
 1

Fleet-based System Health Assessment:
Reasoning about Change and Differences

Michael Borth1

1ESI (TNO), High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
Michael.Borth@tno.nl

ABSTRACT

Monitoring and managing the health of technical systems
with advanced diagnosis and prognosis benefits from fleet
analytics: insights on the degradation of other but similar
systems help, e.g., to forecast actual issues for predictive
maintenance as does detecting and correcting anomalies in
usage profiles helps to prevent undue wear and tear.
Successes in this field usually depend on the similarity of
the fleet’s systems: although not necessarily equal, they need
to have alike key characteristics, e.g., in the way they age,
such that observations on one or many systems constitute an
expectation for others.

We introduce fleet-based system health assessments that
complement such approaches by reasoning on differences,
e.g., those introduced by interventions like upgrades. Given
that such change is the only constant for many of today’s
complex systems, we believe that our addition to health
assessment is necessary to cope with the variation in systems
that fleet operators face over the lifecycles of all systems.

Technically, our approach is based on probabilistic reasoning.
The related modeling and inference techniques allow us to
incorporate insights from past observations in individual
systems, but also from comparable systems and, at the same
time, they permit comparisons between parts of the fleet and
estimate possible effects of existing differences. Our work
shows that especially such comparisons are valuable for
fleet health management over long lifecycles that is
typically linked to continuous improvement processes.

1. SYSTEM HEALTH MANAGEMENT FOR FLEETS

System Health Management (SHM) assesses the current or
future health state of a system to increase its reliability,
availability, and dependability. Based on diagnosis and
prognosis techniques that analyze available sensor data,
SHM typically aims to shorten the time-to-repair in the
event of failures and to prevent such failures and the related
down time altogether with predictive and preventive mainte-
nance. Technically, recent advances in the SHM are mainly
based on the fusion of Internet-of-Things (IoT), i.e., the
extension of networked connectivity into physical devices
and sensors, with advances in data science that allowed
faster and more accurate predictions.

Due to this progress, predictive maintenance became a major
business trend, as identified, e.g, by Gartner (Berthelsen,
2018), even though Mulders et al. (2018) analysis that many
companies remain in early stages of implementing it yet
holds in 2020 according to our experience. Still, given a
framework of available resources and operational demand, it
became possible to better plan the most efficient use of
systems, altogether lowering the total cost of ownership
(TCO). Such a framework may exist on several levels: (i)
for a single system, provided that its tasks vary in duration
or intensity such that fitting scheduling and maintenance
plans based on health information increase its utilization;
(ii) for a system of systems (SoS), e.g., a factory, which
relies on individual systems, but may also include alternate
systems that can complete a task and whose performance
(throughput, etc.) depend on their health state, thus offering
another layer of optimization; and (iii) for fleets of systems.

For the latter, we know that automotive, shipping, and
avionic industries benefits from monitoring and managing
the health of assets with advanced diagnosis and prognosis
that draws from fleet analytics. In these industries, both
asset owners and manufacturers have a vested interest to
work cooperatively and thus the organizational and
technical means to pursue SHM approaches where insights
on similar systems help to increase the precision of the
reasoning about a specific system of interest.

Michael Borth. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

2

In automotive, e.g., this led, among many other cases, to the
success of services like Fleetboard (www.fleetboard.info) or
early publications like the work of Wirth and Reinartz
(1996) of Daimler and the cross-industry standard for data
mining (CRISP-DM).

Methodologically, such work often depends on the degree of
similarity of a fleet’s systems: although not necessarily equal,
they need to have alike key characteristics, e.g., in the way
they age, such that observations on one or many systems
constitute an expectation for others. This requisite, however,
is often violated, as we elaborate in Section 2 as the first
contribution of this paper. This insight then motivates our
approach to complement system health assessments by fleet-
based reasoning on similarity and differences, which sets
the main contribution of our paper.

We illustrate this main part of our work in two sections. In
Section 3, we initially refer to earlier work where we inves-
tigated the impact of different states of systems that arise
from upgrades and updates. We then show that even basic
probabilistic reasoning can determine root causes for
performance loss once sequences of interventions or mainte-
nance actions are analyzed on fleet level. Exploiting more
subtle differences between systems, however, requires
elaborate reasoning that matches current observations with
past data both within the timeline of a system and across
systems while estimating effects of existing differences. We
develop this in Section 4.

We close with an experimental evaluation of our approach
in Section 5 followed the conclusions in Section 6.

2. SIMILAR – BUT SIMILAR ENOUGH?

System differ among each other, e.g., regarding their
configuration or feature set, usage patterns, or even
production quality and thus wear and tear, but they also
change over time, e.g., due to maintenance actions, software
updates, hardware upgrades, or switches in their behavior.

Many techniques for predictive or preventive system health
management assume that these differences do not matter for
the prediction if it is possible to find a condition indicator
value (CIV) that can be measured or computed to define a
signature curve for the investigated wear and tear. Such a
remaining useful life (RUL) estimate relationship to the
condition indicator is shown in Figure 1 and explained in,
e.g., (Baru, 2018) or the review article of Xiao-Sheng Si et
al. (2011). Often enough (but not always, see below), this
approach works, especially for mechanical wear and tear,
where vibration signals typically indicate impeding
breakdowns with little or no dependence to other factors.

In those cases, the RUL estimate can be done based on
similarity between systems, such that an incoming time-
series of the CIV of a system is compared to those of other
systems and the most similar known series is used to predict
the systems future wear and tear behavior.

In Figure 1, however, we investigate a system that at first
runs on course for prediction 1, but changes, showing later a
similarity leading to prediction 2, before changing again and
ending with an abnormal behavior. This investigation relates
to an adaptive system’s ability to perform under different
load scenarios and in different environments – imagine a
seafaring vessel that leaves a high strain environment to
prevent critical mission failure (mode switch), but which
initial wear leads to an accelerated tear that fails to manifest
early in the CIV. The latter happens as the low strain phase
induces other characteristics in the CIV, especially as the
adaptive system enacts compensating behavior that hides
indicators normally visible within component interactions.

The importance of component interactions for wear and tear
was one of several factors that led us to seek novel ways for
system health management in our work on complex high-
tech system. We also needed to ensure a system’s ability to
perform, which is a stronger requirement than a prevention of
breakdowns, as we explained in (Borth & Barbini, 2019).

Furthermore, we saw that differences in features can matter
for predictive health management in unforeseeable and
nonconstant ways. For our vessel investigation, e.g., the
second change point looks very different in systems with
auxiliary subsystems that would prevent the hidden tear –
but without the initial phase of high wear, this feature would
not impact the RUL. Additionally, we face the complication
that all systems we investigate undergo irregular updates in
their embedded software – changing system behavior and
thus, potentially, wear and tear – and even upgrades of parts.

In total, this leads to the conclusion that any similarity we
seek to exploit during fleet analytics is temporal at best;
phrased differently, we state that past similarity may be no
indication of future similarity and even seemingly similar
systems might not be similar enough to transfer insights from
one system to another if the context is disregarded.

This has grave consequences for any purely data-driven
approach: as we illustrated in (Borth & van Gerwen, 2018),
even lots of data is not enough for a similarity-based
analysis if the data set is broken down into too many
compartments as the number of cases within these becomes
too small. Consequently, we seek to exploit not only
similarities, but also knowledge about differences between
systems in our fleet analytics, as these opposing aspects can
complement each other, as we show below.

Figure 1. Switching behavior in RUL estimates.
(from Borth and Barbini, 2019)

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

3

3. PROBABILISTIC HEALTH ASSESSMENT

The fleet analytics we introduce in this article are set within
a line of work in which we use probabilistic reasoning for
the assessment of a system’s health and readiness to perform
an upcoming mission.

To briefly recap what we and others stated before, system
health assessment is, like any diagnosis problem, the task to
deduce the likelihood of an internal state that is not directly
observable from observations that are possible, like sensor
data. These observations are typically of limited accuracy or
even temporarily missing. The reasoning itself is then made
under several assumptions, e.g., the a priori likelihoods of
component failures and the impact of the environment as
well as internal and external interactions. All in all, this
summarizes as reasoning under uncertainty and probabilistic
reasoning, e.g., with the Bayesian networks we deploy, is a
leading methodology for it. Pearl introduced Bayesian
networks in (1986) and they showed their performance early
on in a range of applications (Heckerman, 1995).

We consider them to be especially suited for building
diagnostic models of systems as they are one of the few
techniques that combine knowledge- and data-driven
modeling, as e.g., Jensen illustrated (2007). In recent years,
the generation of suitable Bayesian networks saw great
improvement as the progress in data science enhanced the
latter, while probabilistic programming techniques eased the
former (Hardesty, 2015).

For us, this led to the systematic approach detailed in (Borth
& Barbini, 2019), but we also refer to (Ricks & Mengshoel,
2009). In summary, we first generate a knowledge-based
directed graph in which nodes represent system variables,
e.g., health states of components or sensor readings, and
edges encode dependencies between variables. The
parameters of these dependencies, i.e., the conditional
probabilities which altogether encode a joint probability
distribution over all variables, are set in a data-driven step
for which many techniques exist, see e.g., (Barber, 2012).

To diagnose a system using a Bayesian network, we enter
observations as evidence, i.e., we instantiate the respective
nodes to the observed state. Bayesian reasoning then
updates all other variables given the conditional probability
distributions that specify the relationship between variables.
This provides the marginal probabilities for all possible
states and thus the likelihoods of component failures and
system malfunctions or losses of performance.

The latter aspect, i.e., the ability to reason about a system’s
performance is crucial for the fleet analytics we introduce
here, as Bayesian reasoning under uncertainty is inherently
bi-directional: it allows us to infer expectations about a
system’s behavior given a cause, e.g., the impact of a specific
feature, but also to infer possible explanations or root causes
for an observed behavior, including a loss of performance.

3.1. Reasoning on Fleet Observations

One of our early results in exploiting observations from a
fleet of systems to determine the root cause of performance
loss in operational systems was the so-called ESI System
Data Demonstrator (www.esi.nl/system-data-demo/). Figure
2 shows the relevant step here, where a Bayesian network
analyses a fleet of 65 machines, which partially received
hardware and/or software upgrades or updates. The red
color and small cross icons indicate that many systems have
performance issues, but the distribution is not clear-cut: there
are, e.g., many systems with, but also many systems without
issues in the left and in the right fields, which list systems
without and with software upgrades respectively.

However, our probabilistic health assessment brings the ratios
of systems with or without issues in all four quadrants into
relation with the prior expert belief on the quality of the
hardware and software development (left) and arrives at the
conclusion that a recent software update is to blame (right).
The structure of the necessary Bayes net consists of only
two nodes for root causes, i.e., an ill effect by either
software or hardware changes and nodes for the affected
parts of the fleet in which we enter the observed ratios of
systems with performance issues.

While this fleet-based analysis of the impact of hardware or
software changes works well, we see two major limitations:
• The performance of systems and thus the major piece of

evidence for the reasoning is judged by a comparison
against a global baseline.

• The reasoning is static.

We can, e.g., not easily integrate that a software update only
had a marginal negative effect on a system if that system
already performed badly and the change pushed it beyond
the set threshold, nor can we exploit a sequence of changes,
e.g., if a system receives a software update without issues
but then takes a performance hit during a hardware upgrade.

Taking these points as motivation, we introduce more
elaborate health assessment considerations below.

Figure 2. ESI System Data Demonstrator.
Bayesian reasoning diagnoses a software patch hit.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

4

3.2. Causal Reasoning on Circumstances

First, we investigate how circumstances like load or the
environment factors impact system states. We specify such
factors according to expert knowledge and introduce the
dependencies between the factors and system behaviors
including component wear and tear fitting to known facts or
observed data. As the resulting Bayes net encodes the joint
probability distribution of all its variables, we are then able
to compute any marginal distribution of interest, e.g., the
health state of a component, given any set of circumstances
or other factors. In this, we can factor in the strain and thus
wear and tear of scenarios or – and that is equally important
– factor it out.

This modeling exploits that we can reason along causal lines
within Bayesian networks. Doing so is an asset for fleet
analytics, as it allows for a transfer of insights: if a causal
effect is established and specified in a part of the fleet, it will
hold in all systems where it can occur – even if it was not
observed in those systems yet. To understand the foundation
of this transfer, we refer to (Pearl, 2009) for the theory on
how causality introduces modularity and composability into
probabilistic modeling.

In our work, we use causality to reason on system aspects
like their age, usage, configuration, or features:
• knowing the Weibull distribution that describes the

failure likelihood of a component given its lifetime
allows to assess the impact of age together with wear
and tear of load caused by circumstances;

• features and configurations together with their usage
profiles determine system load and thus wear and tear
and affect health assessments according to Failure
Mode and Effect Analyses and load distribution models.

3.3. Similarity Re-visited

Using causality and thus expert knowledge to transfer
insights between parts of the fleet partially counters the
compartmentalization we described at the end of Section 2.

Furthermore, it addresses the first of the two concerns listed
above, i.e., the limitations that stem from comparing health
indicators only against a global baseline, as it allows us to
tune a comparison to the given circumstances: We can, e.g.,
conclude that a system which seems to struggle is actually
doing well given that it operates in harsh conditions.

This allows us to re-visit the question of similarity central to
many RUL techniques: instead of using a fixed computation
for the condition value indicator, we factor in the
differences between the systems of the fleet, effectively
replacing the curves shown in Figure 1 by those we compute
under a set of common assumptions.

This results in an adapted prediction of RUL from the lines
Δ1, Δ2 in Figure 1 towards the Δ1’, Δ2’ shown in Figure 3.

The estimate has less uncertainty as the new predictions are
closer to the reality of the system under investigation.
Computationally, it stems from so-called counterfactuals that
pose a ‘what-if’ question that allows us to ask how the curves
would look like following Bayesian inference within the
algorithmic pattern first laid out in (Balke, 1994):

1. Update the probability of unobserved factors given the
observed evidence according to the Bayes rule.

2. Perform the action in the model that changes the model
towards the target configuration, i.e., the counterfactual.

3. Predict RUL in the modified model.

The effort to compute counterfactuals along these three steps
is significant, but it is reduced greatly if there is a single
causal model that can accommodate all factors, i.e., there is
no factor which is true for parts of the fleet but cannot be
true for others.

In this case, which often holds for our work, there is no
contradiction between the factual world and possible actions
of interest in the interventional level, e.g., mode switches or
software updates. Consequently, we do not need to modify
the model during the RUL computations and can, instead,
insert assumptions as observations, falling back to simpler
Bayesian inference for which ample tooling exists.

3.4. Dynamic Reasoning over Time

The final building block we introduce for our health assess-
ment approach is to reason about change over time.

With Bayesian networks, reasoning over time is typically
implemented in the form of Dynamic Bayesian Networks
(DBN), as introduced by Lerner et al. (2000) for fault
detection and diagnosis in dynamic systems, where the
authors used the concept of time-slices to model and then
reason over time.

This and subsequent works transform the diagnosis problem
into the task of tracking the system state and then to draw
conclusion from the way observed behavior deviates from
the expectations. The latter is supported by using different
DBN for normal behavior and error behaviors, as shown,
e.g., in (Roychoudhury et al. 2008), such that the network
which fits the observed behavior the closest provides the
diagnosis while the other DBN are disregarded.

Figure 3. RUL estimates adapted to switching behavior.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

5

We extend these ideas towards fleet analytics and reasoning
about change by introducing a time-stepwise construction of
a fleet analytics network that tracks the changes that happen
to systems within the fleet. Extending the example in
Section 3.1 for the ESI System Data Demonstrator, we show
this in Figure 4, for a software update sequence, i.e., a
stepwise roll-out of a new software version that is, over
time, used by more and more systems of the fleet.

In the reasoning of this growing network, we use observations
regarding the performance of individual systems to estimate
the quality of a software patch, wherein a performance
degradation supports the hypothesis of a software issue
while the opposite serves as counter example. As we extend
our reasoning over time towards any system that uses the
updated software version, we always use all available data
while we run, i.e., past and present, and continuously update
our beliefs over all systems and their past and actual state.
This extension over time is the difference to the reasoning
used in Section 3.1 – it forms a dedicated analysis that
delivers immediate insights and becomes more certain over
time as evidence for a software patch hit grows or decreases.

3.5. Building Probabilistic Health Assessments

This far, we introduced a set of building blocks for system
health analytics: diagnostic assessments that follow causal
modeling principles to ensure modularity and composa-
bility; transfer of insights between systems with adaptive
similarity computations that match a system’s behavior to
the behavior of other systems that we either observed or that
we would expect to observe given similar circumstances;
and dynamic reasoning over time that mirrors the changes
that happen to the systems. We realize all these building
blocks with probabilistic reasoning, specifically Bayes nets,
within one modeling approach. This ensures a consistent
assessment without conceptual breaks.

Implementation-wise, we use the probabilistic programming
language Figaro (Pfeffer, 2016) for this, which allows us to
mix object-oriented and functional programming to define
Bayes nets which are then piece-wise constructed to cover
the dynamics and changes to systems and the fleet.

4. FLEET-BASED SYSTEM HEALTH ANALYTICS

Using the building blocks introduced above, we now realize
fleet-based system health analytics that serve three purposes:
• to determine the health of an individual system based

on expectations and insights that originate from the
system’s own past behavior, other systems of the fleet,
and from the specifications of the system’s functions;

• to detect faults or performance loss introduced by
changes like software issues due to update processes;

• to detect execution faults, i.e., certain transient errors
caused by failures in the orchestration of systems and
functions, e.g., if a need to correct a process step is not
communicated in time.

One of our application domains here is process control where
a complex software function is used to keep manufacturing
equipment within its operational window. Software like this
is typically used to counter physical effects that make the
equipment drift out of their optimal work conditions, thus
controlling an aspect of the process in order to keep systems
operational without expensive physical calibration.

With this link into process control, our health analytics sets
out to outperform standard process control techniques, like
those based on Western Electric Rules (WER) introduced by
Western Electric in (1956), but also to offer more insights
than the simple fact that something is beyond ‘the normal’.

Our success criteria are thus timely detection of all errors
and faults, optimally on the time-step in which they show in
the data, thus no false negatives, and few to zero false
positives.1 The motivation for these goals is that failing to
run processes correctly incurs heavy costs, while false
positives lessen the trust in the health analytics.

We show that we meet our goals in Section 5, where we
describe experiments for a small fleet of six systems. Larger
fleets pose no undue challenge, as we explain at the end of
Section 4.

4.1. Probabilistic Health Monitors

The first components to realize for our fleet-based system
health analysis is a set of probabilistic health monitors that
each run a concurrent analysis of an individual system. The
task of these monitors is to check a system’s behavior,
visible in its response to an input, against expectations.
Providing us with a probabilistic measure of the match
between observations and expectations, the monitors show
similarity to Western Electric Rules in the sense that they
state if something is unexpected or unlikely.

1 We consider it noteworthy that statistical techniques like the WER cannot
deliver such a feat as they have an inherent delay and must accept
individual data points that are ‘off’ as outliers which are bound to happen.
Their advantage is thus not in their absolute performance, but in their
performance given the simplicity of their use. Figure 4. Reasoning over time and multiple systems I.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

6

Their composition, however, is more sophisticated, as they
compute the following three comparisons:

1. The response of a system to an input is compared to the
system’s own earlier responses.

2. The response of a system to an input is compared to
earlier responses of other systems in similar circum-
stances; i.e., we use the causal reasoning to adapt the
other systems’ actual responses towards the situation at
hand to ensure sufficient similarity.

3. The response of a system to an input is compared to its
designed function, i.e., to the response we expect under
perfect conditions (no noise or interference, etc.).

These three steps are illustrated in Figure 5. As shown, we
run the first two comparisons (1, 2) in a similar way:

Given that there are typically no past values for an identical
input x, we consider a number of (output yi | input xi) value
pairs within the data sets of past observations that are
relevant for checking the current observation (y | x).

Taking these value pairs, we produce a weighted
combination y´ of the output values {y1,…,yn} to formulate
the output we expected from the past. The weights used for
this are based on the distance between x and xi in the same
way that we then use to compute a measure for the match
between the expected value and the observed one, where we
use the probability defined via the normal distribution
around y´

p = cumulative probability outside y´ ± | y´- y|
e.g., p = 2×2.3% = 0.046 for y = y´ - 2σ
e.g., p = 2×50% = 1 for y = y´

Within the second comparison of a system to other systems
of the fleet, we average over all match values (2 B).

The comparison of an observed value y with the designed
function y* = f(x) uses the same match evaluation as the
previous steps (3). However, we find it good practice to also
consider rules defined by experts to adjust our result in
cases where the response of the system is out of bounds, i.e.,
clearly beyond the operational window, resulting in a
penalty that discriminates against identifiable faults.

In total, this might lead to a flow of information during the
fusion of the three outcomes that resembles an argument,
e.g., stating that we have seen numbers like those observed
before, but with the final check against the function
informing us that these are still wrong.

Seeing that we handle process volatilities and variety
between systems together with the functional requirements,
we value such ‘disagreements’, as they usually point
towards interesting happenstances for further investigation. Figure 5. Flow for probabilistic health monitors.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

7

4.2. Investigations of Interventions

Next to assessing state and performance of individual systems,
we use the probabilistic health monitors to investigate inter-
ventions, i.e., man-made changes to systems or systems-of-
systems, within the fleet.

This application, which we found particularly useful to check
software updates for non-intended side effects, follows the
‘Reasoning over time and multiple systems’ approach that
we illustrated in Figure 4, but now uses the probabilistic
health monitors to judge the degradation of a system’s
performance, replacing the ‘degradation system X’ nodes.
Consequently, we feed the software quality analysis that
runs across the fleet and over time insights about individual
machines which are, in turn, based on past data of the same
machine and of other machines, but also on the function of
the software. We depict this in Figure 6.

We found this approach particularly valuable for domains
with small signal-to-noise ratios. We saw this, e.g., in the
process control scenario, where drift corrections computed
by the software are small in comparison to the noise
introduced by process variations and measurement errors:
the software update is supposed to improve the accuracy of
corrections, but as its introduction upsets the production
flows, we need to account for a multitude of temporal
effects that also differs per machine, but the combination of
the different aspects of the probabilistic health monitors
makes the analysis robust against volatile circumstances.

In practice, we saw this stabilization of the analysis also
improved by the explicit notion of supporting or weakening
a hypothesis about a software update’s performance within
probabilistic reasoning that encompasses the whole fleet. As
illustrated through the graph in Figure 6, the software
update is either good or bad, but it cannot be the one for one
system and the other for another, even though local
observations might provide that impression for a while.

4.3. Detection of Execution Faults

The detection of execution faults is the last application we
realize with the probabilistic health monitors. These faults
originate from failures to orchestrate systems in a system-
of-systems setting or, e.g., from missed race-conditions
within a complex system. They are often individual in their
nature and thus not per se part of fleet analytics.

Our experience, however, shows that it is helpful to transfer
knowledge between systems of a fleet when building
detectors dedicated to execution faults: if a certain error type
leads to a specific behavioral pattern in one system, we
extract that pattern and use it to detect (and subsequently
correct) that error in other system. We rely again on causal
reasoning to factor out differences between individual
systems and search, e.g., for a missed execution of a drift
correction in very differently scaled trend analyses if the
systems differ in the volatility of their process stability.

We realize the detection of an execution fault pattern with a
sequence of the probabilistic health monitors: the first
monitor starts with the current observation to provide a
match estimation for an expected system response given the
assumption of an error, followed by subsequent monitors
that all compare the actual response in that time step to that
which would follow for that time step if the error happened.
This tracking approach gives us a sequence of assessments
that either confirm or reject the hypothesis of the execution
error over time.

In practice, we build such elaborate detection mechanisms
for execution faults only in black or grey box situations, i.e.,
if we do not have full observability of input and output of a
system component with full knowledge of its inner functions.
The fusion of expectations from expectations and from past
observations within the fleet allows us to track behavior
even with such limited knowledge, while a sequence of
functional monitors is sufficient for white box scenarios.

4.4. Optimal Fleet-size for Health Assessments

In our work, we saw benefits to complement system health
assessments with comparisons between the systems within a
fleet already for relatively small fleets, i.e., 5 systems up:
In our experiments, which we describe in Section 5 below,
we handled variation and noise that were large compared to
the absolute value of measurements. Still, the fleet-based
health assessment often provided similar observations and
cases for insightful comparisons, while the investigation of
observations even relied on those to determine its results.

However, these benefits are not free, as the effort to
compare a system with other systems increases linear with
the number of systems – which we find acceptable. Still,
every application will have an optimal fleet-size that ensures
(near) optimal diagnosis without undue efforts. This size
depends on the variation between systems, but early results
indicate that our methods do not depend on large fleets.Figure 6. Reasoning over time and multiple systems II.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

8

5. EXPERIMENTAL EVALUATION

We evaluated our fleet-based system health analysis on the
two use-cases introduced above: 1) assessment of a software
and its updates, wherein the software is part of a process
control loop that corrects physical drift behavior; and 2) the
early detection of execution faults. The two-dimensional
drift behavior is non-monotone and manifests in an overlay
of various frequencies that depend of the origin on the drift.
To illustrate the diagnostic power of our health assessment
in a way that we can share, we generated data sets for six
systems showing the drift behavior projected to one
dimension within shortened time-series of twenty steps (see
Appendix). The data sets mirror existing variability within
the fleet and the volatility of the processes that we handle.

5.1. Healthy Process Correction

The assessment of software-based process functions like drift-
correction works very well:

The monitors’ performance is flawless in situations where
they check a direct input-output relation between measure-
ments and observable corrective actions, even with noise on
both sides and hidden impact factors on the latter: Table 1,
showing the health assessment for the twenty time-steps and
six systems, holds consistently high health values for all
systems and time-steps in which the software worked
correctly and immediately detected the wrong software
functionality, which started in time-step 6 for systems 3 and
4 and in time-step 11 for systems 5 and 6. (see Appendix,
Experiment 1 for further details)

 1 2 3 4 5 6
1 0,87317 0,89580 0,86815 0,88928 0,87714 0,89057
2 0,88707 0,88377 0,87839 0,87681 0,88631 0,89522
3 0,88811 0,89037 0,88422 0,87807 0,88242 0,86758
4 0,87648 0,89124 0,86711 0,86845 0,88390 0,88225
5 0,88678 0,87504 0,88844 0,85863 0,89015 0,88589
6 0,89639 0,87730 0,1 0,1 0,87459 0,88804
7 0,88550 0,88470 0,07 0,07 0,88572 0,87427
8 0,89248 0,88589 0,05 0,05 0,89458 0,89437
9 0,89466 0,87397 0,01 0,01 0,89026 0,88943

10 0,89549 0,88963 0,001 0,001 0,89130 0,89330
11 0,88531 0,86984 0,001 0,001 0,1 0,1
12 0,88321 0,88223 0,001 0,001 0,07 0,07
13 0,89029 0,89073 0,001 0,001 0,05 0,05
14 0,88586 0,88325 0,001 0,001 0,01 0,01
15 0,88152 0,88412 0,001 0,001 0,001 0,001
16 0,87776 0,87328 0,001 0,001 0,001 0,001
17 0,86978 0,87284 0,001 0,001 0,001 0,001
18 0,86513 0,84238 0,001 0,001 0,001 0,001
19 0,89407 0,89436 0,001 0,001 0,001 0,001
20 0,89490 0,88072 0,001 0,001 0,001 0,001

Table 1. Health Assessment Experiment 1.

The same detection power is even available for more
difficult assessments, e.g., for computations that take in
earlier corrective intent instead of new measurements – a
situation that speeds up the corrective loop but amplifies
noise. (Experiment 2 in the Appendix.)

While we see that the monitors handle complex situations in
a noisy environment, we still saw individual low values for
the health of the process correction, indicating uncertainty in
the diagnosis. The dedicated analysis of software versions
described in Section 4.2, however, leaves no such doubts,
even though it is using the same numbers to execute its task:
it suspects the software update as being broken (low value)
immediately after its introduction in two systems and
confirms that suspicion the moment the software is rolled
out to additional systems. This is shown in Table 2 in the
sequence for the twenty time-steps for the two software
versions (SW 1 & 2) for Experiment 1 (top) and 2 (bottom).

 1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

 1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

Table 2. Software Assessment for Experiments 1 & 2.

5.2. Healthy Execution

We generated another data set to investigate the detection of
execution errors as laid out in Section 4.3. In this data set,
we inserted faults of two different types: capped corrections,
i.e., corrective actions limited in their scope due to physical
constraints, and corrections that failed to happen (dropped
execution). To stress test the health monitoring, we ran this
detection as black box: the intended behavior was hidden
from the monitors, which therefor could only judge the
health of the execution based on past observations within
the system and the fleet.

As detailed in Experiment 3 in the Appendix, the health
monitoring worked well. We had no false positives and only
two false negatives within 360 estimates, both of which
were corrected by the detection in the subsequent time-step.

By comparison, the Western Electric Rules break down for
this scenario, showing significantly more false positives and
hardly any true positives. This is because execution errors
like the ones we face are not a symptom of a process
running out of control and thus outside the intent of WER.

5.3. Assessment

In total, the specificity and sensitivity of the software and
execution investigations with probabilistic health monitors
exceeded our high expectations.

Looking into at details of the health assessments, we noticed
that the individual parts of the monitoring compensated for
each other weaknesses and never struggled collectively. The
fleet aspect proved to be especially powerful in this, greatly
stabilizing the overall outcome, as it often found comparable
situations that led to the correct framing of observations.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

9

6. CONCLUSION

Our work on fleet-based system health assessment centers
on two contributions:

First, the improvement of health assessments of individual
systems with comparisons to other systems within a fleet of
comparable systems. Here, we discussed the difficulty to
transfer insights between systems: We argue that many
practices especially within the field of remaining useful life
predictions assume a similarity between systems that
disregards relevant differences in configurations or features,
operational modes, or environmental circumstances – but
given causal modeling, we are able to reason about such
differences, which allows us run sensible comparisons.

Such advanced comparisons to other systems of the fleet
then form an integral part of the probabilistic health
monitors we introduce, with similarity computations to the
system’s own past and its intended function as
complementary functions. Altogether, we see the three parts
of the health monitors to support each other and even
seemingly eliminate individual weaknesses, such that the
resulting system health assessment reaches top performance.

Second, we embed our probabilistic health monitors within a
dynamic probabilistic reasoning process to investigate change
within the fleet. This offers an assessment of any inter-
vention, like software upgrades, that are rolled out to the
fleet in order to ensure that it improves the fleet’s health.
Here, the comparison between systems and the reasoning
about their differences and how those change over time is
essential to the fast and accurate detection of issues.

We see the relevance of both contributions in our work in
the high-tech industry, where we observe that industry often
must abandon the notion of stable processes. Instead, they
handle constantly changing production runs with various
interwoven optimization loops. This makes novel process
control techniques necessary and the fast and accurate
health assessment of processes and their corrective actions
that we show is an asset for this.

As the variation and volatility of modern processes that we
handle contributed to the fast-growing interest in digital twins
within recent years, our techniques need to be compatible to
those. While this is not in the focus of this publication, we
can point out that the computations we use in our
assessments are efficient enough for real-time use on live
data within digital twins. This offers the needed elasticity to
handle predictive and preventive maintenance, process
control and correction that covers even execution faults, as
well as the investigation of interventions like software
updates or hardware upgrades.

As some of these applications need dedicates analysis models
that rely on expert knowledge, we seek progress in the fusion
of model-based and data-based techniques in future work.

REFERENCES
Balke, A. & Pearl, J. (1994). Probabilistic evaluation of

counterfactual queries. 12th AAAI National Conference on
Artificial Intelligence (AAAI’94) (pp.230–237). AAAI.

Barber, D. (2012). Bayesian reasoning and machine learning.
Cambridge University Press.

Baru A. (2018). Three Ways to Estimate Remaining Useful Life for
Predictive Maintenance. Mathworks. Webpage:
www.mathworks.com/company/newsletters/articles/three-
ways-to-estimate-remaining-useful-life-for-predictive-
maintenance.html. Retrieved: 30.03.2020

Berthelsen E. (2018). Market Trends: Predictive Maintenance Drives
IoT in Manufacturing Operations. Gartner Research Report
ID: G00350483. Gartner.

Borth M., & van Gerwen, E. (2018). Data-driven Aspects of
Engineering. 13th Annual Conference on System of Systems
Engineering (pp. 219–224), Paris. IEEE.

Borth, M., & Barbini, L. (2019). Probabilistic Health and Mission
Readiness Assessment at System-Level. Annual Conference
of the PHM Society, 11(1).
doi.org/10.36001/phmconf.2019.v11i1.777

Hardesty, L. (2015). Probabilistic programming does in 50 lines of
code what used to take thousands. phys.org/MIT.
phys.org/news/2015-04-probabilistic-lines-code-thousands.html

Heckerman, D., Mamdani, A., & Wellman, M.P. (1995). Real-
world applications of Bayesian networks. Communications of
the ACM, vol. 38, 3, pp. 24-26. doi=10.1145/203330.203334

Jensen, F.V. (2007). Bayesian Networks and Decision Graphs.
New York: Springer.

Lerner, U., Parr, R., Koller, D., & Biswas, G. (2000). Bayesian
fault detection and diagnosis in dynamic systems. AAAI
Conference on Artificial Intelligence (pp. 531-537). AAAI
Press.

Mulders M. & Haarman, M. (2018). Predictive Maintenance 4.0
Beyond the Hype. pwc and mainnovation.

Pearl, J. (1986). Fusion, propagation, and structuring in belief
networks. Artificial Intelligence, 29 (3): pp. 241-288.
doi:10.1016/0004-3702(86)90072-X.

Pearl, J. (2009). Causality. Cambridge University Press.
Pfeffer, A. (2016). Practical probabilistic programming. Manning

Publications Co.
Roychoudhury, I., Biswas, G., & Koutsoukos, X. (2008).

Comprehensive diagnosis of continuous systems using
dynamic Bayes nets. 19th International Workshop on
Principles of Diagnosis (pp. 151-158).

Ricks, B. W., & Mengshoel, O. J. (2009). Methods for
probabilistic fault diagnosis: An electrical power system case
study. Annual Conference of the Prognostics and Health
Management Society (PHM-09).

Xiao-Sheng Si, Wenbin Wang, Chang-Hua Hu, Dong-Hua Zhou
(2011). Remaining useful life estimation – A review on the
statistical data driven approaches. European Journal of
Operational Research, Volume 213 (1), pp. 1–14.
doi.org/10.1016/j.ejor.2010.11.018

Western Electric Company (1956). Statistical Quality Control
Handbook. (1 ed.), Western Electric Co.

Wirth R., & Reinartz, T.P. (1996). Detecting early indicator cars in
an automotive database: a multi-strategy approach. Second
International Conference on Knowledge Discovery and Data
Mining (KDD’96) (pp. 76–81). AAAI Press.

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

10

APPENDIX

This appendix describes the setup of the experiments that
we included to illustrate our work, as described in Section 5.
We executed two of these experiments in a grey box and
one in a black box setting, such that the health monitors
cannot access the ground truth of the investigated functions,
as that reflects non-observability of process steps and
measurements noise in industrial settings.

In Experiment 1, the monitored systems respond directly to
drift that the 6 systems measure over 20 time-steps:

 1 2 3 4 5 6
1 0,08318 0,09437 0,08504 0,08767 0,07919 0,08884
2 0,10590 0,43727 0,17113 0,50547 -0,03024 0,22978
3 0,33675 0,85449 0,26117 2,68949 -0,33644 -0,92863
4 0,61562 1,25285 0,32156 4,83051 -0,40802 -1,15255
5 0,85927 1,87032 0,45639 6,01404 -1,30681 -1,34669
6 0,97446 2,54015 0,55257 8,13806 -1,86279 -1,26722
7 0,99826 3,18430 0,67539 8,19158 -2,56524 -1,43377
8 1,23039 3,63903 0,71085 6,84901 -2,88373 -1,76493
9 1,46020 3,37264 0,80857 8,66581 -3,36993 -2,16967

10 1,69834 4,11483 0,80039 9,15564 -3,88939 -1,83336
11 1,82069 3,92779 0,98783 7,94638 -5,04925 -2,91566
12 2,23535 4,67182 1,08078 9,71939 -6,60397 -3,20718
13 2,53602 5,49194 1,14706 11,44663 -6,29128 -3,59570
14 2,93456 5,03960 1,26228 12,85140 -7,23911 -4,70066
15 2,79205 5,89861 1,29053 15,55428 -8,92182 -5,12672
16 3,13616 6,82097 1,43934 17,82150 -9,57781 -5,37022
17 3,50989 6,54178 1,48418 19,17648 -8,72866 -5,03838
18 3,57893 8,44073 1,68970 19,34494 -8,15535 -5,45262
19 4,16325 8,22091 1,63213 18,98093 -9,67009 -5,02907
20 4,31406 7,62859 1,72772 22,93833 -9,52580 -6,23554

As stated, these measurements are noisy. The true physical
drift together with the corrections that get applied determine
the true physical situation in subsequent time steps, which
results in these measurements that are again noisy.

 1 2 3 4 5 6
1 0,01682 0,00563 0,01496 0,01233 0,02081 0,01116
2 0,00669 0,05825 0,02094 0,07625 -0,00525 0,01549
3 0,01942 0,09520 0,03277 0,38572 -0,05388 -0,09436
4 0,07594 0,13448 0,07125 0,49471 -0,03214 -0,06712
5 0,07351 0,25804 0,02961 1,44859 -0,12105 -0,13319
6 0,02402 0,29850 1,14419 17,02940 -0,28578 -0,06117
7 0,11705 0,28096 1,36910 17,22082 -0,32031 -0,28530
8 0,10770 0,35327 1,48921 15,40352 -0,14735 -0,11016
9 0,04870 0,58180 1,68418 18,34033 -0,36299 -0,04701

10 0,10648 0,33160 1,76511 18,93590 -0,36864 -0,15393
11 0,23551 0,84578 2,05710 17,62643 -11,05868 -5,95192
12 0,35121 0,77417 2,24660 20,20541 -13,60144 -6,82132
13 0,29632 0,25751 2,40532 23,98289 -13,59879 -7,56893
14 0,14167 0,92502 2,62025 26,04986 -15,37911 -9,84205
15 0,52216 0,62637 2,74194 30,92965 -18,41339 -10,93697
16 0,40442 0,58252 2,98344 34,66081 -19,53171 -11,18860
17 0,24702 1,06417 3,12251 36,03324 -18,40965 -10,58412
18 0,42352 -0,06160 3,40918 36,13019 -17,07440 -11,03943
19 0,19410 0,42963 3,45134 37,69765 -19,48374 -10,79995
20 0,30916 1,14534 3,61852 39,92176 -19,79175 -12,85005

As the goal of the software is to keep drift as close to 0 as
possible, we see some systems drift out of their operational
window. Some, however, do not and it is not immediately
visible that system 3 developed an issue after a software
update in time step 6, as the system is still working well.

Our health monitors assess the systems’ behavior accurately
and immediately (1 indicating certainty of perfect health,
0 indicating a zero probability of this system working well,
with 0.1 and 0.001 being an initial and final lower ceiling):

 1 2 3 4 5 6
1 0,87317 0,89580 0,86815 0,88928 0,87714 0,89057
2 0,88707 0,88377 0,87839 0,87681 0,88631 0,89522
3 0,88811 0,89037 0,88422 0,87807 0,88242 0,86758
4 0,87648 0,89124 0,86711 0,86845 0,88390 0,88225
5 0,88678 0,87504 0,88844 0,85863 0,89015 0,88589
6 0,89639 0,87730 0,1 0,1 0,87459 0,88804
7 0,88550 0,88470 0,07 0,07 0,88572 0,87427
8 0,89248 0,88589 0,05 0,05 0,89458 0,89437
9 0,89466 0,87397 0,01 0,01 0,89026 0,88943

10 0,89549 0,88963 0,001 0,001 0,89130 0,89330
11 0,88531 0,86984 0,001 0,001 0,1 0,1
12 0,88321 0,88223 0,001 0,001 0,07 0,07
13 0,89029 0,89073 0,001 0,001 0,05 0,05
14 0,88586 0,88325 0,001 0,001 0,01 0,01
15 0,88152 0,88412 0,001 0,001 0,001 0,001
16 0,87776 0,87328 0,001 0,001 0,001 0,001
17 0,86978 0,87284 0,001 0,001 0,001 0,001
18 0,86513 0,84238 0,001 0,001 0,001 0,001
19 0,89407 0,89436 0,001 0,001 0,001 0,001
20 0,89490 0,88072 0,001 0,001 0,001 0,001

Tracing a software update that was rolled out to systems 3
and 4 in time step 6 and to systems 5 and 6 in time step 11,
we see the dedicated software monitor estimating the likeli-
hood of the initial software working correctly as 1, but the
update initially judged at 0.345 – allowing the possibility of
a coincidence – followed by a strict 0 in time step 11.

 1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

In Experiment 2, the monitored systems respond to drift
such that they compute in earlier actions – or their assump-
tions of those, as software computations and the executed
correction may differ due to limits or software issues. This
real-world scenario amplifies the effects of noise and errors.
The probabilistic health monitors reflect that, but work:

Basic 1 2 3 4 5 6
1 0,68747 0,62217 0,66929 0,85680 0,87714 0,59214
2 0,70650 0,68922 0,73104 0,65712 0,32558 0,59758
3 0,71664 0,70413 0,59740 0,76194 0,65607 0,76265
4 0,77153 0,73946 0,59683 0,76748 0,67692 0,86671
5 0,80690 0,59727 0,59919 0,78173 0,75822 0,81602
6 0,59988 0,59824 0,1 0,1 0,80333 0,84507
7 0,59936 0,59905 0,07 0,07 0,83543 0,73524
8 0,59919 0,59926 0,05 0,05 0,59979 0,59961
9 0,59977 0,59997 0,01 0,01 0,59893 0,59981

10 0,59944 0,59953 0,001 0,001 0,59931 0,59952
11 0,59914 0,59923 0,001 0,001 0,1 0,1
12 0,59827 0,59889 0,001 0,001 0,07 0,07
13 0,59932 0,59982 0,001 0,001 0,05 0,05
14 0,59977 0,59966 0,001 0,001 0,01 0,01
15 0,59932 0,59950 0,001 0,001 0,001 0,001
16 0,59952 0,59944 0,001 0,001 0,001 0,001
17 0,59976 0,59972 0,001 0,001 0,001 0,001
18 0,59961 0,59996 0,001 0,001 0,001 0,001
19 0,59978 0,59992 0,001 0,001 0,001 0,001
20 0,59977 0,59989 0,001 0,001 0,001 0,001

EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020

11

While the individual assessments show mid-range values,
the software analysis remains the same and certain:

 1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

In Experiment 3, we introduce execution faults in the drift
correction. The health monitoring, working in a black box,
only sees the measurements in the following table, where a
dark red indicates a dropped correction and a light red a cap.

 1 2 3 4 5 6
1 0,01783 0,00577 0,01401 0,01225 0,02037 0,01081
2 0,00753 0,05965 0,02227 0,07435 -0,00534 0,23590
3 0,01910 0,09610 0,03160 0,36406 -0,05512 -0,08536
4 0,06765 0,13191 0,06829 0,48348 -0,03410 -0,06652
5 0,07161 0,24372 0,02739 1,36457 -0,12700 -0,13536
6 0,02474 0,28486 0,62525 0,67993 -0,28911 -0,06208
7 0,11623 0,29061 0,01798 9,42323 -0,32841 -0,28624
8 0,11263 0,33406 0,06788 8,52080 -0,15371 -0,10879
9 0,04923 0,60291 0,06377 0,94361 -0,33585 -0,04847

10 0,10361 0,33898 0,16732 0,63695 -0,35708 -0,14917
11 0,23881 0,73969 0,07764 1,64200 -5,52902 -3,22904
12 0,36761 0,81949 1,27488 0,75030 -0,34796 -3,43495
13 0,31962 0,25497 0,11072 1,06880 -7,34953 -4,20240
14 0,14363 0,93657 0,10343 0,36180 -0,85647 -5,33664
15 0,55806 0,69252 0,15506 0,93725 -9,19886 -6,02903
16 0,40632 0,57197 0,09346 4,99766 -0,37452 -5,99014
17 0,25318 1,17447 0,16235 21,16356 -9,68919 -5,56370
18 0,40608 -0,06150 0,03017 21,43145 -0,74530 -5,69639
19 0,19681 0,45862 0,18655 8,11612 -9,21369 -5,53691
20 0,30489 1,19181 0,16840 9,41702 -0,75963 -6,60188

The dedicated tracking of the health monitoring computes
the likelihoods for each fault type, which the following table
shows for each system in the order ‘ok’, ‘capped’, ‘dropped’.
The color-coding indicates the assessment’s correctness.

 1 2 3 4 5 6
1 1,00 1,00 1,00 1,00 1,00 1,00
2 0,95 0,00 0,05 0,96 0,00 0,04 0,96 0,00 0,04 0,95 0,00 0,05 0,95 0,00 0,05 0,00 0,00 1,00
3 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 1,00 0,00 0,00
4 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,95 0,00 0,05 0,96 0,00 0,04
5 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04
6 0,96 0,00 0,04 0,96 0,00 0,04 0,00 0,00 1,00 0,97 0,00 0,03 0,96 0,00 0,04 0,96 0,00 0,04
7 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 0,00 0,00 1,00 0,96 0,00 0,04 0,96 0,00 0,04
8 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,46 0,00 0,54 0,96 0,00 0,04 0,96 0,00 0,04
9 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 0,96 0,00 0,04 0,96 0,00 0,04

10 0,96 0,00 0,04 0,97 0,00 0,03 0,96 0,00 0,04 0,97 0,00 0,03 0,96 0,00 0,04 0,96 0,00 0,04
11 0,96 0,00 0,04 0,97 0,00 0,03 0,97 0,00 0,03 0,97 0,00 0,03 0,00 0,00 1,00 0,00 0,00 1,00
12 1,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 1,00 0,97 0,00 0,03 1,00 0,00 0,00 0,46 0,00 0,54
13 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
14 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,46 0,00 0,54
15 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
16 1,00 0,00 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,01 0,99 0,00 0,99 0,01 0,00 0,46 0,00 0,54
17 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,00 0,00 1,00 0,46 0,00 0,54
18 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,46 0,00 0,54 0,99 0,01 0,00 0,46 0,00 0,54
19 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
20 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,01 0,99 0,00 0,99 0,01 0,00 0,46 0,00 0,54

We see only two false negatives that are corrected within
one time-step. The observed uncertainty in the diagnosis
occurs only within sequences of errors, which are unlikely
happenstances that we included as a stress test.

