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ABSTRACT 

This paper aims to look at the value and the necessity of 

XAI (Explainable Artificial Intelligence) when using DNNs 

(Deep Neural Networks) in PM (Predictive Maintenance). 

The context will be the field of Aerospace IVHM 

(Integrated Vehicle Health Management) when using 

DNNs. An XAI (Explainable Artificial Intelligence) system 

is necessary so that the result of an AI (Artificial 

Intelligence) solution is clearly explained and understood by 

a human expert. This would allow the IVHM system to use 

XAI based PM to improve effectiveness of predictive 

model. An IVHM system would be able to utilize the 

information to assess the health of the subsystems, and their 

effect on the aircraft. Even if the underlying mathematical 

principles are understood, they lack an understandable 

insight, hence have difficulty in generating the underlying 

explanatory structures (i.e. black box). This calls for a 

process, or system, that enables decisions to be explainable, 

transparent, and understandable. It is argued that research in 

XAI would generally help to accelerate the implementation 

of AI/ML (Machine Learning) in the aerospace domain, and 

specifically help to facilitate compliance, transparency, and 

trust. This paper explains the following areas: 

• Challenges & benefits of AI based PM in aerospace 

• Why XAI is required for DNNs in aerospace PM? 

• Evolution of XAI models and industry adoption 

• Framework for XAI using XPA (Explainability 

Parameters) 

• Discussion about future research in adopting XAI & 

DNNs in improving IVHM.1 
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1. INTRODUCTION 

XAI is an AI system that explains how the decision-making 

rationale of the system operates in simple, human language 

with high prediction accuracy (DARPA, 2017). XAI is 

human-centric and provide understandable explanation of 

how AI application producing outputs (EASA, 2020). 

The rise of the IoT (Internet of Things) and new analytical 

tools has given aircraft operators and airlines new ways to 

realize significant benefits from the terabytes of data 

generated by their aircraft. The engine and airframe 

manufacturers have been installing various sensors in their 

products for decades, but the few data points these sensors 

produced have traditionally been used for diagnostics. With 

today’s aircraft, including thousands of sensors — the 

Airbus A350 has nearly 250,000 of them, generating about 

2.5 TB of data per day (Airbus, 2020) — sifting manually 

through all that data and getting actionable information 

would be overwhelming. 

Airlines face the challenge of enhancing the availability of 

their fleet by avoiding flight delays and cancellations, 

consequentially reducing costs to be able to support the 

forecasted growth of 38000 aircraft by 2025 (Lufthansa 

Technik, 2020). 

With the expansion of business in the commercial aviation 

industry, the MRO (maintenance, repair, and overhaul) 

market that supports it is also expected to grow, and the 

total MRO spend is expected to rise to $116 billion by 2029, 

up from $81.9 billion in 2019 (Cooper at al. 2019).  

The figure below shows the different categories of 

maintenance policies used by various organizations. 
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Figure 1 – Types of Maintenance Policies 

The estimate is that predictive maintenance will improve 

technical dispatch reliability, will drive a reduction in no 

fault found, and will support a reduced inventory and 

improve labor productivity. That could generate about $3 

billion of savings for the MRO industry (Cambier, 2020). 

But when we add the other indirect benefits like reduction in 

customer delay compensation, an increase in customer 

satisfaction, the impact on the airline is much higher and 

much more beneficial. IATA estimates the global cost of 

irregular airline operations (delays, cancellations, in-flight 

turn backs, etc.) is $28B. These events are costly and drive 

many inefficiencies across the airline’s operation, and 

negatively impact passenger experience.  
Past studies reported by the US Department of Energy have 

estimated that a predictive maintenance program could 

realize an 8% to 12% savings over a preventative only 

program (U.S. Department of Energy, 2010). The survey 

projected an ROI of 10 times the investment for a predictive 

maintenance program.   

According to another paper by ARC, only 18% of assets 

have an age-related failure pattern, while a full 82% of asset 

failures occur randomly (Ralph, 2015). Even though 

rigorous maintenance is in place, the preventive maintenance 

performed on assets is ineffective. While Predictive 

maintenance uses condition-monitoring equipment to 

evaluate an asset’s performance in real-time. A key element 

in this process is IoT. IoT provides an infrastructure that 

allows rapid transmission of data, for different assets and 

systems to connect, work together, and share, analyze data to 

get actionable insight.  

The aviation industry has come up with solutions to store, 

sort, analyze, understand, and translate into meaningful 

MRO measures using complex machine learning models. As 

the latest aircraft types produce 50 times more data than 

older generations, the resulting increase in data volume 

leads to growing complexity in the business of MRO 

providers on one side but also to chances to increase 

efficiency and safety on the other side (Lufthansa Technik, 

2020). Some usage of vibration sensors combined with 

machine learning helps to estimate the remaining time of 

life of component assets allowing aviation planning 

managers to schedule maintenance operations in an efficient 

way. 

IVHM is the transformation of system data on a complex 

vehicle or system (such as a luxury car or a commercial 

airplane) into information to support operational decisions 

and optimize maintenance (Cranfield, 2008). IVHM was 

initially introduced by the NASA (National Aeronautics 

Space Administration) in 1992, as a capability to efficiently 

perform timely status determination, diagnostics, and 

prognostics and support fault-tolerant response including 

system/subsystem reconfiguration to prevent catastrophic 

failures, and IVHM must support the planning and 

Scheduling of post-operational maintenance (NASA, 1992). 

The main aim of IVHM in the aircraft industry is to better 

planning of the maintenance activities, reduce MRO costs, 

reduce delays, and increase the availability of aircraft by 

enabling better prediction of failures and integrated health 

monitoring.  
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Figure 2 – Machine Learning Tools available using Aircraft 

Big Data 

The figure above shows the different offering being 

developed by OEM and non-OEMs in adopting ML 

(machine learning) in aerospace health monitoring. The 

availability of computing power and analytical tool have 

fueled the insight produced by the terabytes of data 

generated by the aircraft. It has allowed AI (Artificial 

Intelligence) to make machines capable of performing tasks 

that usually require human intelligence. AI comprises all 

ML techniques as well as other techniques such as search, 

symbolic and logical reasoning, statistical techniques, and 

behavior-based approaches. As technology and, more 

importantly, our understanding of how our minds work and 

interact with all that surrounds us has progressed, our 

concept of AI has changed. We have seen an evolution of 

machine learning models from rules-based to more 

sophisticated deep models and meta-learning models, as per 

the diagram below. 

Nowadays, there is a paradigm shift by engine 

manufacturers to sell flight hours instead of selling engines 

and spare parts (EASA, 2020). This shift implies that, to 

avoid penalties for delays, engine dispatch reliability and 

safety are part of the same concept. AI-based predictive 

maintenance, increased by an enormous amount of fleet 

data, allows to anticipate failures, and provide preventive 

remedies (EASA, 2020). 

1.1. Deep Neural Networks 

ANNs (Artificial Neural Networks), especially DNNs, have 

shown better results on use cases like speech recognition, 
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text recognition, image classification etc. Like other 

applications, data assembled for predictive maintenance are 

sensor parameters that are collected over time. Utilizing 

deep models could reduce manual feature engineering effort 

and automatically construct relevant factors and the health 

factors that indicate the health state of the aircraft or its 

components and its estimated remaining runtime before the 

next upcoming downtime (Jalali et al. 2019). This will allow 

aircraft operators better prepared by reducing the surprises 

of random asset failures. 

There is a rapid advancement of DNNs because of the 

readily availability of low-cost GPUs (Graphic Processing 

Units), high-quality data in real-time, and highly scalable 

cloud infrastructure. AI has evolved from linear models to 

deep models and meta-learning models as shown in figure 3 

below.  

Heuristics/Rules
Linear Models and 

Decision Trees
Deep Models and 

Ensembles
Meta-Learning

If temperature < 20
0
 C:

start heater

If animal has feathers:

classify as bird

0.94*last_years_sale + 

1.16*this_month_sales + 

0.28*product_age = total_sales

 

 

Figure 3 – Evolution of AI/Machine Learning (Google, 

2020) 

The shift from explicitly programmed rules to using 

computers to optimise models (deep models) to fit the data 

have opened new opportunities in predictive accuracy. The 

advanced and more accurate models have resulted in a 

paradigm shift along multiple dimensions (Google, 2020):  

• Expressiveness enables fitting a wide range of functions 

in an increasing number of domains like forecasting, 

ranking, autonomous driving, particle physics, drug 

discovery, etc.  

• Versatility unlocks data modalities (image, audio, 

speech, text, tabular, time series, etc.) and enables 

joint/multi-modal applications.  

• Adaptability to small data regimes through transfer and 

multi-task learning.  

• The custom optimized hardware like GPUs and TPUs 

(Tensor Processing Units) has increase the efficiency. 

This has enabled practitioners to train complex models 

faster and cheaper with big volume of data.  

Some examples of DNNs in predictive maintenance include: 

• Analysis of technical parameters to optimize 

maintenance and operating processes and prevent 

business interruptions (Jalali et al. 2019). 

• A reliability-based methodology to support decision-

making regarding the operational performance of 

equipment (Nadani et al. 2017). 

• Deep learning, GPUs, and the concept of “Digital 

Twins” offer enormous potential benefits for predictive 

maintenance in oil and gas (Modi, 2020). 

• Based on DNNs, a novel intelligent method is proposed 

to overcome the deficiencies of the intelligent diagnosis 

methods (Jia et al. 2016). 

• How DNN architectures, based on convolutional layers, 

can classify the operating state of the wind turbine in 

terms of its load and speed without the use of ex-ante 

feature engineering (Stetco et al. 2019). 

2. WHY XAI IS REQUIRED FOR DNNS? 

Despite the promising features of DNNs, their complex 

architecture results in a lack of transparency. In their 

conventional form, DNNs are considered as black-box 

models – they are controlled by complex nonlinear 

interactions between many parameters that are difficult to 

understand. It is very complicated to interpret and explain 

their outcome, which is a severe issue that currently 

prevents their adoption in the critical applications and 

manufacturing domain (Jalali et al. 2019). 

For AI systems operating in black-box, XAI for simpler use 

cases like AI-powered chatbots or sentiment analysis of 

social feeds may not be that important. But being able to 

understand the decision-making process is mission-critical 

for heavily regulated big human impact use cases like 

aircraft maintenance, military applications, autonomous 

vehicles, aerial navigation, and drones. As people rely more 

and more on AI in their everyday lives, understanding and 

interpreting the AI models would be paramount. This would 

allow to make changes and improvements of these models 

over time. It is important to look at the role of human in 

adopting the models and increase their trust on a model or 

prediction. Otherwise, they will not use it. For example, 

BBB (British Business Bank) implemented Temenos’ XAI 

platform which allows them explain in plain language to 

their customers and regulators how AI-based decisions are 

taken. The bank has successfully reduced its exposure to 

risk, eliminated time-consuming manual working, and 

increased its pass rate by 20% (Temenos, 2020). 

The true value of the AI solution when the user changes his 

behavior or takes action based on the AI output or 

prediction and this trust is built when users can feel 

empowered and know how the AI system came up with the 

recommendation or output (Casey, 2019). 

The complex models have become increasingly opaque, and 

as these models are still fundamentally built around 

correlation and association, have resulted in several 

challenges (Google, 2020):  
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• Loss of debuggability and transparency in testing - This 

leads to low trust as well as the inability to fix or 

improve the models and/or outcomes.  

• Lack of control - Model user’s reduced ability to locally 

adjust model behavior in problematic instances due to 

the lack of visibility on the hidden layers of the 

complex deep learning models. 

• Unbiased outcomes - Undesirable data amplification 

reflecting biases that do not agree with our societal 

norms and principles. 

• Exceptional Situation – Is there an exceptional situation 

where the system may fail? 

• Incorrect correlations learning from the data - This 

often inhibits the model's ability to generalize and 

leading to poor real-world results. Incorrect alarms 

issued by the predictive maintenance model could be 

very expensive. 

• Proxy objectives end up resulting in large differences 

between how models perform offline, often on 

matching proxy metrics, compared to how they perform 

when deployed in the applications. 

The figure below explains the key four reasons for 

explaining the complex models and why such challenges 

needs to be answered.  

 

 

 

Figure 4 – Reasons to explain complex algorithms (Adadi, 

Amina & Berrada, 2018) 

Specially in aerospace PM, the reasons to justify is very 

critical. The lack of answers by AI systems leading to muted 

trust and limited large-scale adoption. This lack of 

explainability has hindered the adoption of these models, 

especially in regulated industries, e.g. aerospace, banking, 

finance, and healthcare. 

European Union introduced a right to explanation in GDPR 

(General Data Protection Right) as an attempt to deal with 

the potential problems stemming from the rising importance 

of algorithms (ICO, 2018). The implementation of the 

regulation began in 2018, and the right to explanation in 

GDPR covers only the local aspect of interpretability (ICO, 

2018).  

In addition to needing to probe the internals of increasingly 

complex models, which in and of itself is a challenging 

computational problem, a successful XAI system must 

provide explanations to people,  meaning that the field must 

draw on lessons from philosophy, cognitive psychology, 

HCI (Human-Computer interaction) and social sciences 

(Google, 2020).  

A final challenge for XAI methods for DL (Deep Learning) 

need to address is providing explanations that are accessible 

for the society, policymakers, and the law. Conveying 

explanations that require non-technical expertise will be 

paramount to both handle ambiguities, and to develop the 

social right to the right for an explanation in the EU GDPR 

(Wachter et al. 2017). 

The scope of interpretability could be divided into two 

categories – global & local. Global interpretations help us 

understand the entire conditional distribution modeled by 

the trained response function based on average values while 

local interpretations promote understanding of small regions 

of the conditional distribution, such as clusters of input 

records, and their corresponding predictions, or deciles of 

predictions and their corresponding input rows (Hall, 2017).  

Deep learning models can identify and abstract complex 

patterns that humans may not be able to see in data. 

However, there are many situations where introducing a-

priori expert domain knowledge into the features, or 

abstracting key patterns identified in the deep learning 

models as actual features; it would be possible to break 

down the model into subsequent, more explainable pieces 

(Ethical Institute, 2019). Recalling that a good explanation 

needs to influence the mental model of the user, i.e., the 

representation of the external reality using, among other 

things, symbols, it seems obvious that the use of the 

symbolic learning paradigm is appropriate to produce an 

explanation and could provide convincing explanations 

while keeping or improving generic performance 

(Donadello et al. 2017). 

3. EVOLUTION OF XAI MODELS FOR DNNS 

The last six years have seen a big push to understand the 

decisions made by complex multi-layered DNNs and build 

trust in those models.  

The model-independent approach is applied to all classes of 

algorithms or learning techniques, and the internal workings 

of the model treated as an unknown black box. The model-

specific approach is used only for specific techniques or 

narrow classes of techniques and the internal workings of 

the model treated as white box.  

To 
Justify

To 
Control

To 
Discover

To 
Improve
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The model-independent XAI models may apply to any 

model, but they may be more limited compared to the 

model-specific models (Carvalho, 2019). There is an 

increasing interest in model specific XAI models, as seen 

papers published in the CVPR (Conference on Computer 

Vision and Pattern Recognition) workshop on XAI (CVPR, 

2019). 

Below is a list of existing XAI models which have looked at 

the different aspects of DNNs to improve explainability.  

Year XAI Models Reference Model-

Agnost

ic or 

Model-

specific 

Global 

or 

Local 

2014 Guided 

propagation 

Springenberg 

et al. 2014 

CNN Global 

2015 Distilling the 

knowledge 

in a Neural 

Network 

Hinton et al. 

2015. 

Agnost

ic 

Global 

2015

-

2016 

DeepR 

(Deep 

Record) 

Wickramasing

he et al. 2016. 

CNN Global 

2016 RETAIN 

(Reversed 

Time 

Attention 

Model) 

Choi et al. 

2016. 

RNN Local 

2016 MMD 

(Maximum 

Mean 

Discrepancy) 

Critic 

Kim et al. 

2016. 

K-

medoid 

clusteri

ng 

Global 

2016

-

2018 

LIME (Local 

Interpretable 

Model 

Agnostic 

Explanation) 

(Ribeiro et al. 

2016), 

(Guidotti et al. 

2018), (Mishra 

et al. 2017). 

Agnost

ic 

Local 

2017 Anchors Ribeiro et al. 

2018. 

 

Agnost

ic 

Local 

2017 LOCO 

(Leave one 

covariate 

out) 

Lei et al. 2017. Agnost

ic 

Local 

2017 SHAP 

(SHapley 

Additive 

exPlanations

) 

Lundberg & 

Lee, 2017. 

Agnost

ic 

Local 

2017 DeepLift Shrikumar et 

al. 2017. 

RNN Global 

Year XAI Models Reference Model-

Agnost

ic or 

Model-

specific 

Global 

or 

Local 

2017 Integrated 

Gradients 

Sundararajan 

et al. 2017. 

Agnost

ic 

Global 

2017 TCAV 

(Testing with 

Concept 

Activation 

Vectors) 

Kim et al. 

2018. 

Agnost

ic 

Global 

2017 Distilling a 

Neural 

Network into 

a soft 

decision tree 

Frosst & 

Hinton, 2017. 

Agnost

ic 

Global 

2018

-

2019 

Attention 

Based 

Prototypical 

Learning 

(Li et al. 

2018), (Arik & 

Pfister, 2019). 

Agnost

ic 

Global 

2019 XRAI Kapishnikov 

et al. 2019. 

Agnost

ic 

Global 

 

Table 1 – Evolution Different typical XAI Models being 

dedicated to explaining DNNs 

One of the key columns in the above table is to show 

whether an XAI model has a global or local interpretability. 

This is to highlight accuracy. Small sections of the 

conditional distribution are more likely to be linear, 

monotonic, or otherwise well-behaved, local explanations 

can be more accurate than global explanations (Hall, 2017). 

4. INDUSTRY ADAPTION OF XAI  

One of the most notable entities in this research field is the 

DARPA (Defense Advanced Research Projects Agency), 

which, while funded by the U.S. Department of Defense, 

created the XAI program for funding academic and military 

research and resulted in funding for 11 U.S. research 

laboratories (DARPA, 2018). Google has made public its 

research and practices in different AI-related areas, one of 

which is entirely focused on explainability (What if tool, 

2020). Apart from strategies and recommended practices, 

explainability is also one of the main focuses in currently 

commercialized AI solutions and products. Facebook and 

Georgia Tech published a paper where it shows an 

interactive visual exploration tool of industry-scale DNN 

models (Kahng et al. 2018). EASA AI roadmap has 

highlighted the importance of XAI in the aviation domain 

(EASA, 2020). 

Some of the recent open Source XAI Platforms have been 

developed to help build the trust on the AI and have the 

http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Wickramasinghe%2C+Nilmini
http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Wickramasinghe%2C+Nilmini
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transparency i.e. IBM AI Fairness 360, Microsoft Model 

interpretability in Azure ML, Google’s What If Tool, 

H2O.ai’s H2O Platform, Distill, Oracle’s Skater. 

• IBM AI Fairness 360: “The AI Fairness 360 toolkit 

(AIF360) is an open-source software toolkit that can 

help detect and remove bias in machine learning 

models. It enables developers to use state-of-the-art 

algorithms to regularly check for unwanted biases from 

their machine learning pipeline and to mitigate any 

biases that are discovered. AIF360 enables AI 

developers and data scientists to easily check for biases 

at multiple points along their machine learning pipeline, 

using the appropriate bias metric for their 

circumstances. It also provides a range of state-of-the-

art bias mitigation techniques that enable the developer 

or data scientist to reduce any discovered bias. These 

bias detection techniques can be deployed automatically 

to enable an AI development team to perform 

systematic checking for biases like checks for 

development bugs or security violations in a continuous 

integration pipeline” (IBM, 2020). 

• Microsoft Model interpretability in Azure ML: 

“Understanding what AI models are doing is super 

important both from a functional as well as ethical 

aspects” (Microsoft, 2020). 

• Google’s What If Tool: “Building effective machine 

learning models means asking a lot of questions. Look 

for answers using the What-if Tool, an interactive 

visual interface designed to probe your models better” 

(What if tool, 2020). 

• H2O.ai’s H2O Platform: “H2O Driverless AI does 

explainable AI today with its MLI (Machine Learning 

Interpretability) module. This capability in H2O 

Driverless AI employs a unique combination of 

techniques, and methodologies, such as LIME, Shapley, 

surrogate decision trees, partial dependence and more, 

in an interactive dashboard to explain the results of both 

Driverless AI models and external models” (H2O.ai, 

2020). 

• Distill: “Machine learning will fundamentally change 

how humans and computers interact. It’s important to 

make those techniques transparent, so we can 

understand and safely control how they work” (Distill, 

2020). 

• Oracle’s Skater: “Skater is a unified framework to 

enable Model Interpretation for all forms of models to 

help one build an Interpretable machine learning system 

often needed for real-world use-cases” (Skater, 2020). 

5. COMPLIANCE CHALLENGES IN AEROSPACE MRO 

Compliance is a never-ending process aerospace industry, 

and the regulatory requirements across most industries are 

constantly evolving. A commercial aircraft must be serviced 

after a certain number of flight hours to remain compliant 

with FAA (Federal Aviation Administration), EASA 

(European Union Aviation Safety Agency), and ICAO 

(International Civil Aviation Organization) standards. 

As airworthiness authorities, OEMs (Original Equipment 

Manufacturers), and airlines come to depend on AI-based 

dynamic systems, and clearer accountability will be required 

for decision-making processes to ensure trust, and 

transparency. Evidence of this requirement gaining more 

momentum can be seen with the launch of the first global 

conference exclusively dedicated to this emerging 

discipline, the International Joint Conference on Artificial 

Intelligence: Workshop on XAI (IJCAI, 2017).  

It is important that people get to trust and buy into these 

new AI systems and adapt the way they work to optimize 

the benefit out of these systems. XAI is mean to do that, and 

this needs to be understood by organizational leadership. 

Also, to work with the regulatory authorities to show 

enough evidence of how certain service schedules are 

decided based on predictive maintenance DNNs models. 

Sharing data between different aviation organization still a 

challenge. With sustainability and carbon neutral are top of 

the agenda of these organizations would allow a push 

towards becoming more efficient in maintenance and use 

the IVHM as a core piece to optimize the usage of the 

aircraft and its components. 

On the other hand, different aviation organizations need to 

come together with airworthiness authorities to support XAI 

model framework and policies as a mandatory design 

principle to support adoption of usage of DNNs in 

predictive maintenance.  

Bringing the maintenance schedule earlier based on 

forecasted failures by the AI model is only going to increase 

safety and help to plan the maintenance task better. But 

deferring maintenance (still operative instrument & 

equipment) beyond the recommended schedules 

maintenance by OEMs (Original Equipment Manufacturers) 

would need to increase trust in the PM models and more 

collaboration between OEMs, airlines/operators & 

airworthiness authorities (FAA, EASA, ICAO, etc.). XAI 

models would help in increasing transparency & trust for the 

AI models, thus increases the adoption. 

6. LEVELS OF EXPLAINABILITY 

The main aim of XAI models is to explain the AI models. 

The challenge is to have a consistent measurement 

framework to measure the explainability. There is also 

challenge on how much testing required and the success 

criteria for it as a consistent explanation of the models. 

Some key XPA are defined in the table below: 
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Parameters Definition Measurement 

A. Depth of 

Explanation 

 Ability to explain at 

local (specific regional 

conditional 

distribution) and 

global (entire 

conditional 

distribution) 

Local,  

Global &  

both 

B. Predictive 

Accuracy 

 Ability to predict for 

future data based on 

the patterns. The 

measurement would 

be dependent on the 

result of DNN model 

accuracy. 

High,  

Medium,  

Low 

C. 

Approximation 

 Defined as ability to 

closely explain the 

DNN model output. 

Explanation with low 

approximation is 

useless. 

 High,  

Medium,  

Low 

D. Consistency 

Defined as the ability 

to explain consistently 

between different 

models. 

High,  

Medium,  

Low 

E. Stability 

Ability to compare 

explanations between 

similar 

instances and have a 

consistent outcome for 

the same model.  

High,  

Medium,  

Low 

F. Feature 

Importance 

Ability to identify 

importance of specific 

feature.   % 

G. Model 

Coverage 

It describes how many 

instances are covered 

by the explanation. 

Can it cover the entire 

model (e.g., 

interpretation of 

weights in a linear 

regression 

model) or represent 

only an individual 

prediction. 

 All, 

Individual 

H. Bias in 

prediction 

 Ability to explain bias 

in the prediction 

 High,  

Medium,  

Low 

I. Abnormality 

detection 

 Ability to explain 

abnormal in the 

prediction. 

 High,  

Medium,  

Low 

Parameters Definition Measurement 

J. 

Decomposability 

Ability to explain the 

DNN model including 

input, output & 

prediction. 

High,  

Medium,  

Low 

K. Privacy 

Make sure that 

sensitive and personal 

information are 

protected. 

Yes, 

No 

Table 2 – Possible XPA with measurement criteria 

Certain heavily regulated industries like aerospace, medical 

etc. would need a domain specific weightage for each 

parameter to reflect the importance of certain aspects of 

explainability. For example, the XPA parameter B 

(predictive accuracy) is far more important in aerospace 

predictive maintenance, but K (privacy) would be much 

more importance in predicting customer buying behaviour 

on a website. This would help in defining some of the 

threshold for the testing and help planning the work.   

The table below shows a possible theoretical measurement 

framework. 

DNN 

Model 

XAI 

Model 

Measurement 

A B C D E F G H I J K 

DNN 
Model1 

XAI 
Model1 

L M H M H 
50
% 

I

n
d

. 

H M M Y 

DNN 

Model2 

XAI 

Model2 
G M H L M 

75

% 

A
l

l 

L H H N 

Table 3 – Possible XPA Measurement Framework example 

Further research and development required to accurately 

measure the XPA for each different model and define 

baseline benchmark for certain DNN/XAI models. The 

above theoretical example could be a way to for model 

specific XAI models to measure the effectiveness. This also 

emphasizes the need for looking at XAI design at the same 

time as the DNN models as part of the architecture. 

7. CLOUD-BASED IVHM SYSTEM FRAMEWORK FOR XAI 

Deploying DNN models requires integrating multiple 

software platforms with different programming languages 

and several GPU processors. Thus, executing DNN models 

is difficult for even the most experienced developers. In 

addition, organizations need cloud infrastructure that can 

maintain high availability to accommodate spikes in demand 

for the DNN models.  

The diagram below shows possible system components for 

the XAI for DNN models. 
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Figure 5 – Possible cloud-based IVHM system components 

required for XAIs 

The figure above tries to highlight the DNN, XAI models & 

XPA are integrated part of any IVHM framework and how 

they could fit into the overall system architecture. Thinking 

and building XAI models when developing the DNN 

models would help increase the adaption of these models. 

XPA should be part of the process to measure these XAI 

models. Also cloud infrastructure would speed the adaption 

of IVHM framework to implement DNN models. Recent 

advancement in cloud computing has opened opportunity 

easy accessibility to computing power for XAI. 

8. CONCLUSION 

Research is needed to have further development to make the 

XAI models more mainstream to be able to produce useful 

results. Inability to trust the DNNs has reduced the usability 

of these complex models in Aerospace predictive 

maintenance applications.  

More investigation required in DNNs to predict 

maintenance measures such as remaining useful life (RUL) 

and time-to-failure (TTF). Research in XAI would generally 

help to accelerate the implementation of AI/ML in the 

aerospace domain, and specifically help to facilitate 

compliance, transparency, and trust. 

Our future research is focusing on the following key areas: 

• Use DNNs to improve the effectiveness of prediction 

models in aerospace, 

• To understand the behaviour of the DNNs by clarifying 

the conditions for specific outcome for aerospace 

predictive maintenance,  

• Advance the possible XPA measurement framework for 

model specific XAI to support compliance and 

adoption. 

REFERENCES 

DARPA (2017). Explainable artificial intelligence. Defence 

Advanced Research Project Agency. viewed  08 April 

2020, https://www.darpa.mil/program/explainable-

artificial-intelligence. 

EASA (2020). A human centric approach to AI in aviation. 

EASA. 21 April 2020, 

https://www.easa.europa.eu/newsroom-and-

events/news/easa-artificial-intelligence-roadmap-10-

published. 

Jalali, A., Heistracher, C., Schindler, A. & Haslhofer, B 

(2019). Ercims-news. Viewed 18 April 2020,  

https://ercim-news.ercim.eu/en116/r-i/understandable-

deep-neural-networks-for-predictive-maintenance-in-

the-manufacturing-industry. 

Airbus (2020). Data revolution in aviation. Airbus. Viewed  

08 April 2020, https://www.airbus.com/public-

affairs/brussels/our-topics/innovation/data-revolution-

in-aviation.html. 

Lufthansa Technik (2020). Aviatar, The digital operation 

suite. Lufthansa Technik. viewed 11 April 2020, 

https://www.lufthansa-technik.com/aviatar. 

Cooper, T., Reagan, I., Porter, C. and Precourt, C. (2019). 

Global fleet & MRO market forecast commentary 

2019-2029. viewed 11 April 2020, 

https://www.oliverwyman.com/our-

expertise/insights/2019/jan/global-fleet-mro-market-

forecast-commentary-2019-2029.html. 

Cambier, Yann (2018). Big Data: Racing to platform 

maturity. aircraftIT. viewed 11 April 2020, 

https://www.aircraftit.com/articles/big-data-racing-to-

platform-maturity/. 

U.S. Department of Energy (2010). Operations & 

Maintenance best practices – a guide to achieving 

operational efficiency. U.S. Department of Energy. 

viewed 18 April 2020, 

https://www.energy.gov/sites/prod/files/2013/10/f3/om

guide_complete.pdf. 

Rio, Ralph (2015). Optimize asset performance with 

industrial IoT and analytics. ARC Advisory Group. 

Viewed 11 April 2020, 

https://www.arcweb.com/blog/optimize-asset-

performance-industrial-iot-and-analytics-0. 

Cranfield (2008). Integrated vehicle health management 

centre (IVHM). Cranfield University. Viewed 11 April 

2020, https://www.cranfield.ac.uk/centres/integrated-

vehicle-health-management-ivhm-centre. 

NASA (1992). Research and technology goals and 

objectives for Integrated Vehicle Health Management 

(IVHM). NASA-CR-192656. Viewed 19 April 2020, 

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/199

30013844.pdf. 

Google (2020). AI Explainability Whitepaper. Google. 

Viewed 11 April 2020, 

https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://www.easa.europa.eu/newsroom-and-events/news/easa-artificial-intelligence-roadmap-10-published
https://ercim-news.ercim.eu/en116/r-i/understandable-deep-neural-networks-for-predictive-maintenance-in-the-manufacturing-industry
https://ercim-news.ercim.eu/en116/r-i/understandable-deep-neural-networks-for-predictive-maintenance-in-the-manufacturing-industry
https://ercim-news.ercim.eu/en116/r-i/understandable-deep-neural-networks-for-predictive-maintenance-in-the-manufacturing-industry
https://www.airbus.com/public-affairs/brussels/our-topics/innovation/data-revolution-in-aviation.html
https://www.airbus.com/public-affairs/brussels/our-topics/innovation/data-revolution-in-aviation.html
https://www.airbus.com/public-affairs/brussels/our-topics/innovation/data-revolution-in-aviation.html
https://www.lufthansa-technik.com/aviatar
https://www.oliverwyman.com/our-expertise/insights/2019/jan/global-fleet-mro-market-forecast-commentary-2019-2029.html
https://www.oliverwyman.com/our-expertise/insights/2019/jan/global-fleet-mro-market-forecast-commentary-2019-2029.html
https://www.oliverwyman.com/our-expertise/insights/2019/jan/global-fleet-mro-market-forecast-commentary-2019-2029.html
https://www.aircraftit.com/articles/big-data-racing-to-platform-maturity/
https://www.aircraftit.com/articles/big-data-racing-to-platform-maturity/
https://www.energy.gov/sites/prod/files/2013/10/f3/omguide_complete.pdf
https://www.energy.gov/sites/prod/files/2013/10/f3/omguide_complete.pdf
https://www.arcweb.com/blog/optimize-asset-performance-industrial-iot-and-analytics-0
https://www.arcweb.com/blog/optimize-asset-performance-industrial-iot-and-analytics-0
https://www.cranfield.ac.uk/centres/integrated-vehicle-health-management-ivhm-centre
https://www.cranfield.ac.uk/centres/integrated-vehicle-health-management-ivhm-centre
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930013844.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930013844.pdf


EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

9 

https://storage.googleapis.com/cloud-ai-

whitepapers/AI%20Explainability%20Whitepaper.pdf. 

Jalali, A., Heistracher, C., Schindler, A., Haslhofer, B., 

Nemeth, T., Glawar, R., Sihn and W., De Boer, P.  

(2019), Predicting Time-to-Failure of Plasma Etching 

Equipment using Machine Learning. In Proceedings of 

the IEEE International Conference on Prognostics and 

Health Management (PHM2019), June 17-19, 2019, in 

San Francisco, USA. 

Nadai, N., Melani, A., Souza, G. & Nabeta, S. (2017). 

Equipment failure prediction based on neural network 

analysis incorporating maintainers inspection 

findings. Annual Reliability and Maintainability 

Symposium (RAMS), Orlando, FL, 2017, pp. 1-7, doi: 

10.1109/RAM.2017.7889684. 

Modi, P. (2020). How AI is providing digital twins for 

predictive maintenance in oil And gas. Forbes. Viewed 

17 April 2020, 

https://www.forbes.com/sites/nvidia/2018/06/21/how-

ai-is-providing-digital-twins-for-predictive-

maintenance-in-oil-and-gas/#395b27384780. 

Stetco, A., Mohammed, A., Djurović, S., Nenadic, G. and 

Keane, J. (2019). Wind Turbine operational state 

prediction: towards featureless, end-to-end predictive 

maintenance. IEEE International Conference on Big 

Data (Big Data), Los Angeles, CA, USA, 2019, pp. 

4422-4430. 

Temenos (2020). British Business Bank success story. 

Temenos. Viewed  27 June 2020, 

https://www.temenos.com/community/success-

stories/british-business-bank-success-story/. 

Casey, Kevin (2019). What is explainable AI? The 

Enterprisers Project. viewed 11 April 2020, 

https://enterprisersproject.com/article/2019/5/what-

explainable-ai?page=1. 

Adadi, Amina & Berrada, Mohammed. (2018). Peeking 

inside the black-box: A survey on Explainable Artificial 

Intelligence (XAI). IEEE Access. PP. 1-1. 

10.1109/ACCESS.2018.2870052. 

ICO (2018). General Data Protection Regulation. ICO. 

viewed 11 April 2020, https://gdpr-info.eu/. 

Wachter, Sandra, Mittelstadt, Brent, Floridi, Luciano. 

(2017) Why a Right to Explanation of Automated 

Decision-Making Does Not Exist in the General Data 

Protection Regulation, International Data Privacy Law, 

Volume 7, Issue 2, May 2017, Pages 76–

99, https://doi.org/10.1093/idpl/ipx005. 

IJCAI (2017). Workshop on Explainable Artificial 

Intelligence (XAI). IJCAI. Viewed  18 April 2020, 

http://home.earthlink.net/~dwaha/research/meetings/ijc

ai17-xai/. 

Hall, P., Ambati, S. & Phan, W. (2017). Ideas on 

interpreting machine learning. Oreilly. Viewed  18 

April 2020, https://www.oreilly.com/radar/ideas-on-

interpreting-machine-learning/. 

Ethical Institute (2019). The 8 machine learning principles. 

Ethical Institute. Viewed  18 April 2020, 

https://ethical.institute/index.html#contact. 

Carvalho, D., Pereira, E. & Cardoso, j. (2019). Machine 

learning interpretability: a survey on methods and 

metrics. Electron., vol. 8, no. 8, pp. 1–34, 2019, doi: 

10.3390/electronics8080832. 

CVPR (2019). CVPR-19 Workshop on Explainable AI. 

CVPR. viewed  08 April 2020,  https://explainai.net/. 

Springenberg, J., Dosovitskiy, A., Brox, T. & Riedmiller, 

M. (2014). Striving for Simplicity: The All 

Convolutional Net. arXiv. arXiv:1412.6806. 

G. Hinton, O. Vinyals and J. Dean (2015). Distilling the 

knowledge in a neural network. arXiv preprint arXiv: 

1503.02531, 2015 

Wickramasinghe, N., Nguyen, P., Truyen, T., Venkatesh, S. 

(2016). A Convolutional Net for Medical Records. 

IEEE journal of biomedical and health informatics 21.1 

(2017): 22-30 

Choi, E., Bahadori, M. T., Kulas, J. A., Schuetz, A., 

Stewart, W. F. and Sun, J. (2016). RETAIN: an 

interpretable predictive model for healthcare using 

reverse time attention mechanism. arXiv 

(https://arxiv.org/abs/1608. 05745v4)  

Been, K., Oluwasanmi, O. K., and Khanna, R. (2016). 

Examples are not enough, learn to criticize! criticism 

for interpretability. NIPS 2016. In Proceedings of the 

Conference on Advances in Neural Information 

Processing Systems. 2280–2288. 

Ribeiro, M.T., Singh, S., and Guestrin, C. (2016). Why 

should I trust you: Explaining the predictions of any 

classifier. In Proc. 22nd ACM SIGKDD Int. Conf. 

Knowl. Discovery Data Mining, 2016, pp. 1135–1144 

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., 

Turini, F. and Giannotti, F. (2018). Local rule-based 

explanations of black box decision systems. [Online]. 

Available: https://arxiv.org/abs/1805.10820 

Mishra, R., Sturm, B. L., and Dixon, S. (2017), Local 

interpretable modelagnostic explanations for music 

content analysis. In Proc. ISMIR, 2017, pp. 537–543 

Ribeiro M. T., Singh S., and Guestrin C. (2018), Anchors: 

High-precision model-agnostic explanations. in Proc. 

AAAI Conf. Artif. Intell., 2018, pp. 1–9. 

Lei, J., G’Sell, M., Rinaldo, A., Tibshirani, R. J., and 

Wasserman, L. (2017). Distribution-free predictive 

inference for regression. Journal of the American 

Statistical Association, 2017. 

https://doi.org/10.1080/01621459.2017.1307116 

Lundberg, S. and Lee, S. (2017). A unified approach to 

interpreting model predictions. In Advances in Neural 

Information Processing Systems 30 (NIPS), 2017.  

Shrikumar, A., Greenside, P. and Kundaje, A. (2017). 

Learning important features through propagating 

activation differences. In Proceedings of the 34th 

International Conference on Machine Learning - 

Volume 70 (ICML’17). JMLR.org, 3145–3153. 

https://storage.googleapis.com/cloud-ai-whitepapers/AI%20Explainability%20Whitepaper.pdf
https://storage.googleapis.com/cloud-ai-whitepapers/AI%20Explainability%20Whitepaper.pdf
https://www.forbes.com/sites/nvidia/2018/06/21/how-ai-is-providing-digital-twins-for-predictive-maintenance-in-oil-and-gas/#395b27384780
https://www.forbes.com/sites/nvidia/2018/06/21/how-ai-is-providing-digital-twins-for-predictive-maintenance-in-oil-and-gas/#395b27384780
https://www.forbes.com/sites/nvidia/2018/06/21/how-ai-is-providing-digital-twins-for-predictive-maintenance-in-oil-and-gas/#395b27384780
https://www.temenos.com/community/success-stories/british-business-bank-success-story/
https://www.temenos.com/community/success-stories/british-business-bank-success-story/
https://enterprisersproject.com/article/2019/5/what-explainable-ai?page=1
https://enterprisersproject.com/article/2019/5/what-explainable-ai?page=1
https://gdpr-info.eu/
https://doi.org/10.1093/idpl/ipx005
http://home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/
http://home.earthlink.net/~dwaha/research/meetings/ijcai17-xai/
https://www.oreilly.com/radar/ideas-on-interpreting-machine-learning/
https://www.oreilly.com/radar/ideas-on-interpreting-machine-learning/
https://ethical.institute/index.html#contact
https://explainai.net/
https://arxiv.org/abs/1412.6806
http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Wickramasinghe%2C+Nilmini
http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Nguyen%2C+Phuoc
http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Truyen%2C+Tran
http://epworth.intersearch.com.au/epworthjspui/browse?type=author&value=Venkatesh%2C+Svetha
https://arxiv.org/abs/1805.10820
https://doi.org/10.1080/01621459.2017.1307116


EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

10 

Sundararajan, M., Taly, A. and Yan, Q. (2017). Axiomatic 

attribution for deep networks. In Proceedings of the 

34th International Conference on Machine Learning - 

Volume 70(ICML’17). JMLR.org, 3319–3328. 

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J. and 

Viegas, F. (2018). Interpretability beyond Feature 

Attribution: Quantitative Testing with Concept 

Activation Vectors (TCAV). In International 

Conference on Machine Learning. 2673–2682. 

Frosst, N. and Hinton, G. (2017). Distilling a neural network 

into a soft decision tree. arXiv:1711.09784, 2017. 

Li, O., Liu, H., Chen, C. and Rudin, C. (2018). Deep 

learning for case-based reasoning through prototypes: A 

neural network that explains its predictions. In AAAI, 

2018. 

Arik, S. O. and Pfister, T. (2019). Attention-based 

prototypical learning towards interpretable, confident 

and robust deep neural networks. arXiv preprint 

arXiv:1902.06292, 2019.  

Kapishnikov, A., Bolukbasi, T., Viegas, F. and ´ Terry, M. 

(2019). Better attributions through regions. Xrai: In 

Proc. ICCV, 2019. 

Kahng, M., Andrews, P.Y., Kalro, A. and Chau, D.H.P. 

(2018). ActiVis: Visual exploration of industry-scale 

deep neural network models. IEEE Trans. Vis. Comput. 

Gr. 2018, 24, 88–97. 

IBM (2020). AI Fairness 360. IBM. viewed  08 April 2020, 

https://developer.ibm.com/open/projects/ai-fairness-

360/. 

Microsoft (2020). Model interpretability in Azure Machine 

Learning. Microsoft. viewed  08 April 2020, 

https://docs.microsoft.com/en-us/azure/machine-

learning/how-to-machine-learning-interpretability. 

What if Tool (2020). What If. Google. viewed  08 April 

2020, <https://pair-code.github.io/what-if-tool/>. 

H2O.ai (2020). Explaining explainable AI. H2O. viewed  08 

April 2020, https://www.h2o.ai/explainable-ai/. 

Distill (2020). Machine learning research should be clear, 

dynamic and vivid. Distill. Viewed 08 April 2020, 

https://distill.pub/about/. 

Skater (2020). Oracle Skater. Oracle. Viewed  08 April 

2020, https://github.com/oracle/Skater. 

Donadello, I., Serafini, L. and Garcez, A.D. (2017). Logic 

tensor networks for semantic image interpretation. 

Proceedings of the Twenty-Sixth International Joint 

Conference on Artificial Intelligence, IJCAI (2017), 

pp. 1596-1602. 

BIOGRAPHIES 

Bibhudhendu Shukla Bib was born and 

graduated in India with First Class with 

distinction in Production Engineering. He 

completed his Engineering in National 

Institute of Technology, Jamshedpur in 

India. Bib has worked for Amadeus, British 

Airways, Lufthansa Group, Thomas Cook, TUI & Virgin 

Atlantic in several roles in technology, gaining experience 

in big data technologies in cloud, data science, MRO 

Systems and IVHM. Bib has completed his MSc in Six 

Sigma (service) from Southampton Solent University, UK. 

Currently Bib is part time research student in Cranfield 

University working on research to use DNN in IVHM. Bib 

also working as a Principal Enterprise Solution Architect in 

Virgin Atlantic and involved in designing Maintenance & 

Engineering systems, big data analytics and cloud native 

solutions. 

Dr Ip-Shing Fan Fan was born and studied in Hong Kong, 

graduated with First Class Honours in Industrial 

Engineering. He completed his graduate engineer training at 

Qualidux Industrial Co Ltd in Hong Kong. He was awarded 

the Commonwealth Scholarship and completed his PhD in 

Computer Integrated Manufacturing in Cranfield. In 1990, 

Fan started to work in The CIM Institute, endowed by IBM 

in Cranfield, to carry out research, education, and 

consultancy in new applications of computers in 

manufacturing. He led many European and UK funded 

research programs to create new tools and methods in 

knowledge-based engineering design, business performance, 

quality management, supply chain, and complexity science. 

The complex dynamics of people factor in technology 

implementation prompted him to create a European research 

consortium fort the Framework 5 research project BEST - 

Better Enterprise System Implementation. The 12 partners, 

€4 million project created a body of knowledge that Fan 

worked to translate into Masters level teaching curriculum. 

The holistic thinking also influences research developments 

that brings together business, technology and organization 

factors. 

Since 2010, Fan spends time in the IVHM Centre to lead the 

Integrated Vehicle Health Management (IVHM) Design 

System project. This has delivered industry relevant 

solutions to partners and applied projects with tools to carry 

out Cost Benefits Analysis and design methods and tools to 

add IVHM capability in Unmanned Air Vehicles. He is the 

Course Director of the MSc in Management and 

Information Systems in Cranfield University, developing 

postgraduates who would understand the interaction 

between IT, organization and people behaviour. Fan is the 

Chairman of the Bedford Branch of BCS and sits on the 

BCS Council. He is also a member of the IFIP (International 

Federation for Information Processing) Working Group 5.8 

on Enterprise Interoperability. 

Professor Ian Jennions Ian's career spans over 40 years, 

working mostly for a variety of gas turbine companies. He 

has a Mechanical Engineering degree and a PhD in CFD 

both from Imperial College, London. He has worked for 

Rolls-Royce (twice), General Electric and Alstom in several 

technical roles, gaining experience in aerodynamics, heat 

transfer, fluid systems, mechanical design, combustion, 

https://developer.ibm.com/open/projects/ai-fairness-360/
https://developer.ibm.com/open/projects/ai-fairness-360/
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
https://pair-code.github.io/what-if-tool/
https://www.h2o.ai/explainable-ai/
https://distill.pub/about/
https://github.com/oracle/Skater


EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

11 

services and IVHM. Ian moved to Cranfield in July 2008 as 

Professor and Director of the newly formed IVHM Centre. 

The Centre is funded by a number of industrial companies, 

including Boeing, BAE Systems, Thales, Meggitt, MOD 

and Alstom Transport. He has led the development and 

growth of the Centre, in research and education since its 

inception. The Centre offers an IVHM short course each 

year and has offered an IVHM MSc. Ian is on the editorial 

Board for the International Journal of Condition Monitoring, 

a Director of the PHM Society, Vice-chairman of SAE's 

IVHM Steering Group, contributing member of the SAE 

HM-1 IVHM committee, a Chartered Engineer and a Fellow 

of IMechE, RAeS and ASME. He is the editor of five recent 

SAE books: 1. IVHM - Perspectives on an Emerging Field; 

2. IVHM - Business Case Theory and Practise; 3. IVHM - 

the Technology; 4. IVHM - Essential Reading; 5. IVHM - 

Implementation and Lessons Learned and a co-author of the 

book: ‘No Fault Found – The Search for the Root Cause’. 

 


