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ABSTRACT

A valuable asset for the improvement of aviation maintenance
is the correct assessment of the aircraft systems health condi-
tion, for a more accurate planning and execution of mainte-
nance routines. As such, the creation of a Prognostic and
Health Management (PHM) system, supported by Condition
Based Maintenance (CBM) can bring important benefits to
the aeronautical field. The ultimate goal of a PHM system
is the correct prediction of the Remaining Useful Lifetime
(RUL) of a certain aircraft system, using the sensors data ex-
tracted during flights. Nevertheless, a relevant stage in the
PHM pipeline concerns the estimation of the system condi-
tion, expressed by the Health Indicator (HI). The HI value re-
flects the health condition of a specific aircraft system, which
can possibly be affected by degradation, failures or external
conditions occurred during flight time. Henceforth, due to the
relevancy of the HI assessment for the accuracy of the PHM
model, this paper aims to propose a new formulation for the
HI computation, derived from raw anonymized data retrieved
from different sensors within the aircraft system. The pro-
posed formulation combines information from the different
variables (like sensors) that have an impact on the overall sys-
tem condition, by assigning a positive or negative weight to
each variable depending on the influence on the system be-
haviour. The weights are determined based on the typical and
standard data patterns. Thus, the estimated HI aims to reflect
the number of hours of flight expected to be flown, based only
on raw data extracted from the system. Furthermore, consid-
ering that the available sensors data is anonymized, a study of
the relevancy of the different sensors features for the degra-
dation assessment is performed, using specific metrics. Con-
sidering a scenario where the HI ground truth is unknown,
the failure data of each aircraft system is used to evaluate and
discuss the formulation suitability. The HI formulation is ap-
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plied in real datasets, on the environmental systems of two
wide body aircraft types.

1. INTRODUCTION

Aircraft maintenance has an important role in the aircraft ac-
tivity. Due to the increasing importance of air transportation
in the modern world, aircraft are expected to operate under
a higher utilization, which results in a significant number of
operation hours over varied conditions. This leads to an in-
creasing degradation over time of the aircraft systems or com-
ponents which need to be monitored in order to prevent them
to reach a state where they are likely to fail. It is the goal of
aircraft maintenance to assure that the conditions for the air-
craft to operate normally are gathered, in order to guarantee
the safety of the airplane and its passengers. To accomplish
this, different types of tasks may be needed to be performed
by the maintenance engineers, like pre-flight and post-flight
inspections, routines check and parts replacement due to mal-
functions (Papakostas, Papachatzakis, Xanthakis, Mourtzis,
& Chryssolouris, 2010). One of the main problems faced
in the maintenance routines concerns the unplanned mainte-
nance tasks. These can take up to 50% of the maintenance
work (Samaranayake & Kiridena, 2012), depending on the
aircraft and system, which also incurs in additional costs. For
instance, if a large aircraft flight, like Boeing 747, is can-
celed, it can cost the airline US $140,000, also, a delay at the
gate can have a cost of US $17,000 per hour (Dalkilic, 2017).
Regarding the different types of maintenance routines, two
of the most used methodologies are Preventive Maintenance
(PM) and Corrective Maintenance (CM) (Wu, Liu, Ding, &
Liu, 2004). The PM performs the inspections and interven-
tions based on previously established fixed time intervals, the
interventions are scheduled regardless of the condition of the
component and with the goal of anticipating failure. The
CM, as the name suggests, takes place after the failure has
occurred with the goal of repairing or replacing the compo-
nent or part with defect or malfunction. This type of mainte-
nance is more related to failures that do not compromise the

1



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

aircraft’s normal operation. Although these two approaches
are valid and widely used, they are not optimized in terms
of costs, scheduling or plan fulfillment. In recent years, a
different approach, designated as CBM, has been introduced
to improve aircraft maintenance. CBM focuses on the mon-
itoring of the system’s degradation condition for predicting
the time of failure and, therefore, planning and performing
the interventions at the right moment before failure. This
condition-based approach may help reduce the maintenance
costs of unscheduled work, as well as, the intervention’s du-
ration as the malfunction is addressed in time. As such, a way
to improve aircraft maintenance is to provide more relevant
information of a system or component degradation condition
in order to better detect and predict failures. This would lead
to more adequate planning and execution of the maintenance
routines, following the CBM standards.

A possible approach for assessing the system condition is
through the HI computation. The HI value reflects the health
condition of a particular system or component of an aircraft,
which can be influenced by multiple factors like wear, phys-
ical damage and failures (Lei et al., 2018). In some cases,
it can be challenging to determine the HI of a specific sys-
tem, due to the lack of relevancy or absence of the available
data (normally sensors data) or the inadequate system behav-
ior when faced with a failure (Guo, Lei, Li, Yan, & Li, 2018).
According to the literature, there are two main categories of
HI, the Physical Health Indicator (PHI) and the Virtual Health
Indicator (VHI) (P. Wang, Youn, & Hu, 2012). The PHI uses
physical features directly extracted from the system as a di-
rect metric for the HI. This requires a physical understanding
of the system behavior and the presence of a signal or feature
representative of system degradation condition. Traditional
statistical methods and signal processing techniques are com-
mon approaches to compute the PHI, where features like Root
Mean Square (RMS), peak and kurtosis are used as relevant
features (Lei et al., 2018), (Li, Lei, Lin, & Ding, 2015). The
VHI is used when there is not a singular feature represen-
tative of the system degradation. Therefore, VHI combines
and fuses different features with the goal of representing the
global condition of the system (Lei et al., 2018). Generally,
the values obtained for the VHI do not have a physical mean-
ing associated as they are a result of a combination of various
features. Some common techniques to compute the VHI are
Principal Component Analysis (PCA) (Mina & Verde, 2005),
Self-Organizing Map (SOM) (Hai Qiu & Yu, 2003) and Lin-
ear Regression (T. Wang, Yu, Siegel, & Lee, 2008).

The HI can be used in different systems and over different
representations, generally, the choice of the technique used
for the HI computation should depend on the system being
analyzed and the characteristics of the available data. When
working with time domain features, several techniques for
computing the HI were presented using features like kurto-
sis, RMS and peak. In (Zhang, Si, & Hu, 2015), a band-pass

filter was applied to the kurtosis feature with the goal of esti-
mating the bearing degradation path. The authors in (Li et al.,
2015) extracted the RMS and kurtosis features from vibration
signals, where kurtosis was used for health monitoring and
RMS for the RUL prediction. The frequency domain of the
data has also been a subject of study for determining the HI.
One of the most used methods for analyzing the frequency
spectrum of the data signals is the Fast Fourier Transform
(FFT). (Liao, 2014) decomposed a signal into the different
frequency bands, and used the energy of each as input fea-
tures to compute the HI. The HI was obtained by running a
genetic algorithm, which identified the best combination of
features that better described the fault evolution. In (Zhang,
Wang, & Wang, 2013), after decomposing the signal with the
FFT method, the relevant peaks were selected from the ob-
tained series and were used as input to a Neural Network
(NN) trained to predict the RUL in manufacturing systems.
Some also used Envelope analysis for detecting faults using
the frequency domain. The authors in (Boškoski, Gašperin,
& Petelin, 2012), combined Gaussian process models with
Envelope analysis for computing the RUL in bearings. With
regards to time-frequency analysis, significant research in this
domain was also performed. (He, Miao, Azarian, & Pecht,
2015) proposed an approach where the Wavelet Transform
is used for computing the HI in vibration signals. The HI
consisted of the sum of the amplitudes of the relevant signal
characteristics extracted from bearing data.

All these case scenarios share a common characteristic, which
is the knowledge of the type of data being used for computing
the HI, nevertheless, there are some cases where the data is
anonymized and thus there is no information concerning the
data characteristics.

In this work, a new formulation is proposed for computing the
HI based on raw and anonymized data. An anonymization
scenario is used in order to represent a generic and agnos-
tic approach. In the formulation, different data features are
combined by assigning a weight to each feature that reflects
its positive or negative impact in the HI computation. Two
datasets regarding two different aircraft systems are used in
this work to test and validate the proposed approach. Fur-
thermore, these datasets contain real sensors data extracted
directly from the aircraft and were not subject to any prepro-
cess. This way, the health condition (expressed by the HI) is
extracted entirely based on the sensors data of the respective
system, using a complete black-box approach with regards to
the data characteristics.

This paper is organized as follows. Section 2 presents the HI
formulation proposed in this work, as well as some impor-
tant aspects with regards to the formulation. Section 3 de-
scribes the experimental scenario and in Section 4 the results
are presented and discussed. Finally, the conclusions drawn
and future work are specified in Section 5.
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2. HEALTH INDICATOR APPROACH

As stated before, the HI aims to reflect the aircraft system
health condition, which can be influenced positively or nega-
tively by several factors. The most basic and direct factor con-
cerns the flight hours (duration), as the number of flight hours
operated by an aircraft increases, the accumulated degrada-
tion in that aircraft also increases. Other important factors
that affect the system condition are the flight conditions, the
weather conditions and the flight trajectory. As the sensors
data are expected to express the system degradation, the air-
craft systems condition is extracted using only the respective
sensors data, which comprise the available datasets. Hence,
the HI is computed by assigning a weight to each sensor fea-
ture considered relevant for the degradation assessment.

In a general form, the HI formulation proposed in this paper
is the following:

HI =

n∑
k=1

p∑
j=1

durationj,k ·(1+(α1j,k+α2j,k+....+αmj,k
))

(1)

where n is the number of flights, p is the number of aggre-
gated phases in a single flight, durationj,k is the duration of
the aggregated phase j of flight k and m is the number of
features considered relevant. Moreover, the α’s vector corre-
sponds to the weights assigned to each considered feature.

This way, the HI (expressed in flight hours) corresponds to
the flights duration with possible additions due to degradation
reflected in the chosen features, whose impact is indicated by
the respective α value. Therefore, the HI value aims to reflect
the number of flight hours likely to be flown based only on
the sensors values, where the α’s determine the increase that
should be added to the flights duration (baseline).

It should be noted that the proposed HI formulation is made
under the assumption that the aircraft system being analyzed
is operating during the entire flight (example: turbofan engine
and air conditioning system) and not only during a specific
time period, as the brake and wheels system.

2.1. Weights Assignment

An important step for the correctness of the formulation cor-
responds to the determination of the weight associated to each
selected feature, represented by α’s vector.

The value of αij,k represents the weight assigned to feature
i regarding the aggregated phase j of flight k. The values of
αij,k should be interpreted as follows:

• If αij,k > 0: Means that in flight k and aggregated phase
j, the value of feature i is too deviated from the typi-
cal values for this feature; therefore, it corresponds to a
situation of Extra Degradation;

• If αij,k = 0: Means that in flight k and aggregated phase
j, the value of feature i is within the typical range of
values for this feature; therefore, it corresponds to a situ-
ation of Normal Degradation.

It is worth noting that the situation of “Lesser Degradation”
could also be added, which would represent the scenario where
the degradation is lesser than the expected. Nevertheless, in
the absence of information regarding the features expected
behavior, this scenario was not considered in this work.

By analyzing the HI formulation (Eq. (1)), one can conclude
that, if for a specific flight and aggregated phase, the sum of
the α values is greater than 0 it means that during this time
interval there was some anomaly reflected in the sensors data
that leads to an extra increase in the HI value. Otherwise, if
the sum of the α’s is equal to 0, it means that this time interval
corresponds to a situation of normal degradation, and so the
HI is equal to the time interval duration.

For the determination of the α’s values, the flowchart in Fig-
ure 1 is proposed:

Analysis of each feature
for a specific flight

and aggregated phase

Yes

No

Normal
Degradation

Extra
Degradation

IF  µ - 3σ < feature_value < µ + 3σ 

Figure 1. Flowchart for α determination

For assessing what is a typical or abnormal value for each
feature, flights reflecting a healthy state are taken as a base
for comparison. Therefore, the mean (µ) and standard devia-
tion (σ) are computed with respect to each feature and these
values represent the typical and usual values for the respec-
tive feature. These variables (µ and σ) are computed from a
set of flights considered healthy, which means, they occurred
after an inspection or a part replacement was performed and
their sensors assume regular and standard data patterns. This
approach of using healthy data as a base for comparison has
already been applied in literature, in similar contexts (Nguyen
et al., 2018), (Jardine, Lin, & Banjevic, 2006) , (Sun, Li, Liu,
Gong, & Wang, 2018).

The Piecewise Function 2 illustrates the way the α are deter-
mined for a specific feature ft.

aftj,k =


0 if µ− 3σ < F < µ+ 3σ

γ[ F−(µ+3σ)
MAX−(µ+3σ) ] if F > µ+ 3σ

γ[ (µ−3σ)−F
(µ−3σ)−MIN ] if F < µ− 3σ

(2)

In this function, F is the value of feature ft for flight k and
aggregated phase j, MAX and MIN represent the maxi-
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mum and minimum value, respectively, known for feature ft
and γ corresponds to a weight that influences the αmagnitude
and should be chosen according to the considered system.

The idea is that α is 0 when facing a situation of Normal
Degradation. Otherwise, the α should be greater than 0 and
can reach the value of γ depending on the distance to the ex-
treme boundaries (Max boundary or Min boundary). Figure 2
illustrates an example of the values of a specific feature for 30
consecutive flights.

Figure 2. Example of α determination for a specific feature

In this work, the choice of the γ value (0.6) was made without
any awareness of the system behavior, as there is no infor-
mation regarding the HI ground truth, no special tuning was
performed with regards to the choice of γ value.

2.2. Features Relevancy

Another important aspect is the choice of the most relevant
features, extracted from the sensors data, for the degradation
assessment. Although all the sensors available for an aircraft
system are located in the respective system, not all of them
are relevant for extracting the health condition. Therefore, the
choice of the most relevant sensors and respective features is
important for the HI computation.

In the literature, some evaluation metrics have been proposed
and can be adapted to use for the computation of the feature
relevance for the degradation assessment (Coble & Hines,
2009), (Lei et al., 2018), namely:

• Monotonicity: The monotonicity metric expresses the
positive or negative trend reflected in feature values over
time. Ideally, in order for the feature to be relevant for the
degradation assessment, its values should have a clear
monotonic increase/decrease over time. It can be com-
puted by analyzing the difference between the positive
and negative derivatives along the feature values vector,
as follows (Coble & Hines, 2009):

Monotonicity(F ) =

∣∣∣∣∣#
dF
df > 0

n− 1
−

#dF
df < 0

n− 1

∣∣∣∣∣ (3)

where n is the number of observations for a given period
of time, F represents the feature values obtained for a set
of consecutive flights, f represents the flights considered
and dF

df corresponds to the derivative of F with respect
to f . An important step for this formula’s correctness is
applying the correct smoothing of the feature values. An-
other possible method for computing the monotonicity of
a feature is to apply the Spearman’s rank correlation co-
efficient to the feature vector.

• Prognosability: The prognosability metric aims to eval-
uate the variance in the failure threshold of different tra-
jectories or systems. With a lower value it would be
easier to extrapolate or predict the degradation evolution
more accurately. It can be computed using the following
formula (Coble & Hines, 2009):

Prognosability(F ) = exp

(
−std(Ffail)

mean(|Fstart − Ffail|)

)
(4)

where F represents the feature values.
• Trendability: The trendability metric indicates the de-

gree of similarity of the shape or form of the values of a
feature, regarding different trajectories or systems. The
computation of the similarity between different forms
can be challenging, nevertheless, a proposed formulation
is (Coble & Hines, 2009):

tF =

∣∣∣∣∣#
dF
df > 0

n− 1
+

#dF 2

df2 > 0

n− 2

∣∣∣∣∣ (5)

Trendability(F ) = 1− std(tF ) (6)

where n is the number of observations for a given period
of time, F represents the feature values, f represents the
flights considered and tF represents the trend of feature
F in the different trajectories.

Besides these metrics focusing on degradation assessment,
another potential criteria for selecting the most relevant fea-
tures is their capability in exposing the faults occurred dur-
ing flights. Using a statistical test, the relevant features are
the ones that can better distinguish faulty flights from normal
flights, by detecting the faulty data patterns. Nevertheless,
the high capability to distinguish faulty behavior may not in-
dicate that a feature is adequate for capturing the degradation
over time.

This way, two different criteria are proposed for selecting the
most relevant features. The first is based on the degrada-
tion assessment (monotonicity, prognosability and trendabil-
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ity) and the second is based on the fault detection. In both
situations, a previous study is required in order to understand
which features are more relevant according to the aircraft sys-
tem and criterion used, this step is described in Section 3.1.

3. EXPERIMENTAL SCENARIO

The HI formulation proposed in Section 2 is tested and vali-
dated using real sensors data retrieved from 2 distinct wide-
body aircraft systems, henceforth referred as System 1 and
System 2. System 1 and System 2 have similar functions
within the aircraft although each system operates in a par-
ticular type and model of airplane. They are responsible for
an important procedure in the airplane operation which is the
air conditioning task. The air coming from the outside is
processed and altered in the adequate conditions of pressure
and temperature so that it can be sent to the flight deck and
to the passenger cabin. Although the systems have similar
functions, the way they perform the air processing and con-
ditioning can be distinctive, as such, the failure modes and
the systems reaction to failures are singular, thus, the degra-
dation behavior is assumed to be different. Also, the sensors
positioned in each system are different, therefore the data re-
trieved from each system is different in quantity and meaning.

In System 1, the data was retrieved from 20 sensors with a
sampling rate of 4Hz. In System 2, the data was retrieved
from 90 sensors with a sampling rate of 1Hz. As it cor-
responded to raw sensors data some preprocessing and data
transformation steps were performed, namely flights filtering
and flight phases aggregation.

By analyzing the data some variation of the flights duration
was found, sometimes associated with inconsistencies regard-
ing the flight phases information. Therefore, if the flight du-
ration was too short (maybe a maintenance routine) or there
were some missing data regarding an important flight phase
(like the cruise phase) the flight was filtered and not consid-
ered for analysis.

Figure 3. Flights labeling before filtering (System 1)

Figure 3 illustrates an example of the original flights labeling,
obtained directly from the raw data. Figure 4 illustrates the
flights labeling after filtering, where a removal of 8 “noisy
flights” can be seen.

Figure 4. Flights labeling after filtering (System 1)

Another preprocessing step was regarding the flight phases
aggregation. In order to perform a more adequate and ac-
curate analysis of the sensors data, the 14 original phases of
each flight in the dataset were combined in a set of 5 aggre-
gated phases, as demonstrated in Figure 5.

Dataset

Flight 1 Flight 2 Flight 3 Flight 4 Flight N....

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Phase 6

Phase 7

Phase 8

Phase 9

Phase 10

Phase 11

Phase 12

Phase 14

Phase 13

Aggregated 
Phases

Start

Climb

Cruise

Descent

Finish

Figure 5. Flight phases aggregation

This way, the different data patterns in the sensors of singular
flights are isolated, as exemplified in Figure 6.

As the presence of outliers can be a consequence of failure or
degradation, no special technique was applied to remove the
data outliers.

3.1. Identification of the relevant features

In order to compute an accurate HI, the most relevant sen-
sor features for the degradation assessment should be selected
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Figure 6. Example of flights phases aggregation

and used in the formulation (Eq. (1)).

Considering the data sampling rate, the extraction of features
in the frequency domain or time-frequency domain should be
meaningless as the relevant information would already be fil-
tered. As such, the features that are extracted from the sensors
data and whose relevance is analysed are related to the time
domain. These correspond to common time domain features
like median, variance, kurtosis, maximum, minimum, sample
entropy, quartiles, amongst others (Yan, Qiu, & Iyer, 2008).
The features extraction and analysis is performed for all the
sensors in the respective system.

Some of the enunciated metrics were used to evaluate the fea-
tures relevancy in detecting the degradation evolution over
time. By applying the monotonicity formula (Eq. (3)) and
also the Spearmans rank correlation coefficient method, no
conclusive results were obtained. This was due to the fact
that none of the extracted sensor features in System 1 or Sys-
tem 2 showed a clear monotonic increasing/decreasing trend
in its values over time.

The prognosability metric was not considered adequate to
be used in this context, as the features values range is the
same over time. In the same way, trendability metric was also
not used due to the nonexistence of distinguishable forms or
shapes in the features values evolution over time, for different
trajectories of the aircraft.

The next step was to assess the features relevancy for the HI
based on the capacity of discriminating flights where a fault
had occurred (faulty flights) from normal flights, where no
fault was registered. To achieve this, first, a visual analysis
was performed by applying non linear feature reduction tech-
niques (Isomap and Locally Linear Embedding) to the entire
set of features extracted from all the sensors. Figure 7 and
Figure 8 illustrate the results for a given period of time.

As can be concluded in Figure 7, there is a low capability of
discrimination of the different types of failures in System 1.
On the contrary, in System 2, there is a high separability be-
tween normal flights and faulty flights (Figure 8). It should be

Figure 7. Flights representation - System 1

Figure 8. Flights representation - System 2

noted that there may exist redundancy or correlation between
the different faults, as, although the fault names are different,
they may be encompassed in the same failure mode.

For the selection of the most relevant features of each sensor
aiming to detect faults, a statistical test was used. By apply-
ing a two-sample T-test, the goal was to identify the features
in which the difference between the mean of normal flights
and faulty flights was statistically more significant. The most
relevant features identified were:

• System 1:

– Sensor 1: standard deviation, variance
– Sensor 2: standard deviation, variance
– Sensor 3: maximum, median, 3rd and 4th quartiles
– Sensor 4: sample entropy, minimum, mean, 3rd

and 4th quartiles

• System 2:

– Sensor 3: minimum, median, 1st and 2nd quartiles
– Sensor 4: minimum, median, 1st and 2nd quartiles
– Sensor 6: median, 1st and 2nd quartiles
– Sensor 7: minimum, median, 1st and 2nd quartile

Figure 9 and Figure 10 illustrate the reduced data points using
only the identified relevant features.

Through Figure 9, one can conclude that the different failure
classes in System 1 are more easily separable using only the
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Figure 9. Flights representation using only relevant features-
System 1

Figure 10. Flights representation using only relevant features-
System 2

relevant features, although there is still embedded noise, that
is, normal flights near the faulty flights and vice-versa. Re-
garding System 2, the data separability remains higher, with a
slight increase in the classes margins, as can be depicted from
Figure 10. As it turns out, when a fault occurs in System 2,
the entire system is shut down which leads to a change in the
sensors values. Therefore, it is reasonable and expected that
the sensors features can accurately separate the normal flights
from faulty flights.

Regarding the α determination, the methodology described
in Section 2.1 is applied in both Systems. The overall idea is
illustrated in Figure 1 and is complemented by the Piecewise
Function 2. As one can conclude, the α are determined based
on the deviation of the sensors features values, with respect
to the typical and reference values of each feature.

4. RESULTS OF THE HI APPLICATION

The proposed HI formulation has been applied to different
time intervals of System 1 and System 2 with the goal of pre-
senting the HI evolution in real case scenarios and discussing
the correctness of the obtained results. In the absence of the
HI ground truth, the presence of the faults occurred over time
is used for validation purposes. As the faults are suppose to
represent some anomaly in the system, a larger increase of the
HI is expected in the flights where the faults were recorded,
as well as, in the preceding flights.

For an easier interpretation of the HI graphs, the faults are
indicated with the letter “F” in the respective flight where they
took place. The vertical blue lines represent the consecutive
flights, where each vertical line defines the end of a flight
and the beginning of the next one. Also, it is worth noting
that each time interval considered does not correspond to the
start of the degradation cycle. Ideally, the HI should be 0
when the system is new, which corresponds to the starting
point of the degradation evolution. For comparison purposes,
the “Normal Behavior” curve is illustrated in each graph, this
line corresponds to the function y = x and reflects a typical
and ideal scenario, where due to absence of anomalies in the
data, the HI is equal to the flights duration.

4.1. System 1

Figure 11. Time Interval 1 - System 1

Figure 11 represents the HI evolution for a specific time inter-
val of System 1. As observed, the majority of the generated
faults are related to an extra increase of the HI value, which
is a good evidence of the formulation suitability with regards
to the degradation detection. Nevertheless, this relation is not
always true, as there are some flights where a fault was re-
ported but there was no evidence of it by looking at the HI
curve. The contrary may also happen, an extra increase in the
HI value without the presence of faults may be an indicator
that a failure will occur in a near future, hence, even without
the occurrence of a fault, it can be an important indication of
degradation.

4.2. System 2

The analysis of the HI evolution in System 2 can be more
challenging due to the fact that there is a minor presence of
faults over time, with a greater accumulation of faults in the
final stage of degradation where, due to the impact of failure,
the system is shut off and the sensors assume a default value.

In Figure 12, a higher increase in the HI during the flight
where a fault was generated, is observed. This means that, in
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Figure 12. Time Interval 1 - System 2

that specific flight, there were some anomalies in the sensors
data, expressed in its features, that are a consequence of the
occurrence of a fault. Although this corresponds to the ideal
scenario, it may not happen in all the case scenarios.

Figure 13 and Figure 14 represent time intervals in different
stages of degradation, Figure 13 illustrates a final stage in the
degradation cycle (before failure) and Figure 14 illustrates an
initial stage of degradation, after a successful parts replace-
ment, required due to the presence of failure.

Figure 13. Time Interval 2 - System 2

One can verify that in the initial stage of degradation (Fig-
ure 14) the HI evolution is smoother than in the final stage
of degradation (Figure 13). This behavior is expected as the
newer the system is, the lower the degradation rate should be.
Therefore, even without the presence of faults, HI increase
should be higher in the final stages of a system lifetime.

Overall, by analyzing the HI evolution in the considered time
intervals, interesting results were obtained with regards to the
relation between the presence of a fault and the increase of HI.
However, there are some possible reasons for this association
not being always true. The fact that an extra increase of HI

Figure 14. Time Interval 3 - System 2

is not always related to the occurrence of a fault can be due
to an error in the data logging or to the fact that it may be
contributing to an accumulation of degradation that will cause
a fault in a near future. Opposingly, when the presence of a
fault is not associated with an extra increase in the HI, it can
be mainly because of two reasons. Firstly, the sensors data do
not reflect the fault, and, consequently, the HI will not reflect
it either. Secondly, it could be that the fault corresponds to a
false positive, which means that, although a fault was raised
there is not a real reason for it.

5. CONCLUSION AND FUTURE WORK

In this work, a novel approach was developed for comput-
ing the Health Indicator (HI) of a given aircraft system. The
novelty in the HI formulation (Eq. (1)) concerns the combina-
tion of different sensor features, each with an assigned weight
that reflects its importance and impact in the health condi-
tion of the system. The weights, expressed by the α, reflect
the degradation found on the sensors features and were deter-
mined based on anomalies and irregular patterns found in the
data, using reference values. As such, predefined thresholds
were used to assess the different levels of degradation. This
way, the overall HI aims to reflect the evolution of the degra-
dation embedded in the system over time and is computed
based totally on a data driven approach using anonymized
sensors data.

In this unsupervised context, the validation of the proposed
approach may be challenging, however, the results of its ap-
plication to real case scenarios (System 1 and System 2) are
interesting. In general terms, they show a relationship be-
tween the presence of a fault and the increase in the HI value,
which confirms the capability of the proposed formulation to
detect anomalies in the system being analyzed. This approach
was developed with the goal of more accurately estimating
the system degradation, expressed by the HI, which can be
used for improving the effectiveness and accuracy of aircraft
maintenance interventions. It should be used as a comple-
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mentary tool for performing the diagnosis of a particular sys-
tem health condition as it is not intended to substitute the air-
craft engineers expertise. Besides the diagnostic aspect, this
proposed approach can also be useful for the prognostic task.
In particular, using a proper HI, the prediction of the RUL
should also be more accurate. This may lead to a more ad-
equate and correct planning of interventions of the mainte-
nance team, therefore, reducing the number of unscheduled
intervention tasks and the costs thereto associated.

Thus, future work may encompass the prediction of the RUL,
based on the obtained HI. Also, the proposed formulation
should be applied to other type of systems in order to eval-
uate its appropriateness to other aircraft systems and poten-
tially improve the formulation. In this work, the relevancy of
the features was assessed through their capacity of detecting
faults, nevertheless, other adequate metrics may also be tested
and explored in later work. Finally, another relevant aspect,
which was not addressed in detail in this work, is the choice
of γ value in the α computation. The value of γ is important
as it determines the magnitude of the HI added in each flight.
Therefore it should be also investigated in future work.
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