before the mentioned
statistical feature. In addition, the method has proved to be
negligibly sensitive, at least in terms of functionality, to the
parameters set a priori. Despite its functionality is actually
maintained, there are dependencies of the EDI value and the
associated noise with respect to the parameters that define the
logarithmic curve. By employing an EDI and comparing sig-
nals coming from parallel sensors in systems comprising re-
dundant components, it is possible to validate the fault sig-
nal, to check for the presence of repercussions, and thus to
increase the sensor reliability. This method, included in the
MADe tool, could be tested on other data sets to further vali-
date its effectiveness.
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