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ABSTRACT 

Monitoring and managing the health of technical systems 
with advanced diagnosis and prognosis benefits from fleet 
analytics: insights on the degradation of other but similar 
systems help, e.g., to forecast actual issues for predictive 
maintenance as does detecting and correcting anomalies in 
usage profiles helps to prevent undue wear and tear. 
Successes in this field usually depend on the similarity of 
the fleet’s systems: although not necessarily equal, they need 
to have alike key characteristics, e.g., in the way they age, 
such that observations on one or many systems constitute an 
expectation for others.  

We introduce fleet-based system health assessments that 
complement such approaches by reasoning on differences, 
e.g., those introduced by interventions like upgrades. Given 
that such change is the only constant for many of today’s 
complex systems, we believe that our addition to health 
assessment is necessary to cope with the variation in systems 
that fleet operators face over the lifecycles of all systems.  

Technically, our approach is based on probabilistic reasoning. 
The related modeling and inference techniques allow us to 
incorporate insights from past observations in individual 
systems, but also from comparable systems and, at the same 
time, they permit comparisons between parts of the fleet and 
estimate possible effects of existing differences. Our work 
shows that especially such comparisons are valuable for 
fleet health management over long lifecycles that is 
typically linked to continuous improvement processes. 

 

1. SYSTEM HEALTH MANAGEMENT FOR FLEETS 

System Health Management (SHM) assesses the current or 
future health state of a system to increase its reliability, 
availability, and dependability. Based on diagnosis and 
prognosis techniques that analyze available sensor data, 
SHM typically aims to shorten the time-to-repair in the 
event of failures and to prevent such failures and the related 
down time altogether with predictive and preventive mainte-
nance. Technically, recent advances in the SHM are mainly 
based on the fusion of Internet-of-Things (IoT), i.e., the 
extension of networked connectivity into physical devices 
and sensors, with advances in data science that allowed 
faster and more accurate predictions. 

Due to this progress, predictive maintenance became a major 
business trend, as identified, e.g, by Gartner (Berthelsen, 
2018), even though Mulders et al. (2018) analysis that many 
companies remain in early stages of implementing it yet 
holds in 2020 according to our experience. Still, given a 
framework of available resources and operational demand, it 
became possible to better plan the most efficient use of 
systems, altogether lowering the total cost of ownership 
(TCO). Such a framework may exist on several levels: (i) 
for a single system, provided that its tasks vary in duration 
or intensity such that fitting scheduling and maintenance 
plans based on health information increase its utilization; 
(ii) for a system of systems (SoS), e.g., a factory, which 
relies on individual systems, but may also include alternate 
systems that can complete a task and whose performance 
(throughput, etc.) depend on their health state, thus offering 
another layer of optimization; and (iii) for fleets of systems. 

For the latter, we know that automotive, shipping, and 
avionic industries benefits from monitoring and managing 
the health of assets with advanced diagnosis and prognosis 
that draws from fleet analytics. In these industries, both 
asset owners and manufacturers have a vested interest to 
work cooperatively and thus the organizational and 
technical means to pursue SHM approaches where insights 
on similar systems help to increase the precision of the 
reasoning about a specific system of interest. 
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In automotive, e.g., this led, among many other cases, to the 
success of services like Fleetboard (www.fleetboard.info) or 
early publications like the work of Wirth and Reinartz 
(1996) of Daimler and the cross-industry standard for data 
mining (CRISP-DM).  

Methodologically, such work often depends on the degree of 
similarity of a fleet’s systems: although not necessarily equal, 
they need to have alike key characteristics, e.g., in the way 
they age, such that observations on one or many systems 
constitute an expectation for others. This requisite, however, 
is often violated, as we elaborate in Section 2 as the first 
contribution of this paper. This insight then motivates our 
approach to complement system health assessments by fleet-
based reasoning on similarity and differences, which sets 
the main contribution of our paper. 

We illustrate this main part of our work in two sections. In 
Section 3, we initially refer to earlier work where we inves-
tigated the impact of different states of systems that arise 
from upgrades and updates. We then show that even basic 
probabilistic reasoning can determine root causes for 
performance loss once sequences of interventions or mainte-
nance actions are analyzed on fleet level. Exploiting more 
subtle differences between systems, however, requires 
elaborate reasoning that matches current observations with 
past data both within the timeline of a system and across 
systems while estimating effects of existing differences. We 
develop this in Section 4. 

We close with an experimental evaluation of our approach 
in Section 5 followed the conclusions in Section 6. 

2. SIMILAR – BUT SIMILAR ENOUGH? 

System differ among each other, e.g., regarding their 
configuration or feature set, usage patterns, or even 
production quality and thus wear and tear, but they also 
change over time, e.g., due to maintenance actions, software 
updates, hardware upgrades, or switches in their behavior.  

Many techniques for predictive or preventive system health 
management assume that these differences do not matter for 
the prediction if it is possible to find a condition indicator 
value (CIV) that can be measured or computed to define a 
signature curve for the investigated wear and tear. Such a 
remaining useful life (RUL) estimate relationship to the 
condition indicator is shown in Figure 1 and explained in, 
e.g., (Baru, 2018) or the review article of Xiao-Sheng Si et 
al. (2011). Often enough (but not always, see below), this 
approach works, especially for mechanical wear and tear, 
where vibration signals typically indicate impeding 
breakdowns with little or no dependence to other factors.  

In those cases, the RUL estimate can be done based on 
similarity between systems, such that an incoming time-
series of the CIV of a system is compared to those of other 
systems and the most similar known series is used to predict 
the systems future wear and tear behavior. 

In Figure 1, however, we investigate a system that at first 
runs on course for prediction 1, but changes, showing later a 
similarity leading to prediction 2, before changing again and 
ending with an abnormal behavior. This investigation relates 
to an adaptive system’s ability to perform under different 
load scenarios and in different environments – imagine a 
seafaring vessel that leaves a high strain environment to 
prevent critical mission failure (mode switch), but which 
initial wear leads to an accelerated tear that fails to manifest 
early in the CIV. The latter happens as the low strain phase 
induces other characteristics in the CIV, especially as the 
adaptive system enacts compensating behavior that hides 
indicators normally visible within component interactions. 

The importance of component interactions for wear and tear 
was one of several factors that led us to seek novel ways for 
system health management in our work on complex high-
tech system. We also needed to ensure a system’s ability to 
perform, which is a stronger requirement than a prevention of 
breakdowns, as we explained in (Borth & Barbini, 2019).  

Furthermore, we saw that differences in features can matter 
for predictive health management in unforeseeable and 
nonconstant ways. For our vessel investigation, e.g., the 
second change point looks very different in systems with 
auxiliary subsystems that would prevent the hidden tear – 
but without the initial phase of high wear, this feature would 
not impact the RUL. Additionally, we face the complication 
that all systems we investigate undergo irregular updates in 
their embedded software – changing system behavior and 
thus, potentially, wear and tear – and even upgrades of parts.   

In total, this leads to the conclusion that any similarity we 
seek to exploit during fleet analytics is temporal at best; 
phrased differently, we state that past similarity may be no 
indication of future similarity and even seemingly similar 
systems might not be similar enough to transfer insights from 
one system to another if the context is disregarded.  

This has grave consequences for any purely data-driven 
approach: as we illustrated in (Borth & van Gerwen, 2018), 
even lots of data is not enough for a similarity-based 
analysis if the data set is broken down into too many 
compartments as the number of cases within these becomes 
too small. Consequently, we seek to exploit not only 
similarities, but also knowledge about differences between 
systems in our fleet analytics, as these opposing aspects can 
complement each other, as we show below. 

Figure 1. Switching behavior in RUL estimates. 
(from Borth and Barbini, 2019) 
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3. PROBABILISTIC HEALTH ASSESSMENT 

The fleet analytics we introduce in this article are set within 
a line of work in which we use probabilistic reasoning for 
the assessment of a system’s health and readiness to perform 
an upcoming mission. 

To briefly recap what we and others stated before, system 
health assessment is, like any diagnosis problem, the task to 
deduce the likelihood of an internal state that is not directly 
observable from observations that are possible, like sensor 
data. These observations are typically of limited accuracy or 
even temporarily missing. The reasoning itself is then made 
under several assumptions, e.g., the a priori likelihoods of 
component failures and the impact of the environment as 
well as internal and external interactions. All in all, this 
summarizes as reasoning under uncertainty and probabilistic 
reasoning, e.g., with the Bayesian networks we deploy, is a 
leading methodology for it. Pearl introduced Bayesian 
networks in (1986) and they showed their performance early 
on in a range of applications (Heckerman, 1995).  

We consider them to be especially suited for building 
diagnostic models of systems as they are one of the few 
techniques that combine knowledge- and data-driven 
modeling, as e.g., Jensen illustrated (2007). In recent years, 
the generation of suitable Bayesian networks saw great 
improvement as the progress in data science enhanced the 
latter, while probabilistic programming techniques eased the 
former (Hardesty, 2015).  

For us, this led to the systematic approach detailed in (Borth 
& Barbini, 2019), but we also refer to (Ricks & Mengshoel, 
2009). In summary, we first generate a knowledge-based 
directed graph in which nodes represent system variables, 
e.g., health states of components or sensor readings, and 
edges encode dependencies between variables. The 
parameters of these dependencies, i.e., the conditional 
probabilities which altogether encode a joint probability 
distribution over all variables, are set in a data-driven step 
for which many techniques exist, see e.g., (Barber, 2012). 

To diagnose a system using a Bayesian network, we enter 
observations as evidence, i.e., we instantiate the respective 
nodes to the observed state. Bayesian reasoning then 
updates all other variables given the conditional probability 
distributions that specify the relationship between variables. 
This provides the marginal probabilities for all possible 
states and thus the likelihoods of component failures and 
system malfunctions or losses of performance. 

The latter aspect, i.e., the ability to reason about a system’s 
performance is crucial for the fleet analytics we introduce 
here, as Bayesian reasoning under uncertainty is inherently 
bi-directional: it allows us to infer expectations about a 
system’s behavior given a cause, e.g., the impact of a specific 
feature, but also to infer possible explanations or root causes 
for an observed behavior, including a loss of performance. 

3.1. Reasoning on Fleet Observations 

One of our early results in exploiting observations from a 
fleet of systems to determine the root cause of performance 
loss in operational systems was the so-called ESI System 
Data Demonstrator (www.esi.nl/system-data-demo/). Figure 
2 shows the relevant step here, where a Bayesian network 
analyses a fleet of 65 machines, which partially received 
hardware and/or software upgrades or updates. The red 
color and small cross icons indicate that many systems have 
performance issues, but the distribution is not clear-cut: there 
are, e.g., many systems with, but also many systems without 
issues in the left and in the right fields, which list systems 
without and with software upgrades respectively.  

However, our probabilistic health assessment brings the ratios 
of systems with or without issues in all four quadrants into 
relation with the prior expert belief on the quality of the 
hardware and software development (left) and arrives at the 
conclusion that a recent software update is to blame (right). 
The structure of the necessary Bayes net consists of only 
two nodes for root causes, i.e., an ill effect by either 
software or hardware changes and nodes for the affected 
parts of the fleet in which we enter the observed ratios of 
systems with performance issues. 

While this fleet-based analysis of the impact of hardware or 
software changes works well, we see two major limitations: 
• The performance of systems and thus the major piece of 

evidence for the reasoning is judged by a comparison 
against a global baseline. 

• The reasoning is static. 

We can, e.g., not easily integrate that a software update only 
had a marginal negative effect on a system if that system 
already performed badly and the change pushed it beyond 
the set threshold, nor can we exploit a sequence of changes, 
e.g., if a system receives a software update without issues 
but then takes a performance hit during a hardware upgrade. 

Taking these points as motivation, we introduce more 
elaborate health assessment considerations below. 

Figure 2. ESI System Data Demonstrator. 
Bayesian reasoning diagnoses a software patch hit. 
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3.2. Causal Reasoning on Circumstances 

First, we investigate how circumstances like load or the 
environment factors impact system states. We specify such 
factors according to expert knowledge and introduce the 
dependencies between the factors and system behaviors 
including component wear and tear fitting to known facts or 
observed data. As the resulting Bayes net encodes the joint 
probability distribution of all its variables, we are then able 
to compute any marginal distribution of interest, e.g., the 
health state of a component, given any set of circumstances 
or other factors. In this, we can factor in the strain and thus 
wear and tear of scenarios or – and that is equally important 
– factor it out.  

This modeling exploits that we can reason along causal lines 
within Bayesian networks. Doing so is an asset for fleet 
analytics, as it allows for a transfer of insights: if a causal 
effect is established and specified in a part of the fleet, it will 
hold in all systems where it can occur – even if it was not 
observed in those systems yet. To understand the foundation 
of this transfer, we refer to (Pearl, 2009) for the theory on 
how causality introduces modularity and composability into 
probabilistic modeling.  

In our work, we use causality to reason on system aspects 
like their age, usage, configuration, or features:  
• knowing the Weibull distribution that describes the 

failure likelihood of a component given its lifetime 
allows to assess the impact of age together with wear 
and tear of load caused by circumstances; 

• features and configurations together with their usage 
profiles determine system load and thus wear and tear 
and affect health assessments according to Failure 
Mode and Effect Analyses and load distribution models. 

3.3. Similarity Re-visited 

Using causality and thus expert knowledge to transfer 
insights between parts of the fleet partially counters the 
compartmentalization we described at the end of Section 2.  

Furthermore, it addresses the first of the two concerns listed 
above, i.e., the limitations that stem from comparing health 
indicators only against a global baseline, as it allows us to 
tune a comparison to the given circumstances: We can, e.g., 
conclude that a system which seems to struggle is actually 
doing well given that it operates in harsh conditions.  

This allows us to re-visit the question of similarity central to 
many RUL techniques: instead of using a fixed computation 
for the condition value indicator, we factor in the 
differences between the systems of the fleet, effectively 
replacing the curves shown in Figure 1 by those we compute 
under a set of common assumptions.  

This results in an adapted prediction of RUL from the lines 
Δ1, Δ2 in Figure 1 towards the Δ1’, Δ2’ shown in Figure 3.  

The estimate has less uncertainty as the new predictions are 
closer to the reality of the system under investigation. 
Computationally, it stems from so-called counterfactuals that 
pose a ‘what-if’ question that allows us to ask how the curves 
would look like following Bayesian inference within the 
algorithmic pattern first laid out in (Balke, 1994): 

1. Update the probability of unobserved factors given the 
observed evidence according to the Bayes rule. 

2. Perform the action in the model that changes the model 
towards the target configuration, i.e., the counterfactual. 

3. Predict RUL in the modified model. 

The effort to compute counterfactuals along these three steps 
is significant, but it is reduced greatly if there is a single 
causal model that can accommodate all factors, i.e., there is 
no factor which is true for parts of the fleet but cannot be 
true for others.  

In this case, which often holds for our work, there is no 
contradiction between the factual world and possible actions 
of interest in the interventional level, e.g., mode switches or 
software updates. Consequently, we do not need to modify 
the model during the RUL computations and can, instead, 
insert assumptions as observations, falling back to simpler 
Bayesian inference for which ample tooling exists.  

3.4. Dynamic Reasoning over Time 

The final building block we introduce for our health assess-
ment approach is to reason about change over time.  

With Bayesian networks, reasoning over time is typically 
implemented in the form of Dynamic Bayesian Networks 
(DBN), as introduced by Lerner et al. (2000) for fault 
detection and diagnosis in dynamic systems, where the 
authors used the concept of time-slices to model and then 
reason over time. 

This and subsequent works transform the diagnosis problem 
into the task of tracking the system state and then to draw 
conclusion from the way observed behavior deviates from 
the expectations. The latter is supported by using different 
DBN for normal behavior and error behaviors, as shown, 
e.g., in (Roychoudhury et al. 2008), such that the network 
which fits the observed behavior the closest provides the 
diagnosis while the other DBN are disregarded.  

Figure 3. RUL estimates adapted to switching behavior. 
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We extend these ideas towards fleet analytics and reasoning 
about change by introducing a time-stepwise construction of 
a fleet analytics network that tracks the changes that happen 
to systems within the fleet. Extending the example in 
Section 3.1 for the ESI System Data Demonstrator, we show 
this in Figure 4, for a software update sequence, i.e., a 
stepwise roll-out of a new software version that is, over 
time, used by more and more systems of the fleet. 

In the reasoning of this growing network, we use observations 
regarding the performance of individual systems to estimate 
the quality of a software patch, wherein a performance 
degradation supports the hypothesis of a software issue 
while the opposite serves as counter example. As we extend 
our reasoning over time towards any system that uses the 
updated software version, we always use all available data 
while we run, i.e., past and present, and continuously update 
our beliefs over all systems and their past and actual state. 
This extension over time is the difference to the reasoning 
used in Section 3.1 – it forms a dedicated analysis that 
delivers immediate insights and becomes more certain over 
time as evidence for a software patch hit grows or decreases. 

3.5. Building Probabilistic Health Assessments 

This far, we introduced a set of building blocks for system 
health analytics: diagnostic assessments that follow causal 
modeling principles to ensure modularity and composa-
bility; transfer of insights between systems with adaptive 
similarity computations that match a system’s behavior to 
the behavior of other systems that we either observed or that 
we would expect to observe given similar circumstances; 
and dynamic reasoning over time that mirrors the changes 
that happen to the systems. We realize all these building 
blocks with probabilistic reasoning, specifically Bayes nets, 
within one modeling approach. This ensures a consistent 
assessment without conceptual breaks. 

Implementation-wise, we use the probabilistic programming 
language Figaro (Pfeffer, 2016) for this, which allows us to 
mix object-oriented and functional programming to define 
Bayes nets which are then piece-wise constructed to cover 
the dynamics and changes to systems and the fleet. 

4. FLEET-BASED SYSTEM HEALTH ANALYTICS 

Using the building blocks introduced above, we now realize 
fleet-based system health analytics that serve three purposes:  
• to determine the health of an individual system based 

on expectations and insights that originate from the 
system’s own past behavior, other systems of the fleet, 
and from the specifications of the system’s functions; 

• to detect faults or performance loss introduced by 
changes like software issues due to update processes; 

• to detect execution faults, i.e., certain transient errors 
caused by failures in the orchestration of systems and 
functions, e.g., if a need to correct a process step is not 
communicated in time. 

One of our application domains here is process control where 
a complex software function is used to keep manufacturing 
equipment within its operational window. Software like this 
is typically used to counter physical effects that make the 
equipment drift out of their optimal work conditions, thus 
controlling an aspect of the process in order to keep systems 
operational without expensive physical calibration.  

With this link into process control, our health analytics sets 
out to outperform standard process control techniques, like 
those based on Western Electric Rules (WER) introduced by 
Western Electric in (1956), but also to offer more insights 
than the simple fact that something is beyond ‘the normal’.  

Our success criteria are thus timely detection of all errors 
and faults, optimally on the time-step in which they show in 
the data, thus no false negatives, and few to zero false 
positives.1 The motivation for these goals is that failing to 
run processes correctly incurs heavy costs, while false 
positives lessen the trust in the health analytics.  

We show that we meet our goals in Section 5, where we 
describe experiments for a small fleet of six systems. Larger 
fleets pose no undue challenge, as we explain at the end of 
Section 4.  

4.1. Probabilistic Health Monitors 

The first components to realize for our fleet-based system 
health analysis is a set of probabilistic health monitors that 
each run a concurrent analysis of an individual system. The 
task of these monitors is to check a system’s behavior, 
visible in its response to an input, against expectations.  
Providing us with a probabilistic measure of the match 
between observations and expectations, the monitors show 
similarity to Western Electric Rules in the sense that they 
state if something is unexpected or unlikely. 

 
1 We consider it noteworthy that statistical techniques like the WER cannot 
deliver such a feat as they have an inherent delay and must accept 
individual data points that are ‘off’ as outliers which are bound to happen. 
Their advantage is thus not in their absolute performance, but in their 
performance given the simplicity of their use. Figure 4. Reasoning over time and multiple systems I. 
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Their composition, however, is more sophisticated, as they 
compute the following three comparisons: 

1. The response of a system to an input is compared to the 
system’s own earlier responses. 

2. The response of a system to an input is compared to 
earlier responses of other systems in similar circum-
stances; i.e., we use the causal reasoning to adapt the 
other systems’ actual responses towards the situation at 
hand to ensure sufficient similarity. 

3. The response of a system to an input is compared to its 
designed function, i.e., to the response we expect under 
perfect conditions (no noise or interference, etc.). 

These three steps are illustrated in Figure 5. As shown, we 
run the first two comparisons (1, 2) in a similar way:  

Given that there are typically no past values for an identical 
input x, we consider a number of (output yi | input xi) value 
pairs within the data sets of past observations that are 
relevant for checking the current observation (y | x).  

Taking these value pairs, we produce a weighted 
combination y´ of the output values {y1,…,yn} to formulate 
the output we expected from the past. The weights used for 
this are based on the distance between x and xi in the same 
way that we then use to compute a measure for the match 
between the expected value and the observed one, where we 
use the probability defined via the normal distribution 
around y´  

p = cumulative probability outside y´ ± | y´- y|   
e.g.,  p = 2×2.3% = 0.046 for y = y´ - 2σ  
e.g.,  p = 2×50% = 1 for y = y´ 

Within the second comparison of a system to other systems 
of the fleet, we average over all match values (2 B). 

The comparison of an observed value y with the designed 
function y* = f(x) uses the same match evaluation as the 
previous steps (3). However, we find it good practice to also 
consider rules defined by experts to adjust our result in 
cases where the response of the system is out of bounds, i.e., 
clearly beyond the operational window, resulting in a 
penalty that discriminates against identifiable faults.  

In total, this might lead to a flow of information during the 
fusion of the three outcomes that resembles an argument, 
e.g., stating that we have seen numbers like those observed 
before, but with the final check against the function 
informing us that these are still wrong.  

Seeing that we handle process volatilities and variety 
between systems together with the functional requirements, 
we value such ‘disagreements’, as they usually point 
towards interesting happenstances for further investigation. Figure 5. Flow for probabilistic health monitors. 
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4.2. Investigations of Interventions 

Next to assessing state and performance of individual systems, 
we use the probabilistic health monitors to investigate inter-
ventions, i.e., man-made changes to systems or systems-of-
systems, within the fleet.  

This application, which we found particularly useful to check 
software updates for non-intended side effects, follows the 
‘Reasoning over time and multiple systems’ approach that 
we illustrated in Figure 4, but now uses the probabilistic 
health monitors to judge the degradation of a system’s 
performance, replacing the ‘degradation system X’ nodes. 
Consequently, we feed the software quality analysis that 
runs across the fleet and over time insights about individual 
machines which are, in turn, based on past data of the same 
machine and of other machines, but also on the function of 
the software. We depict this in Figure 6.  

We found this approach particularly valuable for domains 
with small signal-to-noise ratios. We saw this, e.g., in the 
process control scenario, where drift corrections computed 
by the software are small in comparison to the noise 
introduced by process variations and measurement errors: 
the software update is supposed to improve the accuracy of 
corrections, but as its introduction upsets the production 
flows, we need to account for a multitude of temporal 
effects that also differs per machine, but the combination of 
the different aspects of the probabilistic health monitors 
makes the analysis robust against volatile circumstances.  

In practice, we saw this stabilization of the analysis also 
improved by the explicit notion of supporting or weakening 
a hypothesis about a software update’s performance within 
probabilistic reasoning that encompasses the whole fleet. As 
illustrated through the graph in Figure 6, the software 
update is either good or bad, but it cannot be the one for one 
system and the other for another, even though local 
observations might provide that impression for a while. 

4.3. Detection of Execution Faults 

The detection of execution faults is the last application we 
realize with the probabilistic health monitors. These faults 
originate from failures to orchestrate systems in a system-
of-systems setting or, e.g., from missed race-conditions 
within a complex system. They are often individual in their 
nature and thus not per se part of fleet analytics.  

Our experience, however, shows that it is helpful to transfer 
knowledge between systems of a fleet when building 
detectors dedicated to execution faults: if a certain error type 
leads to a specific behavioral pattern in one system, we 
extract that pattern and use it to detect (and subsequently 
correct) that error in other system. We rely again on causal 
reasoning to factor out differences between individual 
systems and search, e.g., for a missed execution of a drift 
correction in very differently scaled trend analyses if the 
systems differ in the volatility of their process stability. 

We realize the detection of an execution fault pattern with a 
sequence of the probabilistic health monitors: the first 
monitor starts with the current observation to provide a 
match estimation for an expected system response given the 
assumption of an error, followed by subsequent monitors 
that all compare the actual response in that time step to that 
which would follow for that time step if the error happened. 
This tracking approach gives us a sequence of assessments 
that either confirm or reject the hypothesis of the execution 
error over time. 

In practice, we build such elaborate detection mechanisms 
for execution faults only in black or grey box situations, i.e., 
if we do not have full observability of input and output of a 
system component with full knowledge of its inner functions. 
The fusion of expectations from expectations and from past 
observations within the fleet allows us to track behavior 
even with such limited knowledge, while a sequence of 
functional monitors is sufficient for white box scenarios. 

4.4. Optimal Fleet-size for Health Assessments 

In our work, we saw benefits to complement system health 
assessments with comparisons between the systems within a 
fleet already for relatively small fleets, i.e., 5 systems up:   
In our experiments, which we describe in Section 5 below, 
we handled variation and noise that were large compared to 
the absolute value of measurements. Still, the fleet-based 
health assessment often provided similar observations and 
cases for insightful comparisons, while the investigation of 
observations even relied on those to determine its results. 

However, these benefits are not free, as the effort to 
compare a system with other systems increases linear with 
the number of systems – which we find acceptable. Still, 
every application will have an optimal fleet-size that ensures 
(near) optimal diagnosis without undue efforts. This size 
depends on the variation between systems, but early results 
indicate that our methods do not depend on large fleets.Figure 6. Reasoning over time and multiple systems II. 



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2020 

8 

5. EXPERIMENTAL EVALUATION 

We evaluated our fleet-based system health analysis on the 
two use-cases introduced above: 1) assessment of a software 
and its updates, wherein the software is part of a process 
control loop that corrects physical drift behavior; and 2) the 
early detection of execution faults. The two-dimensional 
drift behavior is non-monotone and manifests in an overlay 
of various frequencies that depend of the origin on the drift.  
To illustrate the diagnostic power of our health assessment 
in a way that we can share, we generated data sets for six 
systems showing the drift behavior projected to one 
dimension within shortened time-series of twenty steps (see 
Appendix). The data sets mirror existing variability within 
the fleet and the volatility of the processes that we handle. 

5.1. Healthy Process Correction 

The assessment of software-based process functions like drift-
correction works very well: 

The monitors’ performance is flawless in situations where 
they check a direct input-output relation between measure-
ments and observable corrective actions, even with noise on 
both sides and hidden impact factors on the latter: Table 1, 
showing the health assessment for the twenty time-steps and 
six systems, holds consistently high health values for all 
systems and time-steps in which the software worked 
correctly and immediately detected the wrong software 
functionality, which started in time-step 6 for systems 3 and 
4 and in time-step 11 for systems 5 and 6. (see Appendix, 
Experiment 1 for further details) 

  1 2 3 4 5 6
1 0,87317 0,89580 0,86815 0,88928 0,87714 0,89057
2 0,88707 0,88377 0,87839 0,87681 0,88631 0,89522
3 0,88811 0,89037 0,88422 0,87807 0,88242 0,86758
4 0,87648 0,89124 0,86711 0,86845 0,88390 0,88225
5 0,88678 0,87504 0,88844 0,85863 0,89015 0,88589
6 0,89639 0,87730 0,1 0,1 0,87459 0,88804
7 0,88550 0,88470 0,07 0,07 0,88572 0,87427
8 0,89248 0,88589 0,05 0,05 0,89458 0,89437
9 0,89466 0,87397 0,01 0,01 0,89026 0,88943

10 0,89549 0,88963 0,001 0,001 0,89130 0,89330
11 0,88531 0,86984 0,001 0,001 0,1 0,1
12 0,88321 0,88223 0,001 0,001 0,07 0,07
13 0,89029 0,89073 0,001 0,001 0,05 0,05
14 0,88586 0,88325 0,001 0,001 0,01 0,01
15 0,88152 0,88412 0,001 0,001 0,001 0,001
16 0,87776 0,87328 0,001 0,001 0,001 0,001
17 0,86978 0,87284 0,001 0,001 0,001 0,001
18 0,86513 0,84238 0,001 0,001 0,001 0,001
19 0,89407 0,89436 0,001 0,001 0,001 0,001
20 0,89490 0,88072 0,001 0,001 0,001 0,001

Table 1. Health Assessment Experiment 1. 

The same detection power is even available for more 
difficult assessments, e.g., for computations that take in 
earlier corrective intent instead of new measurements – a 
situation that speeds up the corrective loop but amplifies 
noise. (Experiment 2 in the Appendix.) 

While we see that the monitors handle complex situations in 
a noisy environment, we still saw individual low values for 
the health of the process correction, indicating uncertainty in 
the diagnosis. The dedicated analysis of software versions 
described in Section 4.2, however, leaves no such doubts, 
even though it is using the same numbers to execute its task: 
it suspects the software update as being broken (low value) 
immediately after its introduction in two systems and 
confirms that suspicion the moment the software is rolled 
out to additional systems. This is shown in Table 2 in the 
sequence for the twenty time-steps for the two software 
versions (SW 1 & 2) for Experiment 1 (top) and 2 (bottom). 

  1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0
 

  1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

Table 2. Software Assessment for Experiments 1 & 2. 

5.2. Healthy Execution 

We generated another data set to investigate the detection of 
execution errors as laid out in Section 4.3. In this data set, 
we inserted faults of two different types: capped corrections, 
i.e., corrective actions limited in their scope due to physical 
constraints, and corrections that failed to happen (dropped 
execution). To stress test the health monitoring, we ran this 
detection as black box: the intended behavior was hidden 
from the monitors, which therefor could only judge the 
health of the execution based on past observations within 
the system and the fleet. 

As detailed in Experiment 3 in the Appendix, the health 
monitoring worked well. We had no false positives and only 
two false negatives within 360 estimates, both of which 
were corrected by the detection in the subsequent time-step.  

By comparison, the Western Electric Rules break down for 
this scenario, showing significantly more false positives and 
hardly any true positives. This is because execution errors 
like the ones we face are not a symptom of a process 
running out of control and thus outside the intent of WER. 

5.3. Assessment 

In total, the specificity and sensitivity of the software and 
execution investigations with probabilistic health monitors 
exceeded our high expectations. 

Looking into at details of the health assessments, we noticed 
that the individual parts of the monitoring compensated for 
each other weaknesses and never struggled collectively. The 
fleet aspect proved to be especially powerful in this, greatly 
stabilizing the overall outcome, as it often found comparable 
situations that led to the correct framing of observations.
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6. CONCLUSION 

Our work on fleet-based system health assessment centers 
on two contributions:  

First, the improvement of health assessments of individual 
systems with comparisons to other systems within a fleet of 
comparable systems. Here, we discussed the difficulty to 
transfer insights between systems: We argue that many 
practices especially within the field of remaining useful life 
predictions assume a similarity between systems that 
disregards relevant differences in configurations or features, 
operational modes, or environmental circumstances – but 
given causal modeling, we are able to reason about such 
differences, which allows us run sensible comparisons.  

Such advanced comparisons to other systems of the fleet 
then form an integral part of the probabilistic health 
monitors we introduce, with similarity computations to the 
system’s own past and its intended function as 
complementary functions. Altogether, we see the three parts 
of the health monitors to support each other and even 
seemingly eliminate individual weaknesses, such that the 
resulting system health assessment reaches top performance. 

Second, we embed our probabilistic health monitors within a 
dynamic probabilistic reasoning process to investigate change 
within the fleet. This offers an assessment of any inter-
vention, like software upgrades, that are rolled out to the 
fleet in order to ensure that it improves the fleet’s health. 
Here, the comparison between systems and the reasoning 
about their differences and how those change over time is 
essential to the fast and accurate detection of issues. 

We see the relevance of both contributions in our work in 
the high-tech industry, where we observe that industry often 
must abandon the notion of stable processes. Instead, they 
handle constantly changing production runs with various 
interwoven optimization loops. This makes novel process 
control techniques necessary and the fast and accurate 
health assessment of processes and their corrective actions 
that we show is an asset for this.  

As the variation and volatility of modern processes that we 
handle contributed to the fast-growing interest in digital twins 
within recent years, our techniques need to be compatible to 
those. While this is not in the focus of this publication, we 
can point out that the computations we use in our 
assessments are efficient enough for real-time use on live 
data within digital twins. This offers the needed elasticity to 
handle predictive and preventive maintenance, process 
control and correction that covers even execution faults, as 
well as the investigation of interventions like software 
updates or hardware upgrades. 

As some of these applications need dedicates analysis models 
that rely on expert knowledge, we seek progress in the fusion 
of model-based and data-based techniques in future work. 
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APPENDIX 

This appendix describes the setup of the experiments that 
we included to illustrate our work, as described in Section 5. 
We executed two of these experiments in a grey box and 
one in a black box setting, such that the health monitors 
cannot access the ground truth of the investigated functions, 
as that reflects non-observability of process steps and 
measurements noise in industrial settings. 

In Experiment 1, the monitored systems respond directly to 
drift that the 6 systems measure over 20 time-steps: 

  1 2 3 4 5 6 
1 0,08318 0,09437 0,08504 0,08767 0,07919 0,08884 
2 0,10590 0,43727 0,17113 0,50547 -0,03024 0,22978 
3 0,33675 0,85449 0,26117 2,68949 -0,33644 -0,92863 
4 0,61562 1,25285 0,32156 4,83051 -0,40802 -1,15255 
5 0,85927 1,87032 0,45639 6,01404 -1,30681 -1,34669 
6 0,97446 2,54015 0,55257 8,13806 -1,86279 -1,26722 
7 0,99826 3,18430 0,67539 8,19158 -2,56524 -1,43377 
8 1,23039 3,63903 0,71085 6,84901 -2,88373 -1,76493 
9 1,46020 3,37264 0,80857 8,66581 -3,36993 -2,16967 

10 1,69834 4,11483 0,80039 9,15564 -3,88939 -1,83336 
11 1,82069 3,92779 0,98783 7,94638 -5,04925 -2,91566 
12 2,23535 4,67182 1,08078 9,71939 -6,60397 -3,20718 
13 2,53602 5,49194 1,14706 11,44663 -6,29128 -3,59570 
14 2,93456 5,03960 1,26228 12,85140 -7,23911 -4,70066 
15 2,79205 5,89861 1,29053 15,55428 -8,92182 -5,12672 
16 3,13616 6,82097 1,43934 17,82150 -9,57781 -5,37022 
17 3,50989 6,54178 1,48418 19,17648 -8,72866 -5,03838 
18 3,57893 8,44073 1,68970 19,34494 -8,15535 -5,45262 
19 4,16325 8,22091 1,63213 18,98093 -9,67009 -5,02907 
20 4,31406 7,62859 1,72772 22,93833 -9,52580 -6,23554 

 

As stated, these measurements are noisy. The true physical 
drift together with the corrections that get applied determine 
the true physical situation in subsequent time steps, which 
results in these measurements that are again noisy. 

  1 2 3 4 5 6
1 0,01682 0,00563 0,01496 0,01233 0,02081 0,01116
2 0,00669 0,05825 0,02094 0,07625 -0,00525 0,01549
3 0,01942 0,09520 0,03277 0,38572 -0,05388 -0,09436
4 0,07594 0,13448 0,07125 0,49471 -0,03214 -0,06712
5 0,07351 0,25804 0,02961 1,44859 -0,12105 -0,13319
6 0,02402 0,29850 1,14419 17,02940 -0,28578 -0,06117
7 0,11705 0,28096 1,36910 17,22082 -0,32031 -0,28530
8 0,10770 0,35327 1,48921 15,40352 -0,14735 -0,11016
9 0,04870 0,58180 1,68418 18,34033 -0,36299 -0,04701

10 0,10648 0,33160 1,76511 18,93590 -0,36864 -0,15393
11 0,23551 0,84578 2,05710 17,62643 -11,05868 -5,95192
12 0,35121 0,77417 2,24660 20,20541 -13,60144 -6,82132
13 0,29632 0,25751 2,40532 23,98289 -13,59879 -7,56893
14 0,14167 0,92502 2,62025 26,04986 -15,37911 -9,84205
15 0,52216 0,62637 2,74194 30,92965 -18,41339 -10,93697
16 0,40442 0,58252 2,98344 34,66081 -19,53171 -11,18860
17 0,24702 1,06417 3,12251 36,03324 -18,40965 -10,58412
18 0,42352 -0,06160 3,40918 36,13019 -17,07440 -11,03943
19 0,19410 0,42963 3,45134 37,69765 -19,48374 -10,79995
20 0,30916 1,14534 3,61852 39,92176 -19,79175 -12,85005

 

As the goal of the software is to keep drift as close to 0 as 
possible, we see some systems drift out of their operational 
window. Some, however, do not and it is not immediately 
visible that system 3 developed an issue after a software 
update in time step 6, as the system is still working well. 

Our health monitors assess the systems’ behavior accurately 
and immediately (1 indicating certainty of perfect health,  
0 indicating a zero probability of this system working well, 
with 0.1 and 0.001 being an initial and final lower ceiling): 

  1 2 3 4 5 6 
1 0,87317 0,89580 0,86815 0,88928 0,87714 0,89057 
2 0,88707 0,88377 0,87839 0,87681 0,88631 0,89522 
3 0,88811 0,89037 0,88422 0,87807 0,88242 0,86758 
4 0,87648 0,89124 0,86711 0,86845 0,88390 0,88225 
5 0,88678 0,87504 0,88844 0,85863 0,89015 0,88589 
6 0,89639 0,87730 0,1 0,1 0,87459 0,88804 
7 0,88550 0,88470 0,07 0,07 0,88572 0,87427 
8 0,89248 0,88589 0,05 0,05 0,89458 0,89437 
9 0,89466 0,87397 0,01 0,01 0,89026 0,88943 

10 0,89549 0,88963 0,001 0,001 0,89130 0,89330 
11 0,88531 0,86984 0,001 0,001 0,1 0,1 
12 0,88321 0,88223 0,001 0,001 0,07 0,07 
13 0,89029 0,89073 0,001 0,001 0,05 0,05 
14 0,88586 0,88325 0,001 0,001 0,01 0,01 
15 0,88152 0,88412 0,001 0,001 0,001 0,001 
16 0,87776 0,87328 0,001 0,001 0,001 0,001 
17 0,86978 0,87284 0,001 0,001 0,001 0,001 
18 0,86513 0,84238 0,001 0,001 0,001 0,001 
19 0,89407 0,89436 0,001 0,001 0,001 0,001 
20 0,89490 0,88072 0,001 0,001 0,001 0,001 

 

Tracing a software update that was rolled out to systems 3 
and 4 in time step 6 and to systems 5 and 6 in time step 11, 
we see the dedicated software monitor estimating the likeli-
hood of the initial software working correctly as 1, but the 
update initially judged at 0.345 – allowing the possibility of 
a coincidence – followed by a strict 0 in time step 11. 

  1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0

In Experiment 2, the monitored systems respond to drift 
such that they compute in earlier actions – or their assump-
tions of those, as software computations and the executed 
correction may differ due to limits or software issues. This 
real-world scenario amplifies the effects of noise and errors. 
The probabilistic health monitors reflect that, but work:  

Basic 1 2 3 4 5 6
1 0,68747 0,62217 0,66929 0,85680 0,87714 0,59214
2 0,70650 0,68922 0,73104 0,65712 0,32558 0,59758
3 0,71664 0,70413 0,59740 0,76194 0,65607 0,76265
4 0,77153 0,73946 0,59683 0,76748 0,67692 0,86671
5 0,80690 0,59727 0,59919 0,78173 0,75822 0,81602
6 0,59988 0,59824 0,1 0,1 0,80333 0,84507
7 0,59936 0,59905 0,07 0,07 0,83543 0,73524
8 0,59919 0,59926 0,05 0,05 0,59979 0,59961
9 0,59977 0,59997 0,01 0,01 0,59893 0,59981

10 0,59944 0,59953 0,001 0,001 0,59931 0,59952
11 0,59914 0,59923 0,001 0,001 0,1 0,1
12 0,59827 0,59889 0,001 0,001 0,07 0,07
13 0,59932 0,59982 0,001 0,001 0,05 0,05
14 0,59977 0,59966 0,001 0,001 0,01 0,01
15 0,59932 0,59950 0,001 0,001 0,001 0,001
16 0,59952 0,59944 0,001 0,001 0,001 0,001
17 0,59976 0,59972 0,001 0,001 0,001 0,001
18 0,59961 0,59996 0,001 0,001 0,001 0,001
19 0,59978 0,59992 0,001 0,001 0,001 0,001
20 0,59977 0,59989 0,001 0,001 0,001 0,001
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While the individual assessments show mid-range values, 
the software analysis remains the same and certain: 

  1 … 5 6 7 8 9 10 11 … 20

SW 1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0

SW 2 NaN NaN NaN 0,345 0,290 0,273 0,233 0,214 0 0 0
 

In Experiment 3, we introduce execution faults in the drift 
correction. The health monitoring, working in a black box, 
only sees the measurements in the following table, where a 
dark red indicates a dropped correction and a light red a cap. 

  1 2 3 4 5 6
1 0,01783 0,00577 0,01401 0,01225 0,02037 0,01081 
2 0,00753 0,05965 0,02227 0,07435 -0,00534 0,23590 
3 0,01910 0,09610 0,03160 0,36406 -0,05512 -0,08536 
4 0,06765 0,13191 0,06829 0,48348 -0,03410 -0,06652 
5 0,07161 0,24372 0,02739 1,36457 -0,12700 -0,13536 
6 0,02474 0,28486 0,62525 0,67993 -0,28911 -0,06208 
7 0,11623 0,29061 0,01798 9,42323 -0,32841 -0,28624 
8 0,11263 0,33406 0,06788 8,52080 -0,15371 -0,10879 
9 0,04923 0,60291 0,06377 0,94361 -0,33585 -0,04847 

10 0,10361 0,33898 0,16732 0,63695 -0,35708 -0,14917 
11 0,23881 0,73969 0,07764 1,64200 -5,52902 -3,22904 
12 0,36761 0,81949 1,27488 0,75030 -0,34796 -3,43495 
13 0,31962 0,25497 0,11072 1,06880 -7,34953 -4,20240 
14 0,14363 0,93657 0,10343 0,36180 -0,85647 -5,33664 
15 0,55806 0,69252 0,15506 0,93725 -9,19886 -6,02903 
16 0,40632 0,57197 0,09346 4,99766 -0,37452 -5,99014 
17 0,25318 1,17447 0,16235 21,16356 -9,68919 -5,56370 
18 0,40608 -0,06150 0,03017 21,43145 -0,74530 -5,69639 
19 0,19681 0,45862 0,18655 8,11612 -9,21369 -5,53691 
20 0,30489 1,19181 0,16840 9,41702 -0,75963 -6,60188 

 

The dedicated tracking of the health monitoring computes 
the likelihoods for each fault type, which the following table 
shows for each system in the order ‘ok’, ‘capped’, ‘dropped’. 
The color-coding indicates the assessment’s correctness. 

  1 2 3 4 5 6 
1 1,00 1,00 1,00 1,00   1,00 1,00
2 0,95 0,00 0,05 0,96 0,00 0,04 0,96 0,00 0,04 0,95 0,00 0,05 0,95 0,00 0,05 0,00 0,00 1,00
3 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 1,00 0,00 0,00
4 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,95 0,00 0,05 0,96 0,00 0,04
5 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04
6 0,96 0,00 0,04 0,96 0,00 0,04 0,00 0,00 1,00 0,97 0,00 0,03 0,96 0,00 0,04 0,96 0,00 0,04
7 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 0,00 0,00 1,00 0,96 0,00 0,04 0,96 0,00 0,04
8 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 0,46 0,00 0,54 0,96 0,00 0,04 0,96 0,00 0,04
9 0,96 0,00 0,04 0,96 0,00 0,04 0,96 0,00 0,04 1,00 0,00 0,00 0,96 0,00 0,04 0,96 0,00 0,04

10 0,96 0,00 0,04 0,97 0,00 0,03 0,96 0,00 0,04 0,97 0,00 0,03 0,96 0,00 0,04 0,96 0,00 0,04
11 0,96 0,00 0,04 0,97 0,00 0,03 0,97 0,00 0,03 0,97 0,00 0,03 0,00 0,00 1,00 0,00 0,00 1,00
12 1,00 0,00 0,00 1,00 0,00 0,00 0,00 0,00 1,00 0,97 0,00 0,03 1,00 0,00 0,00 0,46 0,00 0,54
13 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
14 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,46 0,00 0,54
15 1,00 0,00 0,00 1,00 0,00 0,00 1,00 0,00 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
16 1,00 0,00 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,01 0,99 0,00 0,99 0,01 0,00 0,46 0,00 0,54
17 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,00 0,00 1,00 0,46 0,00 0,54
18 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,46 0,00 0,54 0,99 0,01 0,00 0,46 0,00 0,54
19 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,00 0,00 1,00 0,46 0,00 0,54
20 0,99 0,01 0,00 0,99 0,01 0,00 0,99 0,01 0,00 0,01 0,99 0,00 0,99 0,01 0,00 0,46 0,00 0,54

 

We see only two false negatives that are corrected within 
one time-step. The observed uncertainty in the diagnosis 
occurs only within sequences of errors, which are unlikely 
happenstances that we included as a stress test. 


