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ABSTRACT

Electrical faults such as stator turns fault and broken rotor
bars are among the frequently occurring failure modes in in-
duction motors. This article presents a novel deep learning-
based approach for the rapid diagnosis of these electrical faults
within a short time window of 200 milliseconds. The ex-
tended Park’s vector, calculated using three-phase supply cur-
rents, is chosen as the medium for fault detection. An unsu-
pervised convolutional autoencoder is designed to detect fea-
tures distinguishing healthy and faulty conditions. The de-
veloped features are supplied to a support vector machine to
classify the fault conditions. The proposed approach is val-
idated in a laboratory setup consisting of an inverter-fed in-
duction motor operating under time-varying load and speed
conditions with an accuracy > 95%.

1. INTRODUCTION

Induction motors (IMs) are ubiquitous in industrial applica-
tions, accounting to 67% of total industrial power consump-
tion (Boldea & Nasar, 2002). Although these IMs are robust
and reliable, they are prone to failures under prolonged opera-
tion due to wear, improper ventilation, excessive loading and
environmental conditions (Bonnett, 2000). Especially in the
case of inverter-fed IMs, the electrical faults such as the stator
turns fault (STF) and broken rotor bars fault (BRB) contribute
to > 40% of the frequent failures (Yeh et al., 2008). Thermal
stresses in the IMs caused due to overloading or poor ven-
tilation are common reasons for these failures. An electrical
fault such as STF can rapidly progress into a hazardous catas-
trophic failure besides causing loss of productivity. Therefore
these electrical faults are the focus of this article.
Fault diagnosis of IMs has been an active area of research
for the past few decades, using vibrations (Tsypkin, 2017),
currents (Nandi, Toliyat, & Xiaodong, 2005), acoustic sig-
nals (Glowacz, 2019) and stray flux measurements (Frosini,
Harlisca, & Szabo, 2015). Of these approaches, the motor
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current signature analysis (MCSA) has been proven success-
ful both in academia and in industrial applications (Thomson
& Fenger, 2003). While single-line current MCSA was ca-
pable of providing reliable fault detection on supply-fed IMs,
they proved to be inadequate in the inverter-fed IMs operating
under closed-loop control (Bellini, Filippetti, Franceschini, &
Tassoni, 2000). The extended Park’s vector modulus (EPVM)
was proven to be a reliable medium for fault detection in these
machines (Cruz & Cardoso, 2001). In the case of machines
operating under steady-state, the fast Fourier transform (FFT)
for the spectral analysis of single-line currents or EPVM is re-
liable to identify the characteristic fault frequencies for detec-
tion of the IM faults. However, fault diagnosis becomes chal-
lenging in time-varying speed and load conditions. While this
problem is typically addressed using time-frequency trans-
forms such as short-time Fourier transform (STFT) (Burriel-
Valencia, Puche-Panadero, Martinez-Roman, Sapena-Bano,
& Pineda-Sanchez, 2017), wavelet transform (WT) (Ameid,
Menacer, Talhaoui, & Azzoug, 2018) and Wigner-Ville dis-
tributions (Climente-Alarcon, Antonino-Daviu, Riera-Guasp,
& Vlcek, 2014), there remain two important challenges; 1)
rarely are these methods tested under multiple fault condi-
tions. This is important as characteristic fault frequencies that
are close to each other are difficult to distinguish as the time-
frequency approaches can only provide either frequency or
time resolution and 2) they involve significant pre-processing
of the measured signals. To overcome these challenges and
to perform a rapid diagnosis within a short time window such
that the diagnosis is insensitive to non-stationarity, a deep
learning-based diagnostics approach is proposed in this ar-
ticle. A very short time window of 200 ms is sufficient to per-
form the diagnosis, and once trained, the diagnostics method
is directly scalable to a fleet of IMs. Such a short time window
circumvents the problems associated with signal processing
in transient conditions. Furthermore, based on training, the
convolutional autoencoder (CAE) can detect features beyond
the classical characteristic frequencies and thus, can be more
robust in detecting multiple known fault conditions in tran-
sient operations.
The remainder of the paper is organized as follows; The pro-
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posed diagnostics approach is detailed in Section 2. A de-
scription of the laboratory tests used for validation of the pro-
posed approach is detailed in Section 3 along with a discus-
sion on the results. Finally, the paper is concluded in Section
4.

2. DIAGNOSTICS APPROACH

An overview of the proposed diagnostics approach is shown
in Figure 1. Three channel (one channel per phase) current
signals are drawn from datasets containing data from vari-
ous motor operating conditions. Each three channel signal is
transformed using the extended park vector modulus, where
the output is a single channel signal - the signal that goes into
the CAE model. The single channel signal is then normal-
ized. We will define this as the model signal. From here,
the CAE estimates a set of features from the model signal.
During training of the CAE, the model signal is used as both
model input and output, as will be explained later. To verify
the relevance of the features to any operating condition, the
features are fed into a supervised classifier. During training,
the condition labels are drawn from the datasets and used as
classifier targets. The classifier predicts the condition based
on the features from the CAE.

Figure 1. Method overview

2.1. EPVM & Normalization

A healthy IM is a symmetric and balanced machine wherein
all the three phase currents are identical, differing only by
the phase angle. However, electrical faults in IM produce
a variation in the electrical circuit, while mechanical faults
such as bearing fault produce a variation in the airgap. All of
these faults result in periodic disturbances in the current that
varies with the supply frequency fs, rotor speed fr and load
on the system. The MCSA focuses on spectral evaluation of
single line currents to detect these periodic disturbances. The
EPVM on the other hand, utilizes all the three phase currents
to detect these faults.
As part of the initial processing step, the EPVM is calculated
using the direct and quadrature axis currents (id, iq) given by
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where ~iabc = [ia, ib, ic] are the three phase stator currents of
the motor and
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and the EPVM jiP j is given by

jiP j =
q
(id)2 + (iq)2 (3)

the EPVM is a DC offset in the case of healthy machine.
However, it holds the characteristic fault frequencies in the
case of fault conditions. The main advantage of using EPVM
is that it automatically removes the supply frequency which
is the dominant frequency in the current spectrum, thus mak-
ing distinctive features easily differentiable (Cardoso, Cruz,
& Fonseca, 1999).

The EPVM transformation is followed by a normalization
step where the signal is divided by its infinity norm, defined
as

jjxjj1 = max (jx1j, jx2j, ..., jxnj) (4)

2.2. Convolutional Autoencoder

An autoencoder is a neural network designed to replicate an
input using a set of latent representations. A common autoen-
coder structure resembles an hourglass, with the latent rep-
resentations in the middle and a network structure mirrored
about the middle. The latent representations are usually a
vector of scalars. During training, the loss function is a met-
ric of difference between the input and the reconstruction. In
practice, the training target is the same as the input.
The research presented in this paper aims to adapt the convo-
lutional properties of a convolutional neural network into an
autoencoder, hence convolutional autoencoder (Mao, Shen,
& Yang, 2016). Therefore, the outermost layers of the model
are convolutional layers, as seen in Figure 1.
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The input to the encoder part is passed through four consec-
utive convolutional blocks. The input to each convolutional
block is a convolutional layer. Convolutional layers convolve
a set of trainable kernels across the input to produce a filtered
output. The convolution operation has a fixed stride, so the
output dimensionality is lower than the input dimensional-
ity. Traditionally, pooling operations are used for this dimen-
sionality reduction, as pooling also acts as a receptive field.
However, depending on the pooling technique, one must keep
track of the pooling indices when upsampling the signal again
in the decoder part. This makes it impossible to use the de-
coder on its own when using pooling techniques. Fortunately,
using convolution strides instead of pooling operations has
shown to be sufficient (Springenberg, Dosovitskiy, Brox, &
Riedmiller, 2014). The output from each convolutional layer
is sent through a rectified linear unit (ReLU) activation func-
tion, to force a positive linear output. Finally, the output is
centered and re-scaled through a batch normalization opera-
tion (Ioffe & Szegedy, 2015).

The outputs from the fourth convolutional layer are concate-
nated into a single vector through an operation normally re-
ferred to as flattening. This vector is connected to two consec-
utive densely connected layers. These layers are the founda-
tion of traditional neural networks as they consists of densely
connected neurons, meaning that each neuron in the layer has
connections to all the activations of the previous layer. The
output from each dense layer is activated by a sigmoid func-
tion. This activation introduces additional non-linearities into
the network.

The latent encodings are represented by a dense layer, where
the amount of neurons corresponds to the amount of features.
The activation of this layer is linear, so the output is just the
value of each neuron output.

The decoder part has similar structure as the encoder part, ex-
cept it is mirrored. The convolutional layers are replaced by
transposed convolutional layers, also known as deconvolution
layers, with the same stride size as their encoder counterparts.
Finally, the output of the decoder is the reconstructed signal,
either reconstructed from an input signal using the entire au-
toencoder model, or reconstructed from a set of features using
only the decoder part. Table 1 shows the complete structure
of the autoencoder.

The outermost convolutional and deconvolutional layers have
a stride of 4, while the remaining ones have a stride of 5 in
order to reduce the dimensions. Dimensionality after the four
convolutional layers is therefore 1000/(4�53) = 2, and vice-
versa after the deconvolutional layers. The reasoning behind
this drastic reduction in dimensionality is to capture the entire
signal in the models receptive field.

Table 1. Model composition

Block Layer Output Dimension
Input - [1000]

Conv A1 Conv [100, 250]
ReLU [100, 250]

BatchNorm [100, 250]
Conv A2 Conv [100, 50]

ReLU [100, 50]
BatchNorm [100, 50]

Conv A3 Conv [100, 10]
ReLU [100, 10]

BatchNorm [100, 10]
Conv A4 Conv [100, 2]

ReLU [100, 2]
BatchNorm [100, 2]

Flatten Flatten [200]
Dense A1 Dense [100]

Sigmoid [100]
Dense A2 Dense [50]

Sigmoid [50]
Encodings Dense [5]

Linear [5]
Dense B2 Dense [50]

Sigmoid [50]
Dense B1 Dense [100]

Sigmoid [100]
Reshape Dense [200]

Reshape [100, 2]
ConvTransp B4 ConvTransp [100, 10]

ReLU [100, 10]
BatchNorm [100, 10]

ConvTransp B3 ConvTransp [100, 50]
ReLU [100, 50]

BatchNorm [100, 50]
ConvTransp B2 ConvTransp [100, 250]

ReLU [100, 250]
BatchNorm [100, 250]

ConvTransp B1 ConvTransp [1, 1000]
Output - [1000]

The CAE has two modes: training and evaluation. During
training, the pre-processed current signals from the previous
section is fed to the network as both input and target (stippled
arrow in Figure 1). The training objective is to minimize the
mean squared reconstruction error

MSE =
1

N

N�1X
n=0

(f(xn)� xn)
2 (5)

where f(xn) is the neural network transformation of input xn

which is a vector containing the preprocessed current signal
segment n. The optimization algorithm used is called Adam
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