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ABSTRACT

As deeply complex machines subjected to heavy vibratory
environment, helicopters require relative low mean time be-
tween overhaul and suffer from high maintenance cost and
availability issues. So far, PHM for helicopters has been
aimed at detecting the presence of structural defects in the
most critical parts of the mechanical transmission convey-
ing power from the engine to the rotor blades, but very little
has been presented on other flight-critical components, such
as the main and tail rotor actuators. The proposed paper is
focused on preliminary diagnostics and prognostics consid-
erations for a traditional configuration of hydraulic solution,
where a tandem actuator is aided by a Stability and Command
Augmentation System (SCAS) during operations.
At first, the case-study is introduced and the simulation model
employed for the analysis is described. Hence, two differ-
ent failure modes affecting the SCAS are investigated and
the physical models used to describe their progression are
presented. In-depth data mining is then applied to achieve
an accurate feature selection from raw data and an original
way to visualize features’ performances through an accuracy-
sensitivity plane is proposed. Lastly, a particle filtering ap-
proach is adopted for failure prognosis and its output evalu-
ated through traditional PHM metrics to assess the algorithm
effectiveness. The present research provides encouraging re-
sults regarding the opportunity of realising a PHM system for
helicopters’ flight control actuators without the need of ad-
ditional sensors, which could make solutions based upon the
presented work feasible for both in-service and future plat-
forms.

Andrea De Martin et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Over the years, PHM studies for helicopters have been fo-
cused on power supplies and particularly on vibration-based
detection techniques for gearbox and drivetrain component
(Samuel & Pines, 2005). Despite Main and Tail Rotor Ac-
tuators (MRA and TRA) are critical components, PHM has
found very limited applications. And although some com-
monalities can be found with PHM studies for aircraft’s hy-
draulic actuation technologies, even then the most important
prognostics system has been developed for electromechanical
actuators (Elattar, Elminir, & Riad, 2016) while a lack of ref-
erences exists on the electro-hydraulic field.
Therefore, Fig. 1 describes one of the possible architecture for
the hydraulic actuation with mechanical feedback and Stabil-
ity and Command Augmentation Systems (SCAS): the present
paper aims to a feasibility study of such system. The major
difficulty was attributed to a lack of relevant data, because in
such a system avionics makes available only few signals:

• SCAS’ Electro-Hydraulic Servo Valve (EHSV) current;

• SCAS’ actuator displacement;

• MRA/TRA displacement.

Moreover, it has been observed that MRA/TRA displacement
was a useless signal since the research has been focused on
SCAS’ fault modes which have a negligible effect on this sig-
nal. Nevertheless, the existing sensors are proved to be suffi-
cient to carry out the prognostics analysis.
Hence, after a brief introduction to the system’s physical model
and in-depth feature selection is carried out and various eval-
uation methods are applied. Then the PHM framework, based
on an enhanced particle filter, is presented. In the end prog-
nostics results are presented and performances investigated
through traditional metrics.
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Figure 1. MRA/TRA hydraulic scheme.

2. PHYSICAL MODEL

An high fidelity physical model of the MRA in healthy con-
ditions has been derived and experimentally validated by au-
thors in (De Martin, Dellacasa, Jacazio, & Sorli, 2018). In
such healthy system, the degradation models of two signif-
icant fault modes of SCAS’ actuator have been defined and
implemented. In particular, crack propagation in one of the
two centering springs and wearing of the actuator piston seals,
as depicted in Fig. 2.
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Figure 2. SCAS’ actuator fault cases.

2.1. Spring Cracking

The presence of a crack affects the spring stiffness by re-
ducing the resistant area and changing the polar second mo-
ment of inertia of the coil’s section. An explicit relationship
between these two quantities has been obtained by authors
in (Nesci, De Martin, Jacazio, & Sorli, 2020). Therefore,
crack growth has been estimated by Paris’ law (Paris & Erdo-
gan, 1963) while cycle counting has been computed through
Rainflow method.

2.2. Seals Wearing

Wearing of the actuator piston seals has been modelled ac-
cording to Archard’s law (Archard, 1953) as accurately eluci-
dated in (Bertolino, Gentile, Jacazio, Marino, & Sorli, 2018).
This fault modes implies the increasing of internal leakages in
SCAS’ actuator, Ql (please see Fig. 2). At constant pressure
difference between the two actuator’s chambers, a quadratic
relationship has been found between internal leakages and the
work of friction forces, La, as shown in Fig. 3.
The work of friction forces is easily numerical computable
since friction forces and relative displacement between piston
and barrel are evaluated during simulations. The Frequency
Responce Function (FRF) of the system is strongly affected
by internal leakages and particularly the cut-off frequency is
inversely proportional to the fault progression as shown by
authors in (Nesci et al., 2020). Therefore, failure condition
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Figure 3. Internal flow rate leakages progression.

has been defined as the time at which the cutoff frequency is
10% lower with respect to the healthy condition one.

2.3. Operational Scenario

Due to the helicopters’ unique operating characteristics they’re
employed in the most varied tasks. Moreover, SCAS’ author-
ity is generally limited and its command is mainly dependent
on the operational scenario since it derives from an attitude
control system. Therefore, SCAS and pilot commands have
been randomly accomplished from a set of sinusoidal signals
with different amplitudes and frequencies.
Additionally to the in-flight missions, also a pre-flight routine
has been developed based on the command sequence for on-
ground tests described in (Autin et al., 2018).
Besides the commands, the mission uncertainties concern many
other physical parameters and thus such variability sources
(i.e. geometrical tolerances, hydraulic fluid properties, exter-
nal temperature, electrical noise, etc.) have been injected in
the model.

3. DATA PREPARATION AND FEATURE SELECTION

The feature selection process is the linchpin of a good PHM
system. It’s composed of two different off-line steps (Grosso,
De Martin, Jacazio, & Sorli, 2018) first, a trustworthy feature
extraction procedure must be defined and for this a physical
based approach has been adopted. After that some features
have been identified, the best of them are selected to be part of
a feature vector, or rather, a sufficient statistic for the system’s
fault condition (Vachtsevanos, Lewis, Roemer, Hess, & Wu,
2007).

3.1. Feature Candidates

Comparing simulations results between baseline and severe
faults conditions, as shown in Fig. 4, the following consider-
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(b) Seal wear.

Figure 4. Servovalve current in baseline and severe fault con-
ditions.

ations can be deduced.

• Spring cracking: as shown previously the stiffness is in-
versely proportional to the crack size. The asymmetry
between the two centering springs’ stiffnesses, when one
of them is faulty, cause an offset in the resistant force.
Therefore, the servovalve current exhibits a null-bias, as
depicted in Fig. 4a.

• Seals wear: the leakages originate from seals wear are
source of energy loss, so that a greater servovalve cur-
rent’s amplitude is necessary to get the same displace-
ment (Fig. 4b). It results in a reduction of the current-
displacement gain between servovalve and SCAS actua-
tor.

The considerations on the physics behind the two faults con-
ducted to the feature candidates contained in Table 1 both for
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Table 1. Feature Candidates.

Abbr. Feature Description (signal)
I1 abs(fft(x))(2Hz) FFT amplitude at 2Hz

(displacement)
I2 mean(xcorr(i, ih)) Mean value cross-

correlation between
actual value and baseline
(current)

I3 mean(xcorr(x, xh)) Mean value cross-
correlation between
actual value and baseline
(displacement)

I4 mean(xcorr(x)) Auto-correlation (dis-
placement)

I5 rms(abs(fft(x))) RMS FFT amplitude (dis-
placement)

I6 rms(x) RMS (displacement)
I7 rms(i)/rms(x) RMS gain EHSV/SCAS
G1 mean(i) Mean value (current)
G2 (max(x)− set)/set Overshoot (displacement)
G3 i/x Gain EHSV/SCAS

on-ground and in-flight tests.
A first visualization of the features’ behaviour is appreciable
in Fig. 5: Fig. 5a depicts the probability mass function at three
different severities, the farther are the distribution the easier
the feature distinguishes the fault mode. Fig. 5b shows the
feature’s progression with respect to the severity, fluctuations
are due to the feature’s stochastic nature.

3.2. Feature Selection

The feature selection process aims to extract the most sig-
nificant subset of features from the original set of collected
features (Adams et al., 2017). It doesn’t exist an univocal ap-
proach to select an optimal subset, moreover, the best features
are relative to a certain evaluation criteria (Dash & Liu, 1997).
Therefore, various evaluation functions have been computed
and the information matched. The process combines three fil-
ter methods (Blum & Langley, 1997) and two fault detection’s
performance metrics.

3.2.1. Redundancies

A divergence measure has been adopted in order to quantify
the differences between two different features. That is the
Kulloback-Leibler divergence, (Kullback & Leibler, 1951)
which is defined, in the discrete case, as follows:

DKL (P ||Q) =
∑
x

P (x) log
P (x)

Q (x)
(1)

Where P (x) and Q (x) are two probability mass function.
Eq.(1) satisfies the Gibbs’ inequality (Mackay, 2005):

DKL (P ||Q) ≥ 0 (2)
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Figure 5. Seal wearing I6.

Equality is true if and only if P = Q. It has been obtained
that:

DKL (I5||I6) ≡ 0 (3)

Eq.(3) proves that I5 and I6 are the same feature, agree with
Parseval’s identity. Because of the more computational sim-
plicity I6 has been preserved and I5 discharged.

3.2.2. Correlation Matrix

The first considered ranking property is the Pearson’s correla-
tion, a dependence measure that assesses the relationship be-
tween the features and both faults (Macky & Roussas, 1999):

ρDF =
E [(D − µD) (F − µF )]

σD σF
(4)
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Table 2. Correlation by fault and mean SNR of all the fea-
tures.

Feature Correlation SNR (dB)
Spring Seal

I1 0.335 -0.110 24.6
I2 -0.985 0.250 5.7
I3 0.952 -0.958 37.6
I4 0.961 -0.949 31.5
I6 0.636 0.989 49.9
I7 0.017 -0.996 48.5
G1 -0.492 0.915 21.4
G2 0.783 -0.925 32.3
G3 -0.575 0.990 36.7

Where D and F are two random variables (i.e. fault and fea-
ture respectively). The results are contained in Table 2.

3.2.3. Signal to Noise Ratio

As the Pearson’s correlation defines the relationship between
the features and the internal state, the signal to noise ratio
measures the feature’s sensitivity to the external disturbances.
A suitable definition is:

SNR =
µ2
F

σ2
F

(5)

Results are reported in Table 2.

3.2.4. Performance metrics

A good ranking criteria can be based on feature’s performances
(Mucciardi & Gose, 1971), the two characteristics in which
we’re interested are accuracy and sensitivity.
As regards the first property, the Receiving Operating Curve
(ROC) is widely used to evaluate how well the fault is de-
tected (Fawcett, 2006). Fig. 6a shows a ROC curve of I2,
for the spring cracking fault mode, at a constant severity: the
bender on the left is the curve, the higher is accuracy; the red
line represents a 50% accuracy feature. Particularly, at a con-
stant severity detection threshold (i.e. 30%), the Area Under
the ROC Curve (AUC) provides a measure of feature’s accu-
racy (Bradley, 1997).
Complementary to the previous performance metric that com-
pares the features at the same severity, the success function
(Fig. 6b) assesses the Probability Of Detection (POD) over
the entire severity range (Vachtsevanos et al., 2007). The
POD threshold has been defined to 95% in order to obtain
acceptable errors margins (Mornacchi, Vachtsevanos, & Ja-
cazio, 2015), therefore, at this level correspond the severity at
detection that has been selected as sensitivity measure.

3.2.5. Accuracy-Sensitivity Plane

The end result of the feature selection process is the accuracy-
sensitivity plane shown in Fig. 7, in which the performance
metrics are displayed on the axes, while the correlation co-
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Figure 6. Spring cracking I2 performances.

efficient is identified by the color map and data’s radius is
proportional to the SNR.
In such a plane the best features are the bigger circles closest
to the (0, 1) point; moreover, looking at Fig. 7 is clear that
the correlation information is congruent to the performance
metrics but at the same time is inadequate as the only ranking
criteria.
Against this background, the most convenient in-flight fea-
tures are I3 for the spring cracking and I6 for the seals wear.
As regards the on-ground features, G3 exhibits the best per-
formances in both faults modes but it showed an opposite
behaviour: it increases when spring crack occurs and con-
versely decreases as leakages consequence. Moreover, con-
current degradations haven’t been studied so thatG3 has been
preferred for both faults modes.
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Figure 7. Accuracy-Sensitivity plane results.

4. PHM FRAMEWORK

The implemented PHM framework is based on an enhanced
particle filter which is thorough described by authors in (De
Martin, Jacazio, & Sorli, 2017).
The first requirement of the prognostics algorithm to esti-
mates the marginal distribution:

p (xt|y1:t) (6)

Where xt is the hidden state (i.e. fault state) and yt is the
noisy measurements at time t, while:{

x0:t = {x0, . . . ,xt}
y1:t = {y1, . . . ,yt}

(7)

In the general case of a dynamical non-linear system affected
by non-Gaussian noise, the state-space approach leads to the
following recursion (Doucet, Arnaud de Freitas, Nando Gor-
don, 2001):

p (xt|y1:t−1) =

∫
p (xt|xt−1) p (xt−1|y1:t−1) dxt−1 (8)

That recursion needs also the knowledge of the previous state
p (xt−1|y1:t−1). Eq. (8), typically, cannot be computed an-
alytically so many numerical methods have been developed
(Arulampalam, Maskell, Gordon, & Clapp, 2002). Among
all the possible integration methods we’re interested in the
particle filter which have found a large application in prog-
nostics (Orchard, 2006).
With this name is indicated a subset of Monte Carlo methods
based on numerical sampling. N samples i.i.d.

{x(i)
0:t, i = 1, . . . , N} (9)

are linked to a related importance weight {x(i)
t , w̃

(i)
t }Ni=1 in

order to approximate Eq. (8) with the following:

p (xt|y1:t) ' w̃(i)
0:t δ

(
x0:t − x

(i)
0:t

)
dx0:t−1 (10)

Where δ is the Dirac delta function.
A sampling importance resampling (SIR) algorithm permits
to obtain the importance sampling distribution through the yt

conditional probability:

w̃
(i)
t ∝ w̃

(i)
t−1 p

(
yt|x(i)

t

)
(11)

then to compute Eq. (8).
The resampling step is fundamental to overcame the degener-
acy problem (Doucet, 1998), or rather, the weights becom-
ing negligible just after few iterations increasing the algo-
rithm’s computational complexity (Doucet, Godsill, & An-
drieu, 2000).
Besides the illustrated filtering step, that aims to compute the
pdf of the actual state of the system, the prediction step al-
lows to compute the pdf of the system’s state at the next time.
The iteration of the prediction step generates a long-term pre-
diction, then the pdf at time t+ p is estimated: p (xt+p|y1:t)
(Orchard & Vachtsevanos, 2009).
Finally, the long-term prediction is applied to estimate the pdf
of the Remaining Useful Life (RUL) and the correlated risk
of failure as illustrated in (Acuña & Orchard, 2018).
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Table 3. Average RA and CRA.

RA CRA
Spring Cracking 84% 82%
Seals Wearing 93% 95%

4.1. Fault Detection

The adopted fault detection algorithm is purely data-driven
and analogues to the first approach pursued in (De Martin,
Jacazio, & Vachtsevanos, 2017).
The baseline and the actual PMFs (as shown in Fig. 5a) are
constantly compared, as the current feature distribution shifts
the fault probability arises and as soon as the overall confi-
dence reaches a threshold of 95% the fault is detected.
Fault detection performance have been already analysed in
section 3.2.5 and as shown, Fig. 7 summarizes this informa-
tion. By looking at the selected features: the severity at de-
tection in-flight is equal to 21% for the spring crack and to
11% for the seals wear, in both fault cases the POD is equal
to 95%.

4.2. Failure Prognosis

An example of the prognosis output, based on the enhanced
particle filter explained in section 4, is shown in Fig. 9 ob-
tained applying the algorithm to the case of the seals wear-
ing.
In the lowest plot of Fig. 9 is clarified the relationship be-
tween the RUL pdf and the risk function. The Acuña’s dis-
crete time risk function is the cumulative distribution function
of the Probability of Failure (PoF) (Acuña & Orchard, 2018):

RA

(
tf = k|y1:kp

)
= P

(
tf ≤ k|y1:kp

)
=

=

k∑
i=kp+1

P
(
tf = i|y1:kp

) (12)

Where tf is the time of failure, while, kp is the time when the
prognostics algorithm is executed.
The performance prognostic algorithm have been investigated
through some of the metrics proposed in (Saxena et al., 2008),
specifically the four metrics scheme suggested in (Saxena,
Celaya, Saha, Saha, & Goebel, 2010). The analysis α−λ, de-
picted in Fig. 8 applied to the seals wearing case, shown that
the algorithm performs within the desired error margin ofα =
20% at any time. Besides, relative accuracy (RA) and cu-
mulative relative accuracy (CRA) information have been ex-
tracted from previous analysis; the overall results are reported
in Table 3. The averages indicate that the selected features
together with the PF-based prognostic routine, have reaped
satisfying results, as regards accuracy and convergence prop-
erties in both fault modes.
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Figure 8. α− λ accuracy (seals wearing).

5. CONCLUSION AND FUTURE WORKS

The present research has been focused on a uncharted field of
prognostics application, or rather, it has shown the feasibility
of a PHM system for helicopters’ MRA and TRA under the
hypothesis of SCAS’ fault modes independence. Moreover,
the aim has been obtained without the need of additional sen-
sors, so that the prognostics algorithm is applicable for oper-
ating helicopters’ flight control actuators.
A rigorous approach has led to an accurate description of fault
models and many simulations has been carried out, in many
different configuration, so as to achieve a statistically signifi-
cant data set.
The in-depth feature selection has demonstrated that the cor-
relation coefficient is inadequate as the only ranking criteria,
whereas a reliable feature selection metric, based on features
actual detection properties, has been defined which has been
outlined in the accuracy-sensitivity plane (i.e. a new way
to visualize feature selection results). The selected features
proved to detect the fault and predict the RUL with satisfying
accuracy, as show in the α− λ plane.
Further studies will be conducted in order to include more
faults modes in the PHM algorithm, regarding both SCAS’
actuators and EHSVs. Although, in a general lack of litera-
ture references, the paper outlines an interesting applicability
field for PHM systems that could be able to bring large bene-
fits to the helicopters’ reliability.
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Figure 9. Prognostics results (seals wearing).

NOMENCLATURE

RA Acuña’s risk function
DKL Kulloback-Leibler divergence
i.i.d. Indipendent and Identical Distributed
La Work of friction forces
p(·) Probability density function
p(·|·) Conditional probability
Ql Internal flow rate leakages
E [·] Expected value
µx Mean value of x
ρDF Pearson’s correlation between D and F
σx Standard deviation of x
AUC Area Under the (ROC) Curve
CRA Cumulative Relative Accuracy
EHSV Electro Hydraulic Servo Valve
FFT Fast Fourier Transform
FRF Frequency Response Function
MRA Main Rotor Actuator
PDF Probability Density Function
PHM Prognostics and Health Management
PMF Probability Mass Function
POD Probability Of Detection
POFA Probability Of False Alarm
RA Relative Accuracy
RMS Root Mean Square
ROC Receiving Operating Curve
SCAS Stability and Command Augmentation System
SIR Sampling Importance Resampling
SNR Signal to Noise Ratio
TRA Tail Rotor Actuator
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