
A Dual-Stream architecture based on Neural Turing Machine and
Attention for the Remaining Useful Life Estimation problem

Alex Falcon1,2, Giovanni D’Agostino1, Giuseppe Serra1, Giorgio Brajnik1, and Carlo Tasso1

1 Artificial Intelligence Laboratory - Università degli Studi di Udine, Udine, Italy
falcon.alex @ spes.uniud.it

dagostino.giovanni @ spes.uniud.it
giuseppe.serra @ uniud.it
giorgio.brajnik @ uniud.it

carlo.tasso @ uniud.it

2 Fondazione Bruno Kessler, Trento, Italy

ABSTRACT

Estimating in a reliable way the Remaining Useful Life (RUL)
of a mechanical component is a fundamental task in the field
of Prognostics and Health Management (PHM). In recent
years a greater availability of high quality sensors and easi-
ness of data gathering gave rise to data-driven models based
on deep learning for this task, which has recently seen the
introduction of “dual-stream” architectures. In this paper we
propose a dual-stream architecture to address the RUL esti-
mation problem through the exploitation of a Neural Turing
Machine (NTM) and a Multi-Head Attention (MHA) mecha-
nism. The NTM is a content-based memory addressing sys-
tem which gives each of the streams the ability to access to
and interact with the memory and acts as a fusion technique.
The MHA is an attention mechanism added as a mean for our
architecture to identify the existing relations between differ-
ent sensor data in order to reveal hidden patterns among them.
To evaluate the performance of our model, we considered the
C-MAPSS dataset, a benchmark dataset published by NASA
consisting of several time series related to the life of turbofan
engines. We show that our approach achieves the best predic-
tion score (which measures the safety of the predictions) in
the available literature on two of the C-MAPSS subdatasets.

1. INTRODUCTION

The estimation of the Remaining Useful Life (RUL) of a me-
chanical device is one of the most intensively studied prob-
lems in the field of Prognostics and Health Management
(Zheng, Ristovski, Farahat, & Gupta, 2017); such problem
consists in predicting whether a machine is going to have a

Alex Falcon et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

failure and, if so, when such a failure is going to occur. Such
knowledge is fundamental in order to identify the devices that
are more prone to issues in the short term. Identifying such
devices in advance helps scheduling their maintenance and
allows containing the productivity losses caused by both their
downtime and by unexpected failures (Elsheikh, Yacout, &
Ouali, 2019; An, Choi, & Kim, 2018).

The approaches used in order to estimate the RUL of a me-
chanical device are typically divided among three categories:
model-based approaches, data-driven approaches, and hybrid
combinations of the former two (Lebold & Thurston, 2001;
Si, Wang, Hu, & Zhou, 2011). Predictions made with model-
based approaches (also called physics-based approaches) are
based on the design of a physical model simulating the me-
chanical behaviour of the analyzed machine or individual com-
ponent. Given their nature, model-based approaches are of-
ten unfeasible and too resource-consuming when the piece of
equipment analyzed is complex (Q. Wang, Zheng, Farahat,
Serita, & Gupta, 2019). Data-driven models base their esti-
mation of the RUL of a mechanical device on the application
of techniques such as pattern recognition and machine learn-
ing to a large amount of data (Mosallam, Medjaher, & Zer-
houni, 2016; An et al., 2018; Si et al., 2011). On one hand,
data-driven methods do not require an extensive knowledge
of the target physical device (Eker, Camci, & Jennions, 2012;
Heng, Zhang, Tan, & Mathew, 2009); on the other hand, data-
driven approaches are useful only when data about run-to-
failure cases of the analyzed device are available or can be
easily collected (Y. Fan, Nowaczyk, & Rögnvaldsson, 2019).

In recent years, thanks to the advancements made in the field
of both machine learning and deep learning, data-driven ap-
proaches based on the usage of artificial neural networks such
as Convolutional Neural Networks (CNN), Long Short-Term

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Memory networks (LSTM), and Recurrent Neural Networks
(RNN) have became more widespread (Babu, Zhao, & Li,
2016; Zheng et al., 2017). Initially, such types of neural
networks were arranged sequentially in order to develop an
architecture suitable for the RUL estimation problem; such
architectures are commonly referred to as “single-stream ar-
chitectures”. More recently though it has been shown that
the performance of such architectures are surpassed by the
ones obtained by architectures in which the neural networks
are organized in two paths; these architectures are referred
to as “dual-stream architectures” (Al-Dulaimi, Zabihi, Asif,
& Mohammadi, 2019; J. Li, Li, & He, 2019). In such ar-
chitectures the paths have no correlation between each other,
but the output of each path affects the final prediction (J. Li,
Li, & He, 2019). Dual-stream architectures were developed
in order to take advantage of the different features of dis-
tinct types of neural networks by combining such features.
To do so, dual-stream architectures are made of two different
paths which compute different functions to learn heteroge-
neous hidden characteristics of the input data. In each path
there can be one or more types of networks concatenated to
each other; the pieces of information obtained in each path are
then joined together to learn a rich data representation which
is then used to estimate the RUL of the mechanical device the
considered input data refers to.

In this paper, following the aforementioned advancements,
we propose a novel Dual-stream architecture that includes
two components: a Multi-Head Attention mechanism and a
Neural Turing Machine memory module. Differently from
what has been previously presented in the literature, we in-
troduce the MHA component and we locate it before the two
streams of neural networks used to estimate the RUL; such
design decision was taken in order to take advantage from the
fact that the MHA allows a deep learning model to jointly
attend to information from different representation spaces at
different positions, which in turn allows the model to identify
the existing relations between the different sensors that might
prove helpful in revealing hidden patterns. Moreover, to boost
the mnemonic capabilities of the neural networks used in our
approach, we propose to use a Neural Turing Machine, which
was introduced as a working memory system and it was hence
used in our architecture to provide a shared memory to the
neural networks used in each of the two streams. Such neu-
ral networks can thus interact with the NTM, much like the
central processor of a computer can write data on and read
data from a working memory. NTMs can thus be seen as
a fusion technique exploiting the information extracted from
the two streams in our architecture in order to provide use-
ful features for the subsequent RUL estimation. NTMs have
previously been applied with success in research fields con-
cerning sequence learning (Lüders, Schläger, & Risi, 2016;
Greve, Jacobsen, & Risi, 2016; Jan & Kordı́k, 2016) and lan-
guage understanding (Peng & Yao, 2015). To the best of our

knowledge, the impact of NTMs applied to the field of pre-
dictive maintenance has yet to be studied.

Our major contributions can be summarized as follows:

– We propose a novel neural network dual-stream archi-
tecture for the task of RUL estimation, which integrates
a Neural Turing Machine and a Multi-Head Attention.
Thanks to self-attention mechanisms, the MHA helps the
model to focus on the most relevant input data and to
combine each of the features with the others, identifying
useful relations among them.

– By exploiting the shared memory and the controller net-
work provided by the NTM, the model is able to selec-
tively store, manipulate, and retrieve useful information
from the features extracted in both paths of the network,
thus providing to the model a useful information fusion
technique.

– We achieve a new state-of-the-art score for FD001 and
FD003 datasets.

The following sections of the paper are organized as follows:
Section 2 presents the setting of the RUL estimation problem
we tackled and the tools used in our approach. Section 3 de-
scribes the proposed approach, while in Section 4 the results
of our experiments are illustrated on a benchmark dataset. Fi-
nally, Section 5 concludes the paper with a discussion of the
experimental results obtained and some opportunities for fu-
ture work.

2. RELATED WORK AND THEORETICAL BACKGROUND

Initial machine learning approaches for the RUL estimation
problem were based on architectures relying on a Multi-Layer
Perceptron (MLP) and a Recurrent Neural Network (RNN)
(Heimes, 2008). In more recent years approaches relying
on more complex types of artificial neural network were pro-
posed. For instance, both Babu et al. (Babu et al., 2016) and
Li et al. (X. Li, Ding, & Sun, 2018) relied on architectures
based on Convolutional Neural Networks. Furthermore, ap-
proaches based on the application of LSTM networks (and
their Bidirectional variant) were introduced in order to take
full advantage of the sequential nature of the data of the C-
MAPSS dataset, as seen in (Zheng et al., 2017; A. Zhang
et al., 2018; J. Wang, Wen, Yang, & Liu, 2018; Elsheikh et
al., 2019). All the aforementioned approaches rely on single
stream architectures.

Dual-stream architectures for RUL estimation were recently
introduced by Li et al. and also by Al-Dulaimi et al. in (J. Li,
Li, & He, 2019; Al-Dulaimi et al., 2019). In these architec-
tures, the available time series of data are usually cut time-
wise in order to obtain shorter windows of a fixed size; such
windows are then given in input to each of the streams of
the architecture. In the dual-stream architecture proposed
by Li et al. one LSTM network is placed on one of the two

2



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

stream, while the other one is constituted by a CNN followed
by one pooling layer and a flatten layer; the feature vectors
given in output by each stream are then combined through an
element-wise sum and given in input to another LSTM fol-
lowed by a Feedforward layer. The dual-stream architecture
of Al-Dulaimi et al. relies instead on three stacked LSTM net-
works in the first stream and by three CNNs alternated with
two pooling layers in the second one. The feature vector in
the CNN path goes through a flatten layer and is then joined
to the vector of the LSTM path by means of a fusion layer
comprising three connected Feedforward layers. For this pa-
per we adopted an approach based on a dual-stream architec-
ture because in literature such architectures achieved better
results than single-stream ones; moreover, we also introduce
two components which impact has not been studied exten-
sively in literature: the Multi-Head Attention and the Neural
Turing Machine. Such components are respectively used in
order to weigh the input data and to boost the sequence en-
coding performed by the neural networks used.

Neural Turing Machines (Graves, Wayne, & Danihelka, 2014)
can be seen as a sequence processing model inspired by Tur-
ing Machines or the interaction between the Central Mem-
ory and the Processing Unit found in personal computers.
NTMs were conceived as a way to enrich the capabilities of
standard recurrent networks to simplify the solution of al-
gorithmic tasks by means of a large addressable memory,
by analog to Turing’s enrichment of finite-state machines by
means of an infinite memory tape. Given their ability to deal
with sequential data, NTMs and neural networks augmented
with NTMs have been adopted with success in many differ-
ent fields, such as Video Question Answering (C. Fan et al.,
2019) and Natural Language Processing (Peng & Yao, 2015).

The mechanism of Multi-Head Attention was introduced by
Vaswani et al. in (Vaswani et al., 2017) in order to allow a
model to jointly attend to information from different repre-
sentation subspaces at different positions. Such mechanism
exploits the concept of attention (Bahdanau, Cho, & Bengio,
2014) in a parallel fashion, giving the model the ability to at-
tend to diverse non-overlapping subsets of the input data us-
ing multiple heads. This mechanism found its use in several
Natural Language Processing-related fields, such as Neural
Machine Translation (Vaswani et al., 2017) and Text Summa-
rization (J. Li, Zhang, et al., 2019).

3. PROPOSED APPROACH

In our architecture (illustrated in Fig. 1), the LSTM-based
path is used to extract temporal features which, for every time
step, represent a summary of the evolution of the value mea-
sured by the considered sensors. Simultaneously the CNN-
based path is used to extract a single local feature which is
representative for the sensors at a certain time step. In our
approach the sensor data is first given in input to a Multi-

Head Attention (MHA) whose output is then fed into the two
streams. Such design decision was made to weigh the sen-
sor data with self-attentive scores: the MHA computes a rep-
resentation of the raw sensor data based on the interaction
between different projections of the same input data. This
allows the neural networks in the two paths to focus on the
most meaningful portions of the input.

In the rest of the paper, we identify the preprocessed input
data as S ∈ Rtl×F , where tl and F are, respectively, the size
of the temporal axis and the features axis. We also call h1 and
h2, respectively, the two hidden sizes used in the architecture.
We call hc the number of features computed by each filter of
the CNN module.

3.1. The Multi-Head Attention

Given the variety of physical measurements (for instance the
engine temperature and intake pressure) captured by the sen-
sors, in the proposed approach we added a module with the
aim to identify the existing relations between the different
sensors: the Multi-Head Attention (Vaswani et al., 2017).
This mechanism is strongly based on the concept of atten-
tion (Bahdanau et al., 2014), which is used to identify a net-
work that gives the whole architecture the ability to focus
(i.e. to give more attention) on specific parts of the consid-
ered data. In (Vaswani et al., 2017), the attention function
is applied in parallel on different subsets of the input data:
after fixing the number h of attention functions (which are
implemented using h different attention heads), the first step
performed by this mechanism consists in splitting the input
matrix S ∈ Rtl×F in h equal parts, obtaining S1, . . . , Sh ∈
Rtl×F

h . Each of these sections will then be given in input
to a different attention head, which will calculate the self-
attention on it.

In more detail, the Multi-Head Attention is performed as fol-
lows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

(1)
where WO is a matrix of learnable weights in RF×F . In our
setting Q, K, and V are the same sensor data (after prepro-
cessing), i.e. Q = K = V = S ∈ Rtl×F , this because we
want to use the MHA as a way to compute a representation
of the sensor data which takes into account several projec-
tions of the same data, in order to understand the underlying
relations between them.

In order to calculate the self-attention, each of the h heads
takes in input a section Si of the input split vector. In (Vaswani
et al., 2017), the headi is defined as:

headi(Qi,Ki, Vi) = Attention(QiW
Q
i ,KiW

K
i , ViW

V
i )

(2)
where WQ

i , WK
i , and WV

i represent matrices of learnable

3



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 1. Graphical overview of the proposed approach. The time series are first cut into shorter windows and then fed to
a MHA. The output of the Multi-Head Attention module is then given as input to the networks in each stream. The features
extracted by the LSTMs of the first stream and by the CNN of the second one are concatenated to the augmented features
computed by the NTM module. At the end, two stacked Feedforward networks are used to map the extracted features to a
sequence of RUL values.

weights inRF
h×h1 . In our case, since Q = K = V and from

the sensor data we obtained S1, . . . , Sh, we have that Qi =
Ki = Vi = Si ∈ Rtl×F

h , and QiW
Q
i , KiW

K
i , ViWV

i ∈
Rtl×h1 .

In (Vaswani et al., 2017), the Attention function is defined
as follows:

Attention(q, k, v) = softmax(
qkT√
dk

)v (3)

where q, k, and v represent query, key, and value, and dk
represents the size of the key, i.e. the features dimension. In
our case q, k, and v are three different projections of one of
the sections obtained by splitting the input, i.e. q = SiW

Q
i ,

k = SiW
K
i , and v = SiW

V
i , and dk = F

h .

Finally, the output So ∈ Rtl×F of the Multi-Head Attention
module is given in input to the networks in each path of the
dual-stream architecture.

3.2. The Neural Turing Machine

In order to schedule the maintenance of a mechanical device,
the time series that a RUL estimation model has to analyze
are often constituted by long sequences of data. Solutions
based on LSTM networks, despite their capability of mem-
orizing information regarding sequences of data, might not
be able to encode all the patterns found in such long time
series. Because of this, in order to further boost the mem-
ory capabilities of the networks used in the proposed archi-
tecture, we coupled each stream with a shared NTM. Such
choice has two consequences: first of all, the availability of
an external memory (where the processed hidden features can
be selectively stored, manipulated, and retrieved) can help the

model to better understand the hidden patterns in the data and
thus improve the capabilities of the subsequent RUL map-
ping module. Secondly, the NTM acts as a fusion technique
by combining the features extracted from the two heteroge-
neous streams, which can effectively help in the identification
of the aforementioned hidden patterns. The NTM used in our
approach is based on the one implemented by Fan et al. in
(C. Fan et al., 2019), which has been customized in order to
fit to our approach for the RUL estimation problem.

The Neural Turing Machine is constituted by a memory mod-
ule and a controller unit, where the memory module is made
up of memory slots M = [m1,m2, ...,mh2

], where mi ∈
R1×h1 , and a memory hidden state ht ∈ R1×h1 (updated at
each time step), while the controller unit consists of a Feed-
forward network. As visible in Figure 2 the inputs to the
memory at time step t are represented by the vector ot ∈
R1×(h2+hc), which consists of the concatenation of the fea-
tures extracted from each of the two streams of our archi-
tecture. The NTM supports three types of operations: write
operations, read operations, and hidden state updates.

Write operation. The content to be written into the memory
at time t is represented by the content vector ct ∈ R1×h1 ,
in which the features extracted from the two streams are
transformed and combined with the previous memory hidden
state in order to maintain some of the information previously
stored in the memory and introduce some of the new knowl-
edge gathered from the input data. The content vector is com-
puted as follows:

ct = σ(otWoc + ht−1Whc + bc) (4)

where ot ∈ R1×(h2+hc) represents the current input vec-

4



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

tor, and ht−1 ∈ R1×h1 the previous hidden state. Woc ∈
R(h2+hc)×h1 andWhc ∈ Rh1×h1 represent trainable weights,
and bc ∈ Rh1 represents the bias. To write into the mem-
ory slots of the NTM, attention weights are defined as αt =
{αt,1, . . . , αt,i, . . . , αt,h2

} such that:

at = va tanh(ctWca + ht−1Wha + ba) (5)

and

αt,i =
exp(at,i)∑h2

j=1 exp(at,j)
for i = 1, ..., h2 (6)

satisfying
∑

i αt,i = 1. Wca ∈ Rh1×h2 , Wha ∈ Rh1×h2 ,
va ∈ R representing the trainable weights, and ba ∈ Rh2

representing the bias. Each memory slot mi is then updated
in the following way:

mi = αt,ict + (1− αt,i)mi for i = 1, ..., h2 (7)

Read Operation. The next step for the memory module is
to read from the memory slots M. The normalized attention
weights βt = {βt,1, . . . , βt,i, . . . , βt,h2

} are such that:

bt = vb tanh(ctWcb + ht−1Whb + bb) (8)

and

βt,i =
exp(bt,i)∑h2

j=1 exp(bt,j)
for i = 1, ..., h2 (9)

where Wcb ∈ Rh1×h2 , Whb ∈ Rh1×h2 , and vb ∈ R repre-
sent the trainable weights, and bb ∈ Rh2 represents the bias.
The content rt ∈ R1×h1 read from the external memory is
the weighted sum of each memory slot content:

rt =

h2∑
i=1

βt,i ·mi (10)

Hidden State Update. After performing the write and read
operations, the final task of the external memory at the t-th
iteration is to update its hidden state ht as following:

ht = σ(otWoh + rtWrh + ht−1Whh + bh) (11)

where Woh ∈ R(h2+hc)×h1 , Wrh ∈ Rh1×h1 , and Whh ∈
Rh1×h1 represent trainable weights, and ba ∈ Rh1 represents
the bias.

3.3. The Dual-stream module

LSTM-based path. The data usually considered in the PHM
field is typically composed of long time series of data mea-
sured by sensors. To model temporally-related sequential
data and the evolution of its intrinsic characteristics, Recur-
rent Neural Networks have shown good performance in dis-
covering hidden patterns in data. Given the sequential nature
and the significant length of the time series data at hand, for

Figure 2. The external memory of our architecture at time t
with memory slots M = [m1,m2, ...,mh2 ], read and write
heads αt and βt, input vector ot, and hidden state ht.

the first path of our architecture we exploited an LSTM-based
network, similarly to what has been done in other approaches
found in literature (Al-Dulaimi et al., 2019; Wu, Yuan, Dong,
Lin, & Liu, 2018; J. Li, Li, & He, 2019). Such kind of neu-
ral networks were introduced in (Hochreiter & Schmidhuber,
1997) in order to mitigate the problems afflicting other kinds
of RNN when handling long series of data, namely the van-
ishing and exploding gradients problems (Bengio, Simard, &
Frasconi, 1994). Based on our preliminary experiments and
given the output of the Multi-Head Attention So, in the first
stream of our architecture we use two stacked LSTM net-
works. The output of this path is defined as Lo ∈ Rtl×h2

and consists of the sequence of hidden states computed by
the second LSTM, given in input the hidden states of the first
LSTM.

CNN-based path. In the second path of our architecture we
decided to opt for a single Convolutional Neural Network;
the rationale behind this choice is that, while the LSTM path
focuses on and keeps track of the evolution throughout time
of the sensor measurements, the CNN path focuses more on
what is being measured at a certain time step t. The CNN we
are using does so by computing a single value for each time
step, which is representative of the situation at that precise

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

time step and it is independent of what was measured in the
other time steps. The CNN takes in input a reshaped time
window of size tl×F

p ×p (with tl being the size of the original
time window) and outputs a feature vector of size tl×1. This
is obtained by exploiting tl filters of size F

p × p, while both
the padding size and the stride are set to zero.

3.4. Loss function

To train the model and obtain optimal weights and biases,
we are considering the Mean Square Error (MSE) as the loss
function to minimize. It is defined as:

MSE =
1

N

N∑
i=1

(RUL′i −RULi)
2 (12)

where N represents the total number of testing data samples
and RUL′i and RULi represent respectively the estimated
RUL and the groundtruth RUL, with respect to the i-th data
point.

3.5. Data preprocessing

Typical time series exploited in PHM use different scales, are
not labeled, and can be extremely long. To deal with this, the
data is preprocessed by following three steps: by normalizing
the data by means of a Min-Max feature scaling, by defining
a target function for the RUL and by using it to label the data,
and by cutting the time series using a sliding time window
approach.

Feature Scaling. Time series of sensor measurements usu-
ally range between multiple scales. A normalization step was
hence performed to convert all these features into a common
scale. In particular, the value of a data point X of a certain
feature is scaled to a new value X ′ through Min-Max feature
scaling, which is defined as:

X ′ =
2(X −Xmin)

Xmax −Xmin
− 1 (13)

where Xmin and Xmax represent respectively the minimum
and maximum value of the feature. By doing so, all the data
points vary within the range [−1, 1].

RUL Target Function. To represent the remaining useful
life of an engine we apply the piece-wise linear RUL target
function proposed in (Heimes, 2008), which is the standard
approach to deal with this problem (Babu et al., 2016; Zheng
et al., 2017; Al-Dulaimi et al., 2019). In particular, we limit
the maximum value of the RUL function to 125, as is done
in (Al-Dulaimi et al., 2019; J. Li, Li, & He, 2019). This
limitation is made in order to prevent the learning algorithm
from overestimating the RUL; the piece-wise linear function
is often regarded as the most plausible model to represent the
degradation of an engine, as the degradation of the analyzed
system typically starts only after a certain amount of usage

Dataset FD001 FD002 FD003 FD004

Train trajectories 100 260 100 248
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

Table 1. Summary of the subdatasets of the C-MAPSS
dataset.

(Heimes, 2008; Babu et al., 2016).

Sliding time window. The sliding time window approach is
used to extract data so that the input of the prediction model
has a fixed length; our approach is in line with the ones fol-
lowed in other works, such as (Al-Dulaimi et al., 2019) and
(J. Li, Li, & He, 2019). The signal has F features and the sig-
nal length is L; the data is hence extracted by sliding a time
window of size tl, and the sliding step size equals to one. The
size of the array extracted each time by the time window is
tl × n (length of the time window × numbers of features),
the total number of arrays is L − tl (life span - time window
length), and the output for each window is the corresponding
series of RUL values.

4. EXPERIMENTAL FINDINGS

For our experiment and problem setting, we considered the
well-known NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulations) Turbofan Engine Degrada-
tion Simulation Dataset (Saxena & Goebel, 2008). It includes
four subdatasets called FD001, FD002, FD003, and FD004,
consisting of multiple multivariate time series. The data of
such time series come from the sensors of different engines
of the same type. A summary about the number of time series
(called trajectories), fault conditions, and operational condi-
tions in the datasets is available in Table 1. During our exper-
iments, we ignored some of the raw input features because of
their null variance. In particular, we kept 14 sensor measure-
ments out of the total 21 sensors, whose indices are 2, 3, 4,
7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21, this in order to be
comparable with other works using the same approach, e.g.
(Al-Dulaimi et al., 2019) and (J. Li, Li, & He, 2019).

It should also be noted that datasets FD002 and FD004 in-
volve the presence of six operational conditions, related to the
value of the three operational settings. As reported in (Saxena
& Goebel, 2008), these conditions need to be taken into ac-
count to have a better prediction capability since the engine
behaves differently based on the condition in which it is oper-
ating. Moreover, the raw input data are normalized depending
on the condition in which they have been taken. To find the
condition in which a sample was taken, we used the cluster-
ing algorithm KMeans (MacQueen, 1967) with n = 6. In this
way, the algorithm can identify and isolate the six clusters,

6



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

represented by the six possible combinations of the values of
the three operational settings available in the dataset. Each
sample in datasets FD002 and FD004 is augmented by six
features representing the one-hot encoding of the operational
condition in which the sample was taken: in such a way the
total amount of features for these two datasets is 20. A similar
approach was also reported in (Zheng et al., 2017). Finally,
we chose to use different sliding window lengths for each
dataset, based on the minimum length of the available time
series: for the data of the subdataset FD001 we set the win-
dow length tl = 31, for FD002 tl = 21, for FD003 tl = 38,
and for FD004 tl = 19. By doing so, we are able to obtain
17631, 48559, 21020, and 56767 windows, respectively, for
FD001, FD002, FD003, and FD004.

4.1. Model performance evaluation

We are considering two objective metrics to test the perfor-
mance of the model: the Scoring Function, and the Root
Mean Square Error (RMSE).

Scoring Function. The Scoring Function was initially pro-
posed in (Saxena & Goebel, 2008) and is defined as:

S =

N∑
i=1

si, where si =

{
e

−hi
13 − 1, hi < 0

e
hi
10 − 1, hi ≥ 0

(14)

where S is the computed score, N is the total number of test-
ing data samples, and hi = RUL′i − RULi is the differ-
ence between the estimated RUL and the groundtruth RUL,
with respect to the i-th data point. This Scoring Function
was designed to favor a safer, early prediction (i.e. estimating
a smaller RUL value with respect to the groundtruth), since
late prediction may result in more severe consequences.

Root Mean Square Error (RMSE). The RMSE is a met-
ric commonly used to evaluate the prediction accuracy of the
RUL of a mechanical device; such metric gives equal weights
for both early and late predictions. RMSE is defined as:

RMSE =

√√√√ 1

N

N∑
i=1

(RUL′i −RULi)2 (15)

where N is the total number of testing data samples, RUL′i
and RULi represent respectively the estimated RUL and the
groundtruth RUL, with respect to the i-th data point.

4.2. Model implementation

For the Multi-Head Attention, we chose to set the number
of heads h to 2. Such choice was taken because, having 14
features, we could only pick between 7 and 2 heads and the
latter option gave us better results in the testing phase. Simi-
larly, there are 20 features for datasets FD002 and FD004, and
again we chose to use 2 heads. For the LSTM-based path, the
hidden sizes of the two LSTM networks were set to 32 and

16 respectively. The LSTM states and biases were initialized
to zero, whereas the weights were sampled by using a normal
distribution with mean and standard deviation values set to
0 and 0.01 respectively. As previously stated, for the CNN-
based path to output a single value per time step, i.e. hc = 1,
we set the size of the filters to F

p × p with p = 2, which
means that the filter sizes were set to 7 × 2 for FD001 and
FD003, and to 10 × 2 for FD002 and FD004, while both the
padding size and the stride were set to zero. Both the input
and output channels were set to the length of the window size
tl, this in order to obtain a sequence of values as long as the
time windows itself. The dimension of the memory bank in
the NTM was set to h1×h2 = 32×16, and finally the number
of neurons in the two Feedforward networks were set to 8 and
1 respectively.

We chose an initial learning rate of 0.005, decaying it by 0.8
every 15 training epochs with a maximum amount of 50 train-
ing epochs. We are using the mini-batch gradient descent
training technique with a batch size of 100 for the FD001 and
FD003 subdatasets, while for FD002 and FD004 the batch
size was set to 259 and 248 respectively. The RMSProp al-
gorithm (Hinton, 2014) has been used for optimization, with
the default values for momentum and weight decay. We used
PyTorch 1.3.0 to implement our model.

4.3. Results discussion

The results of our experiments are shown and compared to
other single-stream and double-stream architectures for RUL
estimation in Table 2. Each result reported in such table is
the best one among the five runs. The standard deviation σ of
the results obtained in the five test runs for each dataset are:
σ = 2.847 for FD001, σ = 42.677 for FD002, σ = 4.210
for FD003, and σ = 67.246 for FD004. Such results were
obtained by running our model for 5 times on each of the
subdatasets.

As shown in Table 2, our model learns how to handle situa-
tions with one operating condition and multiple fault condi-
tions better than all the other models (as suggested by the
score obtained on FD001 and FD003), by overcoming the
other competitors by a sensible margin.

Despite the great improvements obtained in datasets FD001
and FD003, the same does not apply to situations with mul-
tiple operating conditions, that is FD002 and FD004. Yet, it
must be noted that the same result can be found in all the mod-
els proposed in the literature, and not only in ours: in fact, the
scores obtained on these two datasets are higher than those
reported for FD001 and FD003 in all the considered architec-
tures. A strong motivation for such lower performance may
be related to the fact that FD002 and FD004 have many time
series whose RUL is higher than the maximum value used to
label the training data, forcing the model to make an early
prediction for these time series. This not only shows that the

7



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Methods Year Score
FD001 FD002 FD003 FD004

MLP (Babu et al., 2016) (ss) 2016 1.80× 104 7.80× 106 1.74× 104 5.62× 106

SVR (Babu et al., 2016) (ss) 2016 1.38× 103 5.90× 105 1.60× 103 3.71× 105

RVR (Babu et al., 2016) (ss) 2016 1.50× 103 1.74× 104 1.43× 103 2.65× 104

CNN (Babu et al., 2016) (ss) 2016 1.29× 103 1.36× 104 1.60× 103 7.89× 103

LSTM (Zheng et al., 2017) (ss) 2017 3.38× 102 4.45× 103 8.52× 102 5.55× 103

ELM (C. Zhang, Lim, Qin, & Tan, 2016) (ss) 2017 5.23× 102 4.98× 105 5.74× 102 1.21× 105

DBN (C. Zhang et al., 2016) (ss) 2017 4.18× 102 9.03× 103 4.42× 102 7.95× 103

MODBNE (C. Zhang et al., 2016) (ss) 2017 3.34× 102 5.59× 103 4.22× 102 6.56× 103

RNN (X. Li et al., 2018) (ss) 2018 3.39× 102 1.43× 104 3.47× 102 1.43× 104

DCNN (X. Li et al., 2018) (ss) 2018 2.74× 102 1.04× 104 2.84× 102 1.25× 104

BiLSTM (J. Wang et al., 2018) (ss) 2018 2.95× 102 4.13× 103 3.17× 102 5.43× 103

BHLSTM (Elsheikh et al., 2019) (ss) 2019 3.76× 102 - 1.43× 103 -
HDNN (Al-Dulaimi et al., 2019) (ds) 2019 2.45× 102 1.28× 103 2.87× 102 1.53× 103

DAG (J. Li, Li, & He, 2019)* (ds) 2019 2.29× 102* 2.73× 103* 5.35× 102* 3.37× 103*
Our approach (ds) 2020 2.07× 102 6.03× 103 2.75× 102 4.80× 103

Table 2. Comparison with the literature; (ss) and (ds) indicates whether the architecture is single- or double-stream.

scientific community is still debating which value to use to
limit the RUL during training (that is, 125 in our approach
and e.g. in (J. Li, Li, & He, 2019; Al-Dulaimi et al., 2019),
or 130 in (Babu et al., 2016; A. Zhang et al., 2018)), it also
shows that there is another crucial problem, that is the target
RUL function.

Furthermore, we noticed that our approach favors early (and
thus safer) RUL predictions. Figure 3 shows the histogram
of the prediction error (calculated as the difference between
the predicted RUL and the groundtruth, i.e. RUL′i − RULi)
on dataset FD001 and, to show that the proposed approach
favors early predictions, we compare the obtained result with
the histogram shown in (J. Li, Li, & He, 2019), since Li et
al. are the only authors to report such diagram. The blue bars
represent the prediction error of our architecture, while the
orange ones are from (J. Li, Li, & He, 2019). The histogram
shows that overall our solution proposes safer predictions: in
our case there are 20 early predictions, whereas there are only
10 early predictions in (J. Li, Li, & He, 2019). Such obser-
vations seem to support the claim that giving the dual-stream
architecture the ability to access to an external memory im-
proves the safety of the model predictions. But even so, there
is room for improvement; for instance, the tendency of our
system to favor early predictions may be boosted by exploit-
ing custom earliness-oriented loss function, such as the AAE
and ASE loss functions proposed in (Elsheikh et al., 2019).

For completeness, in Figure 4 we also report the histograms
obtained from all the four considered datasets. As previ-
ously mentioned, the histograms for FD002 and FD004 show
* In (J. Li, Li, & He, 2019) the experimental setting is different in the RMSE
evaluation.

Figure 3. Histogram of the prediction error on dataset FD001,
computed as estimated RUL - groundtruth RUL. The blue bars
represent the prediction error of our architecture, while the
orange ones are from the architecture proposed in (J. Li, Li,
& He, 2019).

that there are many early predictions made with a consider-
able error, which main cause is likely related to the target
function which makes it impossible for the network to pre-
dict RUL values higher than the maximum value used during
training. This is likely the main reason for the performance
drop obtained on datasets FD002 and FD004 not only in our
approach, but in all the architectures proposed in literature;
in order to establish whether this explanation is the source
of such issues, further investigations will be made in future
works.

8



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

Figure 4. Histograms showing the distribution of the error (measured as estimated - groundtruth) for the four datasets.

5. CONCLUSIONS AND FUTURE WORK

In this paper we propose a novel approach to the Remaining
Useful Life Estimation problem based on a dual-stream ar-
chitecture preceded by a Multi-Head Attention and coupled
with a Neural Turing Machine. In the experimental section
we highlight how we obtain favorable results with such ap-
proach. In particular, the prediction score measured on the
FD001 and FD003 datasets is the best one among the archi-
tectures our system was compared to. Furthermore, there is
room for future improvements considering that our approach
is the first to use both a Neural Turing Machine and a Multi-
Head Attention mechanism.

ACKNOWLEDGEMENT

The dataset we used is provided by the NASA Ames Prog-
nostics Center of Excellence (https://ti.arc.nasa.gov/tech/dash
/groups/pcoe/prognostic-data-repository/).

REFERENCES

Al-Dulaimi, A., Zabihi, S., Asif, A., & Mohammadi, A.
(2019). A multimodal and hybrid deep neural network
model for remaining useful life estimation. Computers
in Industry, 108, 186–196.

An, D., Choi, J.-H., & Kim, N. H. (2018). Prediction of
remaining useful life under different conditions using
accelerated life testing data. Journal of Mechanical
Science and Technology, 32(6), 2497–2507.

Babu, G. S., Zhao, P., & Li, X.-L. (2016). Deep convo-
lutional neural network based regression approach for
estimation of remaining useful life. In International
conference on database systems for advanced applica-
tions.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural ma-
chine translation by jointly learning to align and trans-
late. arXiv preprint arXiv:1409.0473.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-
term dependencies with gradient descent is difficult.
IEEE transactions on neural networks, 5(2), 157–166.

Eker, Ö. F., Camci, F., & Jennions, I. K. (2012). Ma-
jor challenges in prognostics: study on benchmarking

prognostic datasets. In First european conference of
the prognostics and health management society 2012.
PHM Society.

Elsheikh, A., Yacout, S., & Ouali, M.-S. (2019). Bidirectional
handshaking lstm for remaining useful life prediction.
Neurocomputing, 323, 148–156.

Fan, C., Zhang, X., Zhang, S., Wang, W., Zhang, C., &
Huang, H. (2019). Heterogeneous memory enhanced
multimodal attention model for video question answer-
ing. In Proceedings of the ieee conference on computer
vision and pattern recognition.

Fan, Y., Nowaczyk, S., & Rögnvaldsson, T. (2019). Trans-
fer learning for remaining useful life prediction based
on consensus self-organizing models. arXiv preprint
arXiv:1909.07053.

Graves, A., Wayne, G., & Danihelka, I. (2014). Neural turing
machines. arXiv preprint arXiv:1410.5401.

Greve, R. B., Jacobsen, E. J., & Risi, S. (2016). Evolving
neural turing machines for reward-based learning. In
Proceedings of the genetic and evolutionary computa-
tion conference 2016.

Heimes, F. O. (2008). Recurrent neural networks for remain-
ing useful life estimation. In International conference
on prognostics and health management (phm).

Heng, A., Zhang, S., Tan, A. C., & Mathew, J. (2009). Rotat-
ing machinery prognostics: State of the art, challenges
and opportunities. Mechanical systems and signal pro-
cessing, 23(3), 724–739.

Hinton, G. (2014). The rmsprop optimizer. Retrieved from
http://www.cs.toronto.edu/˜tijmen/csc321/
slides/lecture slides lec6.pdf.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Jan, T., & Kordı́k, P. (2016). Neural turing machine for
sequential learning of human mobility patterns. In
2016 international joint conference on neural networks
(ijcnn).

Lebold, M., & Thurston, M. (2001). Open standards for
condition-based maintenance and prognostic systems.
In Maintenance and reliability conference (marcon)
(Vol. 200).

Li, J., Li, X., & He, D. (2019). A directed acyclic graph net-

9



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

work combined with cnn and lstm for remaining useful
life prediction. IEEE Access, 7, 75464–75475.

Li, J., Zhang, C., Chen, X., Cao, Y., Liao, P., & Zhang, P.
(2019). Abstractive text summarization with multi-
head attention. In 2019 international joint conference
on neural networks (ijcnn).

Li, X., Ding, Q., & Sun, J.-Q. (2018). Remaining useful life
estimation in prognostics using deep convolution neu-
ral networks. Reliability Engineering & System Safety,
172, 1–11.

Lüders, B., Schläger, M., & Risi, S. (2016). Continual learn-
ing through evolvable neural turing machines. In Nips
2016 workshop on continual learning and deep net-
works (cldl 2016).

MacQueen, J. e. a. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth berkeley symposium on mathematical
statistics and probability (Vol. 1).

Mosallam, A., Medjaher, K., & Zerhouni, N. (2016).
Data-driven prognostic method based on bayesian ap-
proaches for direct remaining useful life prediction.
Journal of Intelligent Manufacturing, 27(5), 1037–
1048.

Peng, B., & Yao, K. (2015). Recurrent neural networks with
external memory for language understanding. arXiv
preprint arXiv:1506.00195.

Saxena, A., & Goebel, K. (2008). Turbofan en-
gine degradation simulation data set. NASA Ames
Prognostics Data Repository. Retrieved from
https://ti.arc.nasa.gov/tech/dash/
groups/pcoe/prognostic-data-
repository/#turbofan

Si, X.-S., Wang, W., Hu, C.-H., & Zhou, D.-H. (2011). Re-
maining useful life estimation–a review on the statisti-

cal data driven approaches. European journal of oper-
ational research, 213(1), 1–14.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., . . . Polosukhin, I. (2017). Atten-
tion is all you need. In Advances in neural information
processing systems.

Wang, J., Wen, G., Yang, S., & Liu, Y. (2018). Remain-
ing useful life estimation in prognostics using deep
bidirectional lstm neural network. In 2018 prognos-
tics and system health management conference (phm-
chongqing).

Wang, Q., Zheng, S., Farahat, A., Serita, S., & Gupta, C.
(2019). Remaining useful life estimation using func-
tional data analysis. In 2019 ieee international confer-
ence on prognostics and health management (icphm).

Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Re-
maining useful life estimation of engineered systems
using vanilla lstm neural networks. Neurocomputing,
275, 167–179.

Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., & Hu,
J. (2018). Transfer learning with deep recurrent neural
networks for remaining useful life estimation. Applied
Sciences, 8(12), 2416.

Zhang, C., Lim, P., Qin, A. K., & Tan, K. C. (2016). Multi-
objective deep belief networks ensemble for remaining
useful life estimation in prognostics. IEEE transac-
tions on neural networks and learning systems, 28(10),
2306–2318.

Zheng, S., Ristovski, K., Farahat, A., & Gupta, C. (2017).
Long short-term memory network for remaining useful
life estimation. In 2017 ieee international conference
on prognostics and health management (icphm).

10


