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ABSTRACT

The insulated gate bipolar transformer (IGBT) has been
widely used in power electrical system such as wind power
converter and drive converter. However, the high load and
capricious working environment make IGBT become the
most vulnerable component in the electrical system. In this
paper, a method based on probabilistic forecasting with
auto-regressive recurrent networks (DeepAR) is proposed to
predict the remaining useful life (RUL) of IGBT. Firstly, the
transient data of the collector-emitter voltage signal are
acquired when IGBT is turned off. Then, the different
characteristics are extracted from transient data and the
features that can represent the health state of IGBT best are
chosen as the input of the DeepAR model to predict the
remaining life of IGBT. Experiment results show that the
log-log ratio of transient data can be an accurate precursor
to predict RUL, and compared with other similar series
predict models such as Auto-Regressive Integrated Moving
Average (ARIMA) and Simple Exponential Smoothing
(SES), DeepAR can get higher accuracy.

1. INTRODUCTION

The insulated gate bipolar transformer (IGBT) of which
technology has developed rapidly in recent decades
becomes an ideal switching device in the field of power
electronics. Nowadays, the latest generation of IGBT not
only has the advantages of high input impedance, low
control power, simple driving circuit, high switching speed
and low switching loss that are the superiorities of Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET)
but also has the advantages of high current density, low
saturation voltage and strong current processing ability that
are the distinguishing features of the bipolar power
transistor. In application scenarios of high voltage, high
current, and high frequency, IGBT has incomparable
performance with other power devices. Therefore, wind
power converters in wind energy conversion and drive
converters in electric vehicles mainly use IGBT as power
devices.

Figure 1.The failure rate of different electrical
components

However, IGBT working under high voltage and high
current still have the problems of large internal resistance,
large conduction consumption, and poor anti-interference
and anti-shock capabilities. IGBT is likely to over-heat and
over-voltage during operation. The statistical analysis of the
reliability of industrial electronic devices shows that the
power devices are the components that are most likely to
fail in the electronic and electrical system (Yang, Bryant,
Mawby, Xiang, Ran, & Tavner, 2011). The failure of IGBT
will lead to the paralysis of the entire electrical system, the
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chain reaction of which may destroy the system and other
related components. In many cases, the entire equipment
will be shut down. Later-site cleaning and equipment
maintenance may cost a lot of manpower and material
resources, resulting in huge economic losses. Therefore, it is
urgent to build a reliable IGBT diagnosis system that uses
the intelligent diagnosis technology to predict the life of
IGBT and to aid maintenance.

More and more researchers explore the failure mechanism
of IGBT and propose various methods to predict RUL. At
present, approaches mainly used to predict RUL of IGBT
can be classified into three categories: the finite element
analysis (FEA) approaches based on the energy method, the
analytic approaches based on empirical Coffin-Manson
formula, and the data-driven approaches based on aging
precursor parameters. FEA approaches use the finite
element model to analyze the damage energy which is
generated by stress and strain on each temperature cycle and
will gradually accumulate and finally bring about material
fatigue(Basaran & Chandaroy, 1997; Plekhov, Saintier,
Palin-Luc, Uvarov, & Naimark, 2007). Thébaud, Woirgard,
Zardini, Azzopardi, Briat, and Vinassa (2003) established a
non-linear finite element simulation model to simulate the
dissipated energy in solder to predict the failure of IGBT
based on the energy theory that this part of the energy will
act on the interior of the material and cause fatigue damage
in each temperature cycle. Astigarraga, Ibanez, Galarza,
Echeverria, Unanue, Baraldi, and Zio (2016) and Ali,
Dusmez, and Akin (2016) used IGBT modules of different
manufacturers and models for aging life test. They found
that under the same test conditions, the final failure modes
of different modules were different and the changing trends
of gate current, gate voltage, and collector voltage of
different modules varied from module to module. These
results indicate that when the internal parameters of IGBT
are different, the actual aging proceedings and results will
be significantly different. Therefore, FEA approaches can
perform a conductive role in predicting RUL of IGBT
module, but the result of FEA may be imprecise in practical
conditions where the temperature and current in IGBT are
variable and parameters of structural dimension and material
are difficult to obtain accurately. The analytic approaches
predict RUL based on coffin-Manson fatigue theory that the
number of temperature aging cycles of materials is
exponentially related to the junction temperature swing ΔTj.
Therefore, researchers conduct many aging tests under
different temperature swings to find the analytical formula
between RUL and temperature to predict the life of IGBT.
Schilling, Schäfer, Mainka, Thoben, and Sauerland (2012)
used the multiple aging data obtained under different
conditions to find out the relationship between the aging
times and the swing of temperature according to the
traditional coffin Manson method, which was proved to be a
capable method to predict the remaining life. However, the
analytic method needs a large number of experiments to

ensure the accuracy of the result, which will take a large
amount of time.

It is a more reliable and practical method to find an effective
precursor parameter to reflect the aging degree and predict
the remaining life of IGBT. Hence, researchers have done
many experiments and figured out different aging precursor
parameters. Patil, Celaya, Das, Goebel, and Pecht (2009)
monitored many physical quantities in the aging process and
found that the threshold voltage of the gate increased, the
collector-emitter voltage (VCE) decreased, and the capacity
voltage curve translates to left, which meant that there was
positive trapped charge in IGBT. Guastavino, Dardano, and
Torello (2008) measured the partial discharge characteristic
of IGBT working on the specific PWM mode and found out
the relationship between the residual life and the partial
discharge characteristic. Smet, Forest, Huselstein,
Richardeau, Khatir, Lefebvre, and Berkani (2011) set
different temperature swings and maximum temperature to
execute accelerated aging experiments and found that VCE

increases with the number of aging in cases of bond wire
fracture and falling off and there is no obvious change in
VCE in other failure modes. Zhou, Zhou, and Sun (2013)
collected VCE, gate emitter voltage (VGE) and gate current (Ig)
in IGBT aging process with high-precision and high
sampling rate oscilloscope, and found that chip defect would
lead to the change of transient Ig waveform which then is
used to determine whether IGBT is aging. Alghassi,
Perinpanayagam, Samie, and Sreenuch (2015) found that
VCE gradually increased with the increase of aging times, so
the experimental data were divided into different stages
according to the data aging and then a statistical method was
established to predict the remaining life. Liu Liu, Mei, Zeng,
Yang, and Zhou (2017) also found that VCE increased with
the aging times, but the measured voltage fluctuated greatly,
which means there was large noise. For this reason, an
improved extreme learning machine model was proposed to
predict the remaining life, which achieved better results than
other similar algorithms.

Most of the studies mentioned above estimate the aging
degree of IGBT based on the change of on-state VCE which
is generally convinced to increase when the bonding wire
falls off or the solder layer is fatigued. However, little
attention has been focused on the change of switching
transient waveform. It can be feasible to use on-state VCE as
an aging precursor to predict RUL under laboratory
environments where constant current and temperature swing
are guaranteed. However, on-state VCE is affected by the
internal temperature and conduction current which usually
changes unpredictably under the actual complex conditions.
When the bond wire or solder layer fails, the transient
waveform will reflect these changes more directly because
the internal electrical characteristics change. In this paper,
we use the transient waveform of IGBT at the moment of
switching as the aging index to predict RUL. Firstly,
instantaneous wave-forms when IGBT switches off are
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intercepted from the VCE signal collected by the signal
acquisition system. Then the characteristics of the waveform
are extracted and fed to DeepAR (Salinas, Flunkert,
Gasthaus, & Januschowski, 2019) after the appropriate
filtering to predict the changing trend. When the
characteristics exceed a threshold value, IGBT is considered
invalid and the prediction of the residual life can be
calculated. Also, a simulation of the IGBT transient
waveform is conducted to figure out which parameter
changes.

2. DEGRADATIONMECHANISM OF IGBT

In this section, we will introduce the aging mechanism of
IGBT. Firstly, the internal structure of IGBT is introduced
and then an equivalent circuit is proposed based on IGBT
configuration. Secondly, the transient characteristics of
current and voltage in turn off time are analyzed according
to the equivalent circuit of IGBT. Finally, the aging failure
mechanism of IGBT is explained and the change of the turn-
off transient curve is discussed in the aging process from the
perspective of the aging mechanism, to provide the basis for
predicting the life with the transient waveform.

2.1. IGBT structure

IGBT is a composite power semiconductor device that can
be regarded as a Darlington structure composed of bipolar
junction transistor (BJT) and MOSFET. IGBT is designed
as a multi-cell structure. Many small cells are integrated into
one piece of semiconductor.

(a) (b)
Figure 2. IGBT structure (a) and equivalent circuit of

IGBT (b).

The configuration of one IGBT cell (see Figure 2(a)) are
very similar to MOSFET, that is, adding a P+ substrate layer
on the drain of MOSFET as the collector of IGBT. In Figure
2(a), P + and N + denote that the collector and source
regions are heavily doped, and N- denotes that the base
doping concentration is low. As is shown in Figure 2(b), the
equivalent circuit diagram of the field terminated IGBT is

given according to its structure. The N+ region, gate, and N-
region are equivalent to a MOSFET. P region, N-region, and
P+ region form a PNP transistor. When sufficient voltage is
applied to the gate of IGBT, a large number of electrons
gather between the P area and the gate to form an inversion
layer, so the MOSFET is turned on. After that, the IGBT is
turned on due to the current flowing through the PNP type
BJT connected with the collector.

2.2. IGBT transient characteristics

In order to analyze the dynamic characteristics of IGBT, the
internal capacitance and inductance of IGBT should be
analyzed firstly. There is no structure similar to inductance
in the microstructure of IGBT, so we can ignore the internal
inductance and focus on the analysis of capacitance. The
gate structure is illustrated in detail in Figure 3, which helps
analyze the main capacitance of IGBT.

Figure 3. Capacitance in IGBT.

As shown in Figure 3, the gate capacitance can be divided
into two parts: gate-emitter capacitance CGE and gate-
collector capacitance CGC. CGE, which also is described as
input capacitance, consists of gate-emitter metal capacitance
C1, gate-N+ region capacitance C2, and gate-P region
capacitance CGP composed of C3 and C5 which changes with
gate emitter voltage (VGE). Known as Miller capacitance,
CGC is composed of C4 and C6, which varies with VCE.

Figure 4. Transient waveform when IGBT is turned off.

The equivalent circuit composed of a PNP BJT and an N-
channel MOSFET can be used to analyze the shutdown
process. BJT is a current-controlled device, which is
controlled by MOSFET drain current as depicted in Figure
2(b). MOSFET connected with the base of BJT is a voltage-
controlled device that is driven by VGE. In the shutdown
process, VGE first drops to the Miller platform because CGE

and CCG discharge. Then VGE remains constant until VCE
rises to the source voltage when CCG completes discharge.
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Since VGE is still greater than the threshold voltage of
MOSFET, collector-emitter current does not drop. After the
end of the Miller platform, MOSFET is turned off, and the
current decreases. An induced voltage is generated by the
inductance of the load circuit during current diminution,
which accounts for the peak of VCE. Finally, the peak
voltage is absorbed by integrated diode and VGE and the
current dwindle slowly to zero.

2.3. Degradation mechanism

The main failure mode of IGBT is fatigue failure resulting
from thermal stress. The coefficients of thermal expansion
of materials inside the IGBT module are different. When the
chip is heated, the thermal expansion of different material
layers will vary from each other and the thermal-mechanical
stress consequently generated will change with the change
of temperature, resulting in thermal fatigue damage and
finally the device failure. The most common failure types of
IGBT modules are bond wire lift and solder layer fatigue.
Bond wires include gate bond wire and emitter bond wire,
which are made of aluminum. The gate bond wire that only
a small current Ig passes through is generally more durable.
The bond wires of emitter usually are made up of several
juxtaposed lead wires. But it is easy to break down because
of greater heat generation and greater temperature change
resulting from a great current. Although the resistance of the
bonding wire is very small, when the bonding wire falls off
or breaks, the emitter resistance will increase and the
temperature rise caused by the bonding wire fault will
further increase the emitter resistance. As for solder layer
fatigue, there are two solder layers including the upper
solder layer between the silicon chip and the DBC substrate
and the lower solder layer between the DBC substrate and
the copper substrate. The solder layer is a solder joint
between the IGBT chip and the copper substrate that is
connected with the collector of IGBT. When the solder layer
fatigue occurs, the collector resistance will increase directly.
In conclusion, the degradation of IGBT leads to a gradual
increase in the collector resistance. Such resistance change
is so subtle that it is difficult to measure the resistance
change by common methods. However, in the moment of
IGBT switch, the waveform of VCE will amplify the
influence of resistance change, which makes it possible for
us to infer the resistance change by transient waveform. Ali,
Ugur, and Akin (2019) compared the changing of the
thermal resistance, on-state collector-emitter voltage, and
the gate threshold voltage (Vg(th)), only to find Vg(th) is the
best indicator to evaluate the health status of the power
converter. Also, it is impractical to measure Vg(th) under
working conditions. However, using the change of transient
waveform caused by Vg(th) to observe the status of the IGBT
module is more feasible. A transient simulation is conducted
to further discuss the parameter change in section 5.2.

3. PROGNOSTIC APPROACH

3.1. Kalman Filter

Kalman filter is a commonly used filtering algorithm to
reduce signal noise from acquired data. Compared with
other filtering algorithms, Kalman filter has higher accuracy
and better interpretability in the field of signal processing.
Kalman filter is essentially an algorithm applied to estimate
a linear system state. The algorithm assumes that the object
of the signal acquisition is a linear system, whose output is
determined by the state variables and initial values. In the
process of signal acquisition, there are errors in the actual
state and output due to sensor errors. Therefore, the
acquisition system can be described as follows:

Figure 5. Kalman filter model

Where kX is the system state which represents the real
signal. kY is the observed state representing data acquired by
sensors . kU is the initial state of the system. kX̂ is the
estimated value of

kX . A is the system matrix and B is the
observation matrix. The output matrix is regarded as a unit
matrix in this data acquisition system. ）pk  (0,~w  and

）errkk  (0,~)err(Yv  are process noise and
measurement noise which are both assumed to be Gaussian
distribution with covariances errΣ and pΣ respectively.

In order to attain an optimal estimation of the real signal kX ,
the distribution of the observed value

kY and the estimated
value

kX̂ are combined to get a more accurate distribution
of kX . Because of measurement noise and process noise,
the distribution of kY and

kX̂ can be described as follow:

)(~ errkk , ΣYY (1)

)ˆ(~ˆ
kkk , ΣXX (2)

Where kΣ is estimation covariance, which is defined by

1kΣ 
and pΣ :

pk-1k ΣAAΣΣ  T
(3)

Therefore, the optimal estimation distribution can be
calculated using the formula:
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  optkkkopt , ΣXYKXX ˆˆ~ˆ  (4)

Where K is the Kalman coefficient, which is defined as
follow:

  1 errkk ΣΣΣK (5)

Finally, the expectation of Gaussian distribution is the
optimal estimation. By conducting the Kalman filter, all
points of sensor data can be updated by the estimation
values that contain less noise.

3.2. LSTM

Long short-term memory network (LSTM ) is one of the
most widely used recurrent neural networks (RNN). RNN
can get better results than traditional methods when
processing a series of data,. However, with the increase of
the number of layers, the neural network will have the
problem of gradient disappearance and gradient explosion,
so that the RNN of multiple layers cannot get a satisfying
result. By properly designing memory cell, LSTM makes
the network avoid decreasing gradient or exploding gradient,
and makes the network have the characteristics of long-term
memory.

3.3. Likelihood Function

The likelihood function )( xL  is a function of parameters.
In statistics, the random variable x obeys a distribution with
the parameter  . With different parameters, the probability
of random variable corresponding to the same value is also
different. In general, the distribution with specific
parameters is used to calculate the probability of variable.
While )( xL  is a function of the parameters by giving the
probability of every event. It can be calculated using the
following formula:

)()(  xPxL  (6)

The likelihood function with a given input of x is equal to
the probability of x with a given parameter of  . What
matters are the values of parameters under which the
corresponding likelihood function gets the largest value, not
the function values. So the likelihood function is mainly
used to obtain the most reasonable value of parameters to
estimate the distribution of x .

3.4. DeepAR

The task of series prediction is to predict the next m points
 m t3t2t1t s,...,s,s,s according to the previous

points  t321 s,...,s,s,s . In fact, the prediction of the latter
points can be seen as finding the probability of different
values of the latter points. The ones with the largest

probability can be used as the prediction values, while the
estimation interval under different confidence can also be
given. Therefore, the series prediction problem can be
regarded as the problem to calculate the following
conditional distribution:

)( 1 1:T1:t:Tt c,|ssP  (7)

Where  Tt321 s,...,,...,ss,s,s is the series to be predicted.
The value of the series before t is known and the value from
t to T needs to be predicted.  T321 c,...,c,c,c is covariates
which can be known when conducting prediction. For
example, the operations of the system can be considered as
covariates.

Figure 6.DeepAR training model

The training model is illustrated in Figure 6. Firstly, ts and

1tc  are fed into a deep neural network LSTM one by one to
generate a hidden layer th , which is used as a network
input of next time. This calculation can be described as
follow:

),,s,(f tLSTM Θchh 1t1tt  (8)

Unlike most networks that regard th as prediction values

of 1ts  , DeepAR uses th to generate a distribution, which

then predicts 1ts  by sampling. Hence, we can generate the
prediction of the next point 1ˆ ts by conducting the following
formulations:

 bt  tμhw (9)

   bt  thwexp1log (10)

   )2()(exp2),|( 222/12  
 ssP (11)

)),(|(~ˆ 1 Θhtt sPs  (12)
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Where  b,w and b,μw are parameters to be optimized to

generate a Gaussian distribution of predict value 1ˆ ts . Since

t must be a number greater than zero, the formula
generating t from th uses a logarithmic function.
Finally, the difference between the sampled value 1ˆ ts and

the real value 1ts is attained to calculate gradients of
network parameters and distribution parameters. The
maximum likelihood estimation algorithm is conducted to
optimize the model:




 
T

tt
tt1:T1:t:Tt sPc,|ssL

0

),|()( 1 Θh (13)

Figure 7.DeepAR prediction model

The prediction process is slightly different from the training
process. In the training process, the network input of every
time is actual 1ts . However, Tts :1 is not known in the
prediction, so the best prediction value generated from the
previous prediction is fed into the prediction model to the
next step prediction.

4. EXPERIMENT

Figure 8. Flow diagram of proposed RUL prediction

In this section, we will give an overview of the whole
process of RUL prediction (shown in Figure 8). Firstly, an
accelerated aging test platform is established to obtain the
data needed for life prediction. Secondly, data filtering,
outliers deleting, and signal denoising are conducted to
acquire the informative data we are interested in. After
further feature extraction, data sets for residual life
prediction are obtained. Then, we divide the data set into
training data set and prediction data set, optimize the
DeepAR model on the training set, and then use DeepAR on
the test set for sequence prediction. Finally, the residual life
is calculated according to the predicted results. All of these
data processing details will be explained in the next few
sections.

4.1. Data Source

In this article, the NASA IGBT aging dataset collected by
Sonnenfeld, Goebel, and Celaya (2008) is used to validate
the proposed algorithm. In the aging test, the discrete IGBT
packages are operated at a temperature higher than its
normal operating temperature to accelerate the aging of
IGBT. The experimental platform not only collects the
temperature of IGBT but also acquires the transient signals
of the gate driving voltage VGS, gate emitter voltage VGE and
collector-emitter voltage VCE with a high-speed oscilloscope
when switching.

Figure 9. Circuit diagram of the aging platform

The acquisition circuit diagram of the test is shown in
Figure 9. The device under test (DUT) used in the test is
IGBT IRG4BC30KD encapsulated in TO220 with a rated
voltage of 600V and a rated current of 15A. The load circuit
uses a 4V stabilized voltage source to supply power. A
resistance of 0.2 Ω is connected in series at the collector
port of IGBT as the load. The driving circuit system is
composed of Agilent 33220A function generator and the
driving circuit board. The square wave signal generated by
the function generator is adjusted by the driving circuit
board and then input to the gate of IGBT. In the experiment,
two different signal acquisition devices are applied to
collect and monitor the status of IGBT. The first is a low-
frequency signal acquisition system using NI PCI6229 as
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the acquisition card. VGS, VGE, VCE, and temperature are
collected continuously at a lower frequency. Another set of
acquisition system utilizes Agilent DSC6034 oscilloscope to
collect high-frequency VGS, VGE, and VCE. However,
because of the excessive amount of high-frequency signal
data, the oscilloscope can only be collected at intervals,
about once every 25 seconds. Therefore, in this paper, we
use the number of acquisition times to represent aging time.

Figure 10. Transient signals

The data set provides an entire period date including on-
state, off-state, and switching transient, which are collected
at a 1GHz sampling rate. This paper mainly focuses on the
turn-off transient signal that is shown in Figure 10. The
driving voltage generated by the function generator is a
standard square wave with a duty cycle of 40%. VGE is the
output of the driver circuit and is not a standard square wave
because it is also affected by IGBT. VCE measured is the
potential difference between the collector and emitter of
IGBT. The on-state VCE voltage is determined by the input
power supply, which is 4V in this experiment.

Figure 11. Transient waveforms of VCE at different
aging degree

In the aging process of IGBT, the change of IGBT internal
structure will lead to the change of transient waveform. The
waveform of VCE voltage changes with aging time when
IGBT is turned off, which has been mentioned in the paper.
Figure 11 indicates that with the increase of aging time, the
peak value of VCE voltage decreases at the same temperature
of 268 K. However, using the peak value of the voltage is
not accurate enough for us to predict RUL of IGBT, which
will be explained in the next section. Therefore, we need to

further process the data to get the characteristic variables
that can reflect the aging degree of IGBT.

4.2. Data Preparation

In the last section, we have figured out that the transient
shutdown voltage of IGBT will change with aging time.
Therefore, the main work of data preparation is to cut off
the transient signal of IGBT from the collected data and
extract a proper feature that can well represent the aging
degree of IGBT.

First, the data at the moment when IGBT is turned off are
cut off from the data collected by the oscilloscope. Most of
the other data acquired when IGBT is in the off-state or on-
state are useless because compared with the dynamic
waveform signal at switching moment, these data are almost
constant and contain little information. When analyzing the
data, we also try to analyze the turn-on transient signal, but
the turn-on signal is found no obvious change in the whole
aging process. At the same time, through the analysis, we
also discover that the driving voltage signal VGS does not
change with the aging degree and the VGE signal will change
slightly. Therefore, we finally intercept the turn-off transient
signal of VCE for subsequent analysis. At a temperature of
about 268 K, the peak value of VCE diminishes over time.

Figure 12. The peak voltage of VCE over time

In Figure 12, it is depicted that with the increase of aging
time, the peak value of VCE shows a downward trend. But
with a high fluctuating range, the peak voltage can not
reflect the aging degree of IGBT.

Figure 13.The log log ratio of VCE over time

Therefore, we extract a feature that is more effective from
the switching transient signals. Although the signal can also
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be used as input directly, it is difficult to achieve the ideal
effect because the amount of data is too small to train such a
large model. Since the waveform of the VCE signal at the
moment of turning off will change with aging, a
characteristic can be found to reflect the change of
waveform. Through analysis and comparison, we find that
the log log ration (LLR) is a good statistical feature to
reflect the aging degree of IGBT. Compared with the peak
value of VCE, the noise interference component of LLR is
significantly smaller than the aging trend component when
IGBT is about to fail (shown in Figure 13). Other features,
such as standard deviation and kurtosis, have similar trend
changes to the peak, which will interfere with the prediction
algorithm to find real failure time.

To get a better prediction of the remaining life, the extracted
features need to be denoised. In the process of signal
acquisition, noise is inevitable. After feature extraction, this
noise is reflected on LLR, which is the reason for
fluctuating as can be seen in Figure 13. Kalman filter is a
commonly used filter to reduce the noise of a sensor signal.
It has been proved to be an effective filter in dealing with
bearing vibration signals (Qian, Yan, & Hu, 2014) and
IGBT temperature(Eleffendi & Johnson, 2016). Therefore,
the Kalman filter is harnessed in this paper to filter the
signal before forecasting.

4.3. Series Prediction Based on DeepAR

After LLR is denoised, DeepAR is used to predict the trend
of LLR regarded as a time series Ts :1 . N data points TNTs :

before time t, which are assumed to be known, are used as
input to predict M data MTTs  :1 after t time. DeepAR is

essentially an auto-regressive model. Given TNTs : , 1Ts
can be predicted. In this paper, the predicted 1Ts is used as
the input to predict the value of the next time point T+2, and
so on. Finally, the later M values can be predicted. As
explained above (section 3.4), the output of DeepAR is
actually a parameter of Gaussian distribution, so we can
determine the 95% confidence interval of prediction. At the
same time, the expected value of the distribution is the best
prediction value.

Figure 14. Prediction result of LLR

We use DeepAR to predict the next point by inputting the
previous 50 points. Predict result is shown in Figure 14.
With more data to train the model, DeepAR can get a better
result. The interval of 95% confidence gets smaller and
smaller as aging time increases.

4.4. RUL Estimation

According to the DeepAR prediction value, we can
determine when the IGBT fails. The remaining life equals
the time when the prediction value exceeds the threshold
value minus the current time. If the series Ts :1 can represent
the aging degree of the device, it can be judged as a device
failure when is is greater than a threshold value thresholds .
Then the failure time is:

}{minarg thresholdi
i

fail ssT  (14)

Using the auto-regressive model mentioned above, we can
predict series values MTTs  :1 after the time point tT . Then
when the predicted value is greater than the threshold value,
the predicted failure time failT is obtained. Therefore, the
remaining life can be calculated by the following formula:

tfail TTRUL  (15)

In many fault diagnosis algorithms about life prediction, the
algorithm only gives an optimal prediction value. However,
this prediction value is affected by many factors, such as
input data noise, model deviation, and working environment
change of diagnosis object. Therefore, it is very important to
give the reliability or uncertainty of the prediction value in
the prediction algorithm. When using the DeepAR
prediction sequence, we get a Gaussian distribution of the
predicted value. According to the statistical principle, the
interval within twice the standard deviation near the mean
value is 95% confidence interval. Therefore, we can
calculate the shortest life and the longest life at 95%
confidence:

tfail TTRUL  maxmax (16)

tfail TTRUL  minmin (17)

5. DISCUSSION

5.1. Prediction Horizon

In order to verify the effectiveness of the proposed method,
we use the prediction horizon (PH) (Lei, Li, Guo, Li, Yan,
& Lin, 2018) as the evaluation index to compare several
commonly used algorithms such as ARIMA and SES.
Prediction horizon is defined as:
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iEoL ttPH  (18)

})|))((()(|min{  


 
ki tpkkt (19)

Where
it is the time index when predictions first satisfy

 -criterion for a given α; Ω is the set of all time indexes;

kt is the time index;  is the minimum acceptable
probability mass; )( ktp is the predicted RUL distribution at

the time kt ; EoLt is the predicted End-of-Life;

 
|))((

kt
lp is the probability mass of the

probability density function (PDF) within the α-bounds that
are given by EoLtr   * and EoLtr   *

- where *r is
the actual RUL.

(a)

(b)

(c)

Figure 15. RUL predict of ARIMA (a), SES (b) and
DeepAR(c)

To evaluate the effect of DeepAR, we set the PH parameter
α to 0.02 and  to 0.5. The failure threshold is set to the

average of LLR of the last ten times to calculate the
predict RUL. As shown in Figure 15, the PH of DeepAR
is 35, which means we are 95% sure to predict that IGBT
will be failure 875 seconds before it is really broken-
down. Compared with ARIMA and SES, DeepAR can
not only get a higher PH but also narrower confidence
interval which is shown in Figure 15 with green bars.

Table 1. Prediction horizon of different algorithms.

Algorithm Prediction Horizon
ARIMA 17

SES 3
DeepAR 35

5.2. Transient Simulation

In order to further study the aging principle of IGBT, we use
an improved Hefner model(Hefner Jr & Blackburn, 1988) to
simulate the turn off transient of IGBT in this paper. The
model regards IGBT as a composite of BJT and MOSFET
and describes the transient process based on the bipolar
transport principle and non-quasi-static approximation
theory.

Figure 16.The simulation model of IGBT

In this paper, we use MATLAB/Simulink as the simulation
platform to simulate IGBT devices. The simulation program
can be divided into three parts: MOSFET, BJT, and the
external circuit. The main parameters of the external circuit
model are the resistance and inductance of the load circuit.
When VCE and TI are input into the circuit model, the
current change rate dtdIT is calculated. The BJT part is the
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simulation of the PNP transistor in the IGBT structure
(Figure 2), as shown in the red box in Figure 16. The
MOSFET part simulates the corresponding MOSFET in the
structure and calculates the current through the MOSFET
according to the input gsV and dsV .

Figure 17.The Simulink result with different Vth

During the aging process of IGBT, obvious change of the
VCE waveform of switching off transient has been observed.
To study the mechanism of blooming and to predict the
remaining life, it is an innovative and significant method to
find out the parameters changed in the aging process
according to the transient model. First, a striking feature that
can be seen by analyzing the IGBT aging data provided is
that the peak value of the VCE waveform would be
significantly smaller during the aging process. Then,
according to the change of the waveform, the parameters of
the simulation model should also be changed to better fit the
curve change. Through the simulation experiment, we find
that when the threshold voltage (Vth) changes, the
simulation output waveform has a similar change with the
experimental results (shown in Figure 17 ).

Vth is the threshold voltage of MOSFET. The main factors
affecting the threshold voltage are the thickness of the gate
oxide, the doping concentration, and the temperature of the
substrate. In the test, the temperature is controlled around
330K. Although the temperature will fluctuate during the
test, the effect of temperature on the aging waveform is
negligible. Therefore, we assume that the doping
concentration of gate oxide and substrate changes with time.

6. CONCLUSION

This paper presents a method to predict the remaining life of
IGBT by using the instantaneous waveform signal of VCE.
We extract LLR, the most characteristic feature of transient
signal, which can reflect the change of aging degree, and
use the DeepAR model to predict life after eliminating noise
by Kalman filter. By comparing the results of SES and

ARIMA, our algorithm can get the best results under the
prediction horizon index. Finally, a modified Hefner model
is established in MATLAB/Simulink to simulate the
transient waveform, indicates that it is the change of Vth
which leads to the variation of VCE. Although it may take
cost to acquire the transient signal in the actual working
condition, our algorithm verifies the feasibility of using the
transient signal to predict the remaining life. Moreover, by
simulating the transient characteristic, more incisive and
accurate degradation mechanisms can be fathomed to direct
RUL prediction.
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