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ABSTRACT

In this work, we compare distributed collaborative learning
techniques for Prognostic and Health Management (PHM)
systems, focusing on predictive aircraft maintenance. Air-
craft industry components are usually evaluated using remain-
ing useful life (RUL) estimations to describe the amount of
time left before system health falls. Such estimates have been
commonly achieved with traditional degradation estimation
methods. These estimation methods have been widely ap-
plied in centralized processing architectures, limiting the scal-
ability of PHM systems.

Concerns about data privacy and transfer of large amount of
data have also been limiting the construction of decentral-
ized processing architectures. Nevertheless, with the emer-
gence of collaborative training methods of machine learning
models, e.g. Federated Learning (FL), the previous referred
concerns have being tackled by privacy-preserving commu-
nications while keeping data at the network edges. However,
the effectiveness of federated learning algorithms using time-
series data for prognostic and health management of aircraft
systems has been minimally explored.

In this work, we use feed-forward neural networks on cen-
tralized and decentralized scenarios to compare the predic-
tion error minimization of FL algorithms, such as, Federated
Average (FedAvg) and Federated Proximal Term (FedProx).
Our experiments take into account gradient descendent min-
imization and averaging weights of neural networks. Using
FedAvg, we obtained similar prediction errors to the central-
ized scenario but presenting uncertain predictions along the
aggregation iterations. On the other hand, using FedProx, the
prediction error curve progressively decreases along the ag-
gregation iterations if µ takes values ∼ 0.01.

Raúl Llasag Rosero et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The Prognostics field has been growing in parallel with Con-
dition Based Maintenance (CBM) of system failures (Saxena
et al., 2008). CBM identifies two types of failures for mainte-
nance activities: critical and non-critical. Critical failures,
which are usually solved replacing components after their
run-to-failure, are avoided by preventive activities such as
periodic or non-periodic maintenance tasks. Non-periodic
maintenance approaches are usually based on Prognostic and
Health Management (PHM) technologies (Canh, Kwok, Carl,
Romano, & George, 2009).

PHM technologies combine diagnostics and prognostics of
machinery component failures (Saxena & K., 2008). Diag-
nostics detects and isolates failures, while prognostics pre-
dicts future state or Remaining Useful Life (RUL) (Canh et
al., 2009; Saxena & K., 2008). Using prognostics, compa-
nies have been reducing not only maintenance costs but also
maintenance times.

The use of prognostics on aircraft maintenance is an impor-
tant challenge for the aeronautics field because, at this mo-
ment, the replacement of parts of an aircraft is done either
at fixed time intervals or after a failure (Azevedo, Ribeiro, &
Cardoso, 2019). Airlines use this approach to ensure reliabil-
ity and safety as detailed in regulatory laws, but usually fall
short in optimizing the useful lifetime of their aircraft com-
ponents.

Airlines have been identifying the enormous potential of prog-
nostics on the degradation of components over time to as-
sure the safety of airplanes and of its passengers. Addition-
ally, airlines have also considered to interact using intensively
collaborative processes supported by information technology,
namely, Collaborative Networks (Simões & Soares, 2008).
Collaborative networks have been implemented mainly by
technological companies to better achieve common or com-
patible goals. Nevertheless, data security on these collabo-
rative networks and the data sharing dependence have been
concerns for companies which could directly affect lives, in
the case of airlines.
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Today, collaborative networks that avoid confidential data shar-
ing and improve performance of a common task through ar-
tificial intelligence models aggregations are gaining interest
and feasibility, namely through Federated Learning (FL) ap-
proaches (Yang, Liu, Chen, & Tong, 2019).

Federated Learning frameworks such are PySyft, PaddleFL,
Tensorflow Federated (TFF), Federated AI Technology En-
abler (FATE), Nvidia Clara, and others allow network con-
stituents to collaboratively fit/learn a shared model while keep-
ing data privacy in network nodes. These frameworks (Palau,
Bakliwal, Dhada, Pearce, & Parlikad, 2018) avoid data shar-
ing dependence of distributed collaborative prognostics. How-
ever, such frameworks usually only implement a limited num-
ber of federated learning techniques, restricting to collabo-
rative prognostics systems and neural networks for using a
basic federated algorithm which was named as Federated Av-
eraging (FedAvg) (Sahu et al., 2019; Wang, Yurochkin, Sun,
Papailiopoulos, & Khazaeni, 2019), being Turbo-FL-POC an
example of them.

In this work, we use an aircraft multi-sensor time-series data
to compare the performance achieved by different Federated
Learning algorithms. Our experiments take into account gra-
dient descendent minimization and averaging weights of feed-
forward neural networks. So, in this federated introductory
analysis, the RUL prediction accuracy obtained using FedAvg
(McMahan & Ramage, 2017) and Federated Proximal Term
(FedProx) algorithms are compared (Sahu et al., 2019).

Our experiments show that FL algorithms exhibit similar per-
formance on RUL estimation when compared with data cen-
tralized models, where the main model is iterative centrally
optimized. Also, our experiments show more learning oscil-
lations in FedAvg than FedProx when its hyper-parameter µ
was adequately chosen.

The rest of this paper is organized as follows. Section 2 in-
cludes the problem description, the dataset chosen, the feature
space selection, and considerations on pre-processing. Sec-
tion 3 details the techniques that can be applied on Federated
Learning algorithms and the proposed approach for RUL es-
timation. Section 4 includes the centralized scenario setup,
analyses the RUL estimation and the construction of the col-
laborative scenarios. Section 5 presents the proposed collabo-
rative FL algorithms and the results achieved. Finally, Section
6 presents conclusions and possible future works.

2. PROBLEM DESCRIPTION

In this work, a Condition Based Maintenance problem is used,
where the system condition is evaluated with muti-sensor data
to detect failures for a posteriori prediction of Remaining
Useful Life (RUL) of system components for specific flight
trajectories.

In this particular problem, we use the term trajectory to re-

fer a group of flight trajectories. Each trajectory is com-
posed by a set of operational cycles which take similar states
when flights restart, while the RUL refers to the difference
between the current cycle and the cycle when the compo-
nent becomes totally inoperable. For RUL prediction, artifi-
cial intelligence methods can be used, more specifically ma-
chine learning methods that learn from data to increase the
problem-solving abilities of models when data is showed a
few times.

Federated Learning algorithms facilitates the integration of
different CBM systems if data-driven approaches and ma-
chine learning techniques are adopted (Hu, Sun, Chen, & Lu,
2019). However, the feature space of datasets needs to be pre-
viously explored before constructing collaborative models.

The absence of deeply explored datasets of aeronautic com-
panies has been the bottleneck for the construction of collab-
orative models. Hence, we consider using Turbofan Engine
Degradation Simulation dataset (Saxena & K., 2008), which
have been analyzed by some researchers, especially on the
PHM08 Challenge (Ramasso & Saxena, 2014).

2.1. Dataset Description

Turbofan datasets were provided by the Prognostics CoE at
NASA Ames and are composed by the output of a engine
degradation simulation carried out using Commercial Mod-
ular Aero-Propulsion System Simulation (C-MAPSS) (Liu,
Frederick, De Castro, & Litt, 2012). It consists of four datasets,
namely: FD001, FD002, FD003 and FD004. All four have
the same structure which corresponds to: trajectory id, cycle
count, 21 sensors, and 3 operating settings. These 3 operat-
ing settings are Altitude, Mach Number and Throttle Angle
Resolver variations on flight trajectories. According to (Leto,
2008), combinations of these operation settings refer to oper-
ating modes (or regimes).

Six operating regimes have been identified on FD002 and
FD004 datasets, while the other only operate on one oper-
ating regime (Leto, 2008). According to (Azevedo et al.,
2019), the main difference between datasets is the number of
fault modes. FD004 presents two fault modes while FD002
presents only one fault mode. FD004 is potentially more
complex, and was therefore we chosen for our experiments.

Turbofan datasets provide data in two splits, namely: training
and testing. Also, turbofan provides a ground truth, which
corresponds to the RUL evaluated on the last cycle of each
trajectory of the testing split. FD004 contains 249 trajectories
for training and 248 trajectories for testing. Thus, the ground
truth for FD004 contains 248 RUL values.

2.2. Pre-processing data

Each trajectory on Turbofan datasets is composed of a set of
operational cycles. However, these datasets only provide the
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RUL associated to the last operational cycle of each trajec-
tory. Hence, researchers have been applying some techniques
to assume a RUL degradation curve. The curve degradation
assumption is explained in more detail in Section 2.2.1.

A subgroup of operational cycles of each trajectory represents
an aircraft flight. Each flight can be identified by the varia-
tion of operational cycles on operating regimes, six regimes
specifically for the FD004 dataset.

According to (Leto, 2008; Olivares, Gonzalez, Tovar, & Gor-
rostieta, 2019), there is no mathematical dependency between
sensor data, which could support machine learning models
training. Thus, (Leto, 2008) has proposed a normalization
based on clustering of these six operating regimes, normal-
ization which is refereed in Section 2.2.2. Although a mathe-
matical dependency on regimes can be found, not all the sen-
sors exhibit this dependency. Hence, a feature space selection
is proporsed in Section 2.3.

2.2.1. RUL assumption

In (Heimes, 2008) two degradation approaches are proposed,
which are illustrated in Figure 1.

Figure 1. (a) Linear and (b) piece-wise degradation of FD004
test dataset

The first degradation approach that illustrates a family of lin-
ear degradation curves, corresponds to Eq. (1).

f(t) = tEoL − ti (1)

Here, tEoL corresponds to the RUL of the last operational
cycle per trajectory and ti corresponds to the current cycle.
The second degradation approach that illustrates a family of
piece-wise curves, was adopted by (Heimes, 2008; Olivares
et al., 2019) to reproduce the third winner technique (Leto,
2008) of the PHM08 Challenge (Ramasso & Saxena, 2014).
This piece-wise approach corresponds to Eq. (2).

f(t) =

{
Rc if 0 ≤ ti ≤ tSoF
tEoL − ti if tSoF ≤ tEoL

(2)

Here, Rc is the initial constant value of RUL which varies
from 120 to 130 cycles (Heimes, 2008); SoF is the time when
engines start to failure is equal to tEoL− ti. After experimen-
tation (Heimes, 2008; Olivares et al., 2019) limitedRc to take

a value of 130, value which we adopted for our experiments.

2.2.2. Normalization

Before the normalization step, a clustering process was car-
ried out using K-means algorithm. This algorithm was used
by (Ramasso & Saxena, 2014; Olivares et al., 2019) among
others to add a regime identifier r for each operational cycle
x. After that, a data normalization per regime N(.) described
in Eq (3) was applied.

N(x(r,f)) =
x(r,f) − µ(r,f)

σ(r,f)
(3)

For the sensor f on regime r, x(r,f) represents the sensor data
per regime, µ(r,f) and σ(r,f) are the mean and standard devi-
ation, respectively. After that process, (Olivares et al., 2019)
considered the normalization of the three operating settings,
the cycle number and the target (RUL), without considering
the regime variation. Given the performance improvements,
we also apply the method in (Olivares et al., 2019).

2.3. Feature Space selection

In (Sahu et al., 2019) and literature referring to the Turbofan
Engine Degradation dataset, the sensors commonly selected
are those whose data has an increasing or decreasing behav-
ior. Those sensors are: 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15,
17, 20, and 21 (Olivares et al., 2019). Thus, we also use this
feature space for the centralized model scenario construction.

3. MACHINE LEARNING TECHNIQUES

In the PHM08 Challenge, some techniques have been ap-
plied for RUL estimation (Ramasso & Saxena, 2014). The
first three places of this challenge have used a Health Indi-
cator (HI) as Principal Component Analysis (PCA) with ker-
nel smoothing; Convolution Neural Networks (CNN) with a
Kalman Filter (KF); and a Multilayer Perceptron (MLP) with
a Kalman Filter (KF), respectively.

In this work, a Multilayer Perceptron (MLP) was chosen be-
cause this approach is implemented in the approaches on the
challenge referred above. Additionally, MLP is the canoni-
cal example for Federated Learning, where weights of same
layers but different models are averaged using the FedAvg al-
gorithm.

3.1. Proposed approach

The MLP network used here is composed of three layers. The
input layer takes data from 18 features, corresponding to 14
sensors, 3 operating settings and the operating cycle. The hid-
den layer contains 10 nodes with a sigmoid activation func-
tion. Finally, the output layer contains only one node, which
is activated by a linear function. To train the MLP, an RMSE
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loss function described in Eq (4) was used.

RMSE =

√√√√ 1

m

m∑
i=1

(RULi − ˆRULi)2, (4)

where m is the number of samples, RUL is the ground truth
for the sample i and ˆRULi is the remaining useful life in-
ferred with a lot of noise associated. Thus, in (Olivares et al.,
2019), a Kalman Filter on the inference process was used to
reduce this noise. We use this filter over other signal process-
ing techniques, because through an iterative process and data
measurements with uncertainty, this technique has generated
the best estimates of the variable of interest (Heimes, 2001;
Olivares et al., 2019).

3.2. Kalman Filter

The Kalman Filter (KF) described in Algorithm 1 was applied
in the inference of n trajectories, basically consisting of two
stages: prediction and update (Olivares et al., 2019). Those
stages are composed from the second to the eighth step.

Algorithm 1 Kalman Filter for n trajectories

1: for trajectory = 1, 2, . . . n do
2: for k = 1, 2, . . . trajectorydim do
3: x̂−k = x̂k−1

4: P−
k = Pk−1 +Q

5: Kk =
P−

k

P−
k +R

6: x̂k = x̂−k +Kk(zk − x̂−k )
7: Pk = (1−Kk) ∗ P−

k
8: end for
9: ˆRUL = x̂ ∗Rc

10: end for

3.2.1. Prediction Stage

Here, x̂−k is the a priori estimate of the state vector x̂ at time
k, P−

k is the a priori error estimate matrix, P is the a posteori
error estimate matrix and Q is the degradation rate.

The initial conditions for the KF are x̂0 = 1 and the degra-
dation rate Q = 1/209, corresponding to 209 flight cycles in
average (Olivares et al., 2019). Here, we are not only assum-
ing a normalized remaining useful life with an initial value
of x̂0 = 1 but also assuming a null initial degradation error
P0 = 0.

3.2.2. Update Stage

The update of the state vector x̂ and the a posteori error esti-
mate matrix Pk depends basically on the value of the gain K.
After an heuristic evaluation, (Olivares et al., 2019) adopted a
σz = 0.3. So, the estimate of measurement variance R = σ2

z

corresponds to R = 0.09.

Finally, on the 9th step, the ˆRUL prediction is the result of
the product of the initial constant Rc and the prediction nor-
malized x̂.

4. SCENARIOS

In order to evaluate the decentralized collaborative algorithms,
we consider a variant selection of the centralized scenario. In
Section 4.1 the linear and the piece-wise degradation for a se-
lection of the centralized scenario are detailed, using all the
data to train an unique node.

In Section 4.2, the training data was divided in nodes un-
der some conditions, to simulate a Federated Learning ap-
proach using FedAvg and FedProx algorithms in a collabora-
tive training scenario.

4.1. Centralized scenario

For the centralized scenario, the MLP network model was
trained using the 85% and tested using the 15% of all data of
the FD004 training split . To do that, the learning rate was set
to η = 0.001 while the RMSE loss function described in Eq.
4 was used. Also, an early stopping callback was used, wait-
ing for 10 epochs before stop if the validation didn’t progress.
This number of epochs is usually known as patience.

The training was processed on a virtual machine with 4GB
of RAM and 4vCore, this process was done in 10 minutes
approximately. However, the estimated values of the MLP
illustrated in Figures 3 and 2 have required the KF to obtain
a smoother or filtered curve (Olivares et al., 2019).

After obtaining smoothed inferred ˆRUL samples, these m
samples were compared with the ground truth to measure the
performance of the algorithm. To do that, the Mean Absolute
Error (MAE) and the Mean Squared Error (MSE) metrics de-
scribed in Eqs. (5,6) were used.

MAE =
1

m

m∑
i=1

|RULi − ˆRULi| (5)

MSE =
1

m

m∑
i=1

(RULi − ˆRULi)
2 (6)

The training and inferring processes were applied in two ap-
proaches for a variant centralized scenario selection. The first
one refers to a linear degradation, while the second one refers
to a piece-wise degradation. Figure 1 illustrates these two ap-
proaches on the FD004 test dataset, whereEoL of trajectories
takes different values.

Figures 3 and 2 illustrate the RUL predictions for the first
and second trajectories using the degradation approaches de-

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Degradation MAE MSE RMSE
Linear 60.93 6983.06 83.56
Piece-wise 18.13 651.89 25.53

Table 1. Centralized scenario results

scribed in Table 1. Here, the green curve represents the ground
truth, the red curve the RUL inferred by the MLP and the
blue curve represents the smoothed RUL using the KF. Due to
space limitations, the rest of the trajectories are not illustrated,
but the evaluation metrics MAE, MSE, and RMSE were con-
sidered for all of them.

In Table 1 the results for the linear and the piece-wise degra-
dation approaches are presented, where the piece-wise ap-
proach obtains considerable less difference compared to the
ground truth. Therefore, we consider the use of a piece-wise
degradation approach for the collaborative scenarios.

Figure 2. Piece-wise RUL degradation of 1st trajectory

Figure 3. Linear RUL degradation of 2nd trajectory

4.2. Decentralized collaborative scenarios

For the construction of the decentralized collaborative scenar-
ios, the data of the training split was separated in nodes. To do
that, a clustering per trajectory identifier process was carried
out with the use of the module operation, taking to trajectory
identifier as the divided and the N number of nodes as the di-
visor. In Table 2, three data partitions were considered, where
the main difference is the number of nodes and the number of
trajectories per node.

Scenario N Nodes Trajectories
Centralized scenario 1 249
1st Decentralized 2 125+124
2nd Decentralized 4 63+62X3
3th Decentralized 8 32+31X7

Table 2. Collaborative scenarios

5. FEDERATED LEARNING

Decentralized collaborative prognosis has been considering
the aggregation of machine learning models and features for
improving prognostic accuracy. The feature aggregation pro-
posed by (Hu et al., 2019) has considered a unique sensor
type, reason for the wich, in this work, we aggregate mod-
els trained with multi-sensor data. The Federated Learning
algorithms used in this work are described in the Section 5.1.

Before comparing federated algorithms, we compared the data
divisions of the collaborative scenarios described in the Table
2, using the most basic FL algorithm referred in the Section
5.1.1.

The comparison referred in the Section 5.2 was useful to se-
lect a data division which provide less error predictions in
less training steps, being useful to save time on future evalu-
ations. Finally, the comparison results of federated learning
algorithms over the scenario chosen on Section 5.2 are dis-
cussed in Section 5.3.

5.1. Algorithms

Basic collaborative algorithms such as Federated Learning
Averaging (FedAvg) (McMahan & Ramage, 2017) and Fed-
erated Learning Proximal Term (FedProx) (Sahu et al., 2019)
take into account the gradient descent minimization and aver-
aging weights of feed-forward neural networks, i.e., our MLP
approach is well suited. Therefore, we evaluate them on the
collaborative scenarios described in the Table 2.

5.1.1. Federated Averaging

In Federated Averaging (FedAvg) algorithm (McMahan &
Ramage, 2017), the local surrogate of the global objective
function at node i is Fi(.) , and the local solver is Stochastic
Gradient Descent (SGD), with the same learning rate η and
number of local epochs E used on each node.
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Algorithm 2 Federated Averaging

Input: Average Iterations T , Learning rate η, Epochs
E, Initial weights w0, Number of nodes N , Number of
samples in nodei ni
Output: Global weights wt+1

i
1: for t = 1, 2, . . . T − 1 do
2: The server sends W t to nodes
3: for i = 1, 2, . . . N do
4: Using ni, each device i updates W t for E epochs

of SGD on Fi(w) with learning rate η to obtain wt+1
i

5: Ech device sends wt+1
i back to server

6: end for
7: The server aggregates weights as wt+1 =

∑N
t=1 w

t+1
i

N
8: end for

At each average iteration t, each node i runs SGD locally
for E number of epochs, and then the resulting model up-
dates are averaged. These processes are iterative repeated at
T − 1 times, when the central model achieves performances
expected.

5.1.2. Federated Proximal Term

Federated Proximal Term (FedProx) (Sahu et al., 2019) has
the same steps of FedAvg, except at the 10th step. In Fed-
Prox, the local surrogate of the global objective function of
FedAvg has several changes. Instead of minimizing a func-
tion F (.), the surrogate objective to be minimized of FedProx
is h(w,wt) = Fi(w) +

µ
2 ||w − w

t||2 .

According to (Sahu et al., 2019), the proximal term given by
µ was beneficial in two aspects. The first one addresses the
issue of statistical heterogeneity by restricting the local up-
dates to be closer to the central model without any need to
manually set the number of local epochs.

Algorithm 3 Federated Proximal Term

Input: Average Iterations T , Learning rate η, Epochs
E, Initial weights w0, Number of nodes N , Number of
samples in nodei ni, Proximal Term µ
Output: Global weights wt+1

i
1: for t = 1, 2, . . . T − 1 do
2: The server sends W t to nodes
3: for i = 1, 2, . . . N do
4: Using ni, each device i finds wt+1

i which is an
t-inexact minimizer of wt+1

i ≈ argminwh(w,w
t) =

Fi(w) +
µ
2 ||w − w

t||2
5: Ech device sends wt+1

i back to server
6: end for
7: The server aggregates weights as wt+1 =

∑N
t=1 w

t+1
i

N
8: end for

The second beneficial aspect refers to safely incorporating
variable amounts of local work resulting from different com-
putational resources on nodes. Due to different lengths of
trajectories, different system resources of airplanes and high

performance requirements, FedProx has been chosen for our
experiments.

5.2. Decentralized collaborative scenario selection

The global models of collaborative scenarios described in the
Table 2 were trained using the FedAvg algorithm to choose
the best data partition for future evaluations. Global mod-
els illustrated in the Figure 4 and described on Table 3 was
trained with a number of iterations T = 12, a learning rate
η = 0.001 and a maximum number of E = 180. Here, we
also used an early stopping callback with patience = 10 to
prevent problems related with over fitting.

Figure 4. FedAvg using different N Nodes

The horizontal axis of the Figure 4 represents the number of
iteration T , while the vertical axes represents error predic-
tions of global models on MAE values. Error predictions of
global models were evaluated using all trajectories of the test-
ing dataset. In this figure, a data partition on 4 nodes is the
best collaborative scenario, because it exhibits better MAE
values than the other scenarios. Also, in the Table 3, the sec-
ond collaborative scenario obtained less error predictions on
less T number of iterations. Thus, this scenario was consid-
ered to evaluate the FedProx algorithm.

Using the FedAvg algorithm, all the decentralized scenarios
described in Table 3 improved the performance of the central-
ized scenario at iteration T . However, there is no procedure
to take the best prediction model at a T iteration which is not
previously known.

5.3. Decentralized collaborative results

The experiments described in the Table 3 show that Turbofan
datasets can be used on decentralized collaborative scenarios,
but do not show FedAvg as the best decentralized collabora-
tive algorithm. In Figure 5, the confidence principle has been
severally affected because prediction curves oscillate around
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Scenario Nodes Less Prediction Error
MAE MSE RMSE T

Centralized 1 18.13 698.06 83.56 1
1st Decentralized 2 17.17 554.00 23.53 11
2nd Decentralized 4 16.41 437.14 20.90 3
3th Decentralized 8 18.70 572.43 23.92 3

Table 3. Collaborative Scenarios Results

an optimal prediction errors referred in the group of columns
related to Errors on the Table 3. Thus, we consider the use
of FedProx algorithm to analyze the convergence curve of the
RUL prediction.

Principles of FedProx are based on the model convergence
along time without any need to manually set the number of
local epochs. Hence, we evaluated to FedAvg algorithm using
a same number of E epochs to train nodes models described
on the second decentralized scenario.

The prediction performance was seriously affected after set-
ting the same number ofE epochs for local training per node.
The curves in Figure 5 correspond to the use of FedAvg with
different number of epochs (20 and 60 Epochs) for local train-
ing. The blue curve uses different epochs to train each node
model and an early stopping callback configuration with a pa-
tience of 10. The number of epochs for green and red curves
were set to 20 and 60, respectively.

Figure 5. FedAvg using different E Epochs and N = 4

The number of epochs for green and red curves in Figure 5
were obtained after the training experience of the blue curve.
In an initial training iteration T = 0 of blue curve, each
node process data along approximately 60 epochs to train
its model. In the other hand, in a training iteration T > 3,
each node process data along approximately 20 epochs to
train its model. We intuitively considered setting the num-
ber of epochs to E = 20 to minimize prediction errors of the
global model throughout short prediction error minimization
on each node.

5.3.1. Convergence of prediction error

In Figure 6, global models trained using different µ values
on the FedProx algorithm were compared with global models
trained using different number of epochs on the FedAvg al-
gorithm. Here, The prediction error curves of FedAvg were
previously illustrated in the Figure 5.

Figure 6. FedAvg vs FedProx

To obtain each prediction error curve illustrated in Figure 6,
the global model of the second decentralized scenario was
trained and evaluated in T = 60 iterations, process which
took approximately 7 hours per curve. The rest of the training
parameters and the computational resources were referred in
the section 4.1, configurations, which were used to train the
model of the centralized scenario.

The curve named ”FedAvg early stop” shows the prediction
errors which are possible to obtain, while the curve ”FedAvg
20 Epochs” used the same E of FedProx curves. FedProx al-
gorithm was evaluated using different µ values between zero
and one. Nevertheless, Figure 6, contains more curves using
0 < µ ≤ 0.01 because using µ > 0.01 curves presented more
oscillations, being the orange curve an example of them.

Over these experiments, we observed that using µ ∼ 0.001,
prediction error curves takes similar values in comparison
with the model trained on the centralized scenario. It can be
observed after comparing the cyan curve with the blue curve.
Here, FedProx curve not only achieved prediction errors of
FedAvg curve but also presented less oscillations after 53 T
iterations.

6. CONCLUSIONS AND FUTURE WORK

Experiments presented in this paper show that it is possi-
ble to achieve similar RUL prediction errors using Turbofan
datasets in decentralized collaborative scenarios. FedAvg al-
gorithm was able to achieve similar prediction errors in fewer
aggregation iterations than FedProx but presenting uncertain
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predictions along time. On the other hand, using FedProx, the
prediction error curve progressively decreases, taking stable
error predictions if µ is chosen adequately. However, found-
ing an ideal µ value may take several tests and federated iter-
ations.

In our experiments, FedProx required some federated itera-
tions to obtain a stable prediction error. However, we consider
that it is possible to take the same results using decentral-
ized collaborative algorithms which consider the aggregation
of deep learning models, e.g, Federated Matched Averaging
(FedMA).

NOMENCLATURE OF PHM
EoL End of Life
MAE Mean Absolute Error
MSE Mean Squared Error
RC Initial constant value of RUL
RMSE Root Mean Squared Error
RUL Remaining Useful Life
ˆRUL Remaining Useful Life predicted

SoF Start of Failure
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