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ABSTRACT 

Condition-based maintenance (CBM) and prognostics and 
health management (PHM) are established paradigms that 
evidently offer a competitive advantage to a company. 
However, to make a business case, it must be examined 
where PHM and a remaining useful life (RUL) estimation 
can lead to substantial benefits. These benefits are strongly 
tied to the decision-making that succeeds prognostics. While 
the prognostics component of PHM is well examined, re-
search on post-prognostics decision-making (PDM) is still 
in its infancy. It is generally assumed that PHM can lead to 
benefits for business processes beyond 'traditional' mainte-
nance management. Unfortunately, there is no overview for 
which processes (such as production scheduling or route 
planning) PDM can be applicable and how exactly specific 
optimizations and their corresponding benefits can be 
achieved. This work provides a structured literature review 
on PDM and identifies studies that exploit the RUL predic-
tion for optimizing business processes. The review synthe-
sizes the following aspects within a PDM framework: a) 
which processes are improved through post-prognostics 
decision-making, b) what decisions must be made, and c) 
what novel benefits are achieved and which challenges 
arise. This review enables scholars to identify how current 
prognostics research can be extended to the decision stage 
of CBM and PHM and aids practitioners in pinpointing how 
operations can be optimized through PDM. 

1. INTRODUCTION 

Over the past decade, condition-based maintenance (CBM) 
and prognostics and health management (PHM) proved to 
increase the reliability, safety, maintainability, availability, 
supportability, and economic affordability of a system (Sun, 
Zeng, Kang, & Pecht, 2012). Through collecting and ana-
lyzing condition monitoring data, CBM facilitates improved 
decisions about maintenance interventions (Jardine, Lin, & 

Banjevic, 2006; Montgomery, Banjevic, & Jardine, 2012) 
and is thus a significant improvement of more traditional 
strategies, such as corrective or time-based maintenance. 
Prognostics and health management (PHM), a set of tools 
that enable CBM, help to estimate the remaining useful life 
(RUL) of a system through prognostics methods. Prognos-
tics generally implies a reduction in overall costs (Elattar, 
Elminir, & Riad, 2016).  

PHM approaches generally follow the process depicted in  
Figure 1 that is based on the standard ISO 13374 and was 
adapted by Guillén, Crespo, Macchi, and Gómez (2016). 
First, data is acquired and preprocessed. The continuous 
monitoring of condition data can be used to detect anoma-
lies, which is, in turn, further evaluated by analyzing its 
cause through diagnostics (Katipamula & Brambley, 2005). 
Further, prognostics are used to split a system's health indi-
cator into two (healthy and degraded) or more health stages 
and to predict the RUL (Lei et al., 2018). While an accurate 
RUL prediction is essential for PHM, the benefits are only 
attained in the post-prognostics decision step  (Skima, 
Varnier, Dedu, Medjaher, & Bourgeois, 2019). Here the 
optimization of the maintenance strategy is essential to 
"convert health-related information to values" (Jia, Huang, 
Feng, Cai, & Lee, 2018), but objectives of adjacent business 
processes from production or supply chain management, 
must also be regarded (Bousdekis, Lepenioti, Apostolou, & 
Mentzas, 2019). 

In contrast to prognostics, research on post-prognostics 
decision-making (PDM) is still in its infancy (Bousdekis, 
Magoutas, Apostolou, & Mentzas, 2018). Throughout the 
years, some decision-making methods that incorporate 
prognostics information were developed for electronic sys-
tems, aerospace, and wind energy (Skima et al., 2019). Un-
fortunately, these are isolated, specialized applications, and 
it is unknown which adjacent processes and operations must 
be generally considered. This, however, is imperative to 
leverage the benefits of PHM. More so, because some deci-
sions that are made within business processes are structural-
ly similar. For instance, the assignment of aircraft to mis-
sions, jobs to machines, or maintainers to routes is similar, 
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and all of these processes are affected by a maintenance 
decision.  

Bousdekis et al. conducted a review of PDM by examining 
the different combinations of prognostics and decision-
making methods (2018). The review does not examine the 
underlying processes that are optimized but is method-
focused. There also exist further reviews that either are not 
process-focused (Bousdekis et al., 2019), focus on the prog-
nostics stage (Alaswad & Xiang, 2017), concentrate on non-
prognostics maintenance (Almeida, Ferreira, & Cavalcante, 
2015; Ding & Kamaruddin, 2015; Jonge & Scarf, 2019; 
Ruschel, Santos, & Loures, 2017; Sharma, Yadava, & 
Deshmukh, 2011; Vasili, Hong, & Ismail, 2011) or address 
only spare parts procurement (Horenbeek, Buré, Cattrysse, 
Pintelon, & Vansteenwegen, 2013). In contrast, this work 
provides a structured literature review on PDM by analyzing 
existing applications and characterizing the processes that 
can be optimized through PHM. 

PDM applications generally follow a specific' post-
prognostics decision-making' process that is depicted in 
Figure 2. First, a prognostics algorithm predicts the RUL of 
the system. The RUL, among other factors such as costs, is 
then incorporated in one or multiple objectives (e.g., mini-
mization of cost, maximization of availability). These objec-
tives can then be achieved by choosing the best decision out 
of a set of possible decisions, e.g., through means of optimi-
zation. The decision should optimize adjacent areas and 
business processes, while some challenges must be met. 

In this literature review, processes, different representations 
of RUL, objectives, and decisions are examined. Because a 
review is limited to already published research, it should not 
serve as an exhaustive overview, but a guide on what tools 
of PDM are useful to consider for specific processes. Pro-
gnostics and decision-making algorithms are not considered 
as they are domain-agnostic, i.e., they do not depend on the 
to-be-optimized business process. The former depends on 
available expert knowledge, data, and requirements towards 
algorithm efficiency, which is a big research stream on its 
own (Atamuradov et al., 2017). The latter depends on the in-
stantiation of the problem, which is the subject of current re-
search on the so-called per-instance algorithm selection 
problem (Kerschke, Hoos, Neumann, & Trautmann, 2019). 
Because the review focuses on general applicability of PDM 
for process optimization without regarding specific instan-
tiations, the algorithms are not discussed in-depth.  

The organization of the paper follows the PDM process 
depicted in Figure 2: the literature review, including the 
processes, the handling of uncertainty in an RUL prediction, 
and the objectives of PDM are explained next (section 2). A 
typology of decisions, their relation to processes, and their 
co-occurrence are addressed in section 3. Challenges that 
emerge in PDM and benefits that can be leveraged are ex-
plained in section 4. The work concludes and presents a 
research agenda in section 5. 

2. LITERATURE REVIEW 

The literature review was conducted following Brocke et al. 
(2009) that encompasses six steps: definition of review 
scope, conceptualization of topic, literature search, analysis 
and synthesis and research agenda. For the literature search, 
titles, abstracts, and keywords of all indexed articles in the 
databases Scopus and Web of Science were gathered with 
the following query: 

( "predictive maintenance"  OR  prognostic*  OR  "condi-
tion-based maintenance" ) AND ( "prognostic* based"  OR  
"post prognostic*" OR "prognostic* informed" )  AND  ( 
decision  OR  optimization ) 

Articles were then evaluated by their title, abstract and full 
text and excluded if not relevant for the research. Articles 
were most often excluded because they did not encompass 
the decision-making phase of PHM (e.g., Qiao & Zhu, 
2015). Other works were excluded because they discuss 
general frameworks and do not focus on specific applica-
tions (e.g. Iyer, Goebel, & Bonissone; Zhang, Cui, & Zhang, 

 
Figure 1. PHM process (based on Guillén, Crespo, Macchi, & Gómez, 2016). 

 
Figure 2. Post-Prognostics Decision-Making Process. 
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2013) or because they dealt with medical prognosis (Lin, 
Huang, Simon, & Liu, 2019). All in all, 21 relevant publica-
tions have been collected. While the review will be present-
ed synoptically in the following, a detailed analysis can be 
found in Table 6 of the appendix. 

2.1. Processes 

The majority of the retrieved literature focuses on mathe-
matical process optimization. This is in line with Skima et 
al. (2019) which observed that it is the case with most of the 
research works related to the decision stage of PHM. A full 
list of identified publications and their optimized processes 
can be found in Table 1. 

The majority of works integrated prognostics results for 
production. Herr, Nicod, and Varnier optimized the produc-
tion schedule of a platform of parallel machines performing 
independent and identical tasks (2014). The output of the 
machines had to satisfy a specific demand, while not all 
machines need to produce at all times, and their production 
profile could be adjusted. The goal was to extend the hori-
zon in which the whole platform could meet the demand 
without maintenance, and to minimize maintenance costs by 
grouping systems to be repaired. The work has been extend-
ed and applied to a real example of a multi-stack fuel system 
(Chrétien, Herr, Nicod, & Varnier, 2015, 2016). 

Haddad, Sandborn, and Pecht used a real-options approach 
to adjust the production speed and optimize the maintenance 
time of four turbines of a wind farm (2011a, 2011b). The 
optimization aims to maximize the profit based on current 
energy prices and RUL. With the same objective, Niknam, 
Kobza, and Hines focused on bearings of a wind turbine 
(Niknam et al., 2015). Beyond the current energy price, they 
also included the current wind speed in their optimization, 
which can be used to adjust the rotor speed and angle ap-
propriately to maximize RUL. 

Ladj, Varnier, Tayeb, and Zerhouni aim to minimize total 
maintenance costs by offering heuristic and exact solutions 
to schedule production jobs for a single multi-functional 
deteriorating system (2017). Their work offers novel re-
search by a) incorporating the RUL as a random distribution 
and b) factoring in that different jobs exert different stresses 

on the machine that affect degradation. The work was ex-
tended to a flow shop scheduling problem with multiple 
machines, where the objective was to minimize the 
makespan  (Ladj, Tayeb, Varnier, Dridi, & Selmane, 2017). 
Bougacha, Varnier, Zerhouni, and Hajri-Gabouj also focus 
on "traditional" production scheduling (2018). In addition to 
job-specific degradation and stochastic RUL, they consider 
different production profiles, that decrease the degradation 
rate, but also decelerate production speed. 

Multiple publications used prognostics information for route 
planning. Skima et al. optimized the production route of a 
conveyor based on multiple micro-electro-mechanical sys-
tems (2019). Each system is equipped with PHM capabi-
lities, and the route is optimized in real-time with Dijkstra's 
algorithm to minimize the traveled distance and maximize 
the overall RUL of the system. Many publications also fo-
cus on route optimization of maintainers. Terrissa, 
Meraghni, Bouzidi, and Zerhouni use the PHM08 challenge 
turbofan dataset (Saxena & Goebel, 2008) and a genetic 
algorithm to assign a set of maintainers to multiple degrad-
ing systems based on each respective geographical location 
(2016). Based on this algorithm, a route planning of multi-
ple maintainers to maintain cell towers was further devel-
oped (Meraghni, Terrissa, Ayad, Zerhouni, & Varnier, 
2018; Meraghni, Terrissa, Zerhouni, Varnier, & Ayad, 
2016). The optimal routes are obtained by considering the 
locations of the assets, labor, and travel costs. 

Furthermore, spare parts procurement is highly dependent 
on PDM because the RUL is vital for managing the tradeoff 
between maintenance and inventory policies (Horenbeek et 
al., 2013). Aghdam and Liao modeled a procurement pro-
cess of wind turbine gearboxes as a Stackelberg game 
(2012). Here, two operators determine the time of mainte-
nance and purchase while considering RUL, order, and 
maintenance costs in a competition. Aghdam and Liao dis-
cuss the same process in another work (2014). Another 
optimization was identified that traded off shortage vs. hold-
ing and corrective vs. preventive maintenance costs (Wang, 
Hu, Wang, Kong, & Zhang, 2015). Beyond the uncertainty 
of the RUL, Wang et al. also regarded the lead time as sto-
chastic. 

Evidently, prognostics information is also used to optimize 
maintenance management without regarding further pro-
cesses. Bole, Goebel, and Vachtsevanos considered a sys-
tem whose maintenance costs increased proportionally to its 
RUL and found an optimal maintenance policy through a 
Markov decision process and dynamic programming (2015). 
In two further publications, a level of repair analysis for the 
optimal maintenance action of an aircraft composite was 
presented (Thyagarajan & Gollnick, 2017, 2018). The con-
sidered actions were 'repair', 'replace' or 'discard'. 

One work used RUL information for the mission planning 
of fighter aircraft (Li, Guo, & Zhou, 2016). Here, a semidi-
urnal flight and maintenance schedule was set up for one 

Table 1. Processes optimized by post-prognostics deci-
sion-making. 

 

Process No. of 
works 

Production  9 
Route planning 4 
Spare parts procurement 3 
Maintenance management 3 
Mission planning 1 
Warranty management 1 
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month to minimize maintenance costs subject to a specific 
sortie requirement.  

Lastly, PDM was used for warranty management of PHM-
capable systems (Ning, Sandborn, & Pecht, 2013). Based on 
the RUL prediction, the warrantor can choose an optimal 
warranty strategy that can either be a part-based, lifetime or 
customized extended warranty.  

Now, to understand how exactly these processes can be 
improved by PDM, one must start at the very beginning of 
the PDM cycle (Figure 2), which is the RUL prediction that 
is returned by prognostics. 

2.2. Remaining Useful Life and Uncertainty 

The output of prognostics is the RUL estimation. For PDM, 
it is relevant to know how the uncertainty of the prediction 
is represented. A typical example of uncertainty in PDM is 
depicted in Figure 3. Through analyzing the condition moni-
toring (CM) history, the RUL is forecasted. Because several 
sources of uncertainty influence prognostics, the RUL is 
often represented stochastically, e.g., through a probability 
density function (PDF). The challenge is to not only find the 
optimal time to maintain but also optimize the processes 
presented in the last section, e.g., by determining the pro-
duction schedule (e.g., Bougacha et al., 2018) or the perfect 
order time of spare parts (e.g., Wang et al., 2015). Thus, 
uncertainty plays a critical role that must be formalized 
within decision-making (Sankararaman, 2015). In the identi-
fied literature, uncertainty was considered in different ways 
(as seen in Table 2).  

Multiple publications expressed the RUL by assuming that 
it originates from a specific distribution, such as Weibull 
(Aghdam & Liao, 2014), Gaussian (Wang et al., 2015), 
exponential (Bougacha et al., 2018; Skima et al., 2019) or 
uniform (Li et al., 2016). In the optimal case, uncertainty 
can be reduced if the decision-making determines future 
usage and, thus, the degradation of the system. For example, 

Herr et al. determine the subset of running systems and their 
running profiles and factor in how much degradation is 
caused per each time period (2014). Multiple authors used 
Markov decision processes that use probabilities to transit 
from one stage to another (Bole et al., 2015; Thyagarajan 
& Gollnick, 2017, 2018) or supposed transition probabilities 
outside of Markovian decision processes (Haddad et al., 
2011a). Ladj, Tayeb et al. expressed the RUL as a fuzzy 
value (2017). Haddad et al. used Monte Carlo simulations 
(2011b) to incorporate uncertainty. Lastly, 6 of the 21 publi-
cations present the RUL as a simple point-estimate and do 
not consider uncertainty. On the one hand, prognostics 
methods, such as neural networks or support vector ma-
chines might only return deterministic point-estimates (Kan, 
Tan, & Mathew, 2015; Sikorska, Hodkiewicz, & Ma, 2011). 
On the other, an uncertainty representation might be omitted 
for simplicity reasons, as uncertainty increases the complex-
ity manifold, and a solution might require a stochastic pro-
gram. 

Evidently, uncertainty is inherent to every PDM problem, 
and most of the reviewed works employ a way to represent 
it. Future works can make use of the abovementioned RUL 
representations. Nevertheless, whether and how to integrate 
uncertainty is an intricate question, and for a detailed dis-
cussion of uncertainty in prognostics, the reader is referred 
to Sankararaman (2015). 

2.3. Objectives for Decision-Making 

As the name suggests, post-prognostics decision-making 
relies on the prognostics output (RUL); however, it is only 
one of many factors. For instance, Herr et al. tolerate the 
breakdown of machines when overall maintenance costs can 
be minimized through grouping machines (2014). Even 
though the RUL predictions suggest to maintain the systems 
earlier, they are weighed off against savings through oppor-
tunistic maintenance.  

For that, every decision-problem is subject to one or multi-
ple objectives that comprise the RUL, among other aspects. 
The objective function must be matched with the goal of the 
to-be-optimized process. Aghdam and Liao try to minimize 
the overall procurement and maintenance cost, which is a 

 

Figure 3. Uncertainty in PDM. Adapted from Wang et 
al. (2015). 

Table 2. RUL representations. 
 

Uncertainty representation No. of 
works 

Distribution 5 
Deterministic 4 
(Markov) transition probabilities 4 
Fuzzy logic 1 
Monte Carlo simulations 1 
Point estimate (No uncertainty) 6 
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function of the spare part order price, holding costs, and 
repair costs (2014). The latter is higher if maintenance hap-
pens after the RUL (reactive maintenance). Table 3 depicts 
the different objectives of PDM found in the literature and 
their constituent variables (besides RUL). The objective 
functions were categorized by the classification of Yan 
(2014). In the table, it can be seen that objectives are either 
related to cost minimization or value maximization (availa-
bility, overall equipment effectiveness (OEE), logistics). 

The majority of works (15) tried to minimize costs. In the 
case of production, these could be costs associated with 
production losses or repair (Ladj, Varnier et al., 2017); for 
spare parts procurement, shortage, and holding costs were 
considered. Other approaches (5) tried to maximize availa-
bility by maximizing the useful life of a system (Skima et 
al., 2019). Two works considered the maximization of the 
OEE, by minimizing the makespan (Ladj, Tayeb et al., 
2017) or the total transfer time (Skima et al., 2019). Here, 
the machines, jobs, and their respective properties (number, 
release dates, processing time) are considered essential to 
model the optimization. At last, one logistic objective, the 
minimization of the travel distance, was considered within 
two works. Meraghni et al. considered a route optimization 
for cell tower maintenance that incorporated the locations of 
the towers as well as maintenance personnel availability in 
the decision-making (2016). It is to note that three publica-
tions consider multiple objectives (Herr et al., 2014; 
Niknam et al., 2015; Skima et al., 2019), and thus, the sum 
of objectives in Table 3 is 24.  

In conclusion, it can be seen that different objectives be-
come relevant when we consider that a maintenance actions 
affects adjacent processes. When considering a maintenance 
decision in a vacuum, maintenance costs might be of prima-
ry concern, but when also acknowledging other business 
areas, objectives such as availability or overall equipment 
effectiveness must be given priority. Lastly, if the objectives 
of PDM are clear, PDM methods, such as optimization, can 

propose optimal decisions.  

3. POST-PROGNOSTICS DECISIONS 

Domain-specific knowledge about costs and processes is 
essential when making optimal decisions. Many processes, 
however, share some similarities in what decisions are made 
and what challenges arise that span over multiple different 
domains.  

For example, route planning problems like the traveling 
salesman problem (TSP) can be expressed as scheduling 
problems, e.g., the job shop problem (JSP). For example, 
the TSP is a JSP with one job (salesman) and multiple ma-
chines (cities). Thus, some decisions are used within differ-
ent processes (here: route planning and production). Never-
theless, the underlying decision problem is very alike, and 
many processes deal with the same challenges, such as un-
certainty or real-time decision-making. While domain-speci-
ficity is relevant for decision-making, the underlying nature 
of the decision problem is equally essential when research-
ing PDM.  

3.1. Typology of Decisions 

Bougacha et al. state that decisions are either maintenance-
related, operational (production, automatic control, logis-
tics), or a mix of both (2018). Skima et al. analyzed several 
applications and concluded that the three main decisions in 
PDM are maintenance optimization, control, and mission 
reconfiguration (2019). Cui also specified that maintenance 
decisions can be divided into decisions about when, where, 
and how to maintain (2008). Based on these works and the 
results of the literature review, the following typology of 
decisions is proposed. 

Maintenance. The fundamental decision of which system is 
maintained (what?) at which time (when?) and what 
maintenance action (how?) is performed. 

System (what?). Before maintaining, it is necessary to know 
which system or component must be maintained. Often the 
decision problems examine multiple assets. The decision-
maker must then consider which system to maintain. Ladj, 
Tayeb et al. consider a permutation flow shop problem with 
multiple production machines with varying RUL values 
(2017). The PDM algorithm determines which machine 
needs maintenance, and the maintenance action is inserted 
between the production schedule.  

Time (when?). In cases where the system is chosen, the 
choice of the maintenance time is often also a necessity. 
However, also in single-system cases, the maintenance time 
is crucial. The chosen maintenance time has a direct effect 
on dependent processes. For instance, the optimal mainte-
nance time can determine the optimal order time for a re-
quired spare part (Aghdam & Liao, 2014). 

Table 3. Objectives of PDM. 
 
Objective Variables 

Costs (15) 

Bid price, holding costs, inspection costs, 
lateness or stockout penalty, material costs, 
order price, PHM costs, production costs, 
production loss, reactive and preventive 
maintenance costs, shortage costs, travel 
costs, transportation costs, wages and labor 
cost 

Availability (5) Capacity, demand, number of systems, 
working conditions 

Overall Equip-
ment Effective-
ness (OEE) (2) 

Degradation stress per job, maintenance 
duration, number of machines, production 
jobs, production time 

Logistics (2) 
Locations of systems, location of ware-
houses, personnel availability and subcon-
tracting, transportation times 
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Action (how?). Lastly, it must be determined how to main-
tain the system. Most works specify only one possible ac-
tion, e.g., the system can only be replaced entirely (Wang et 
al., 2015). Some works optimize the choice from a set of 
actions, e.g., Thyagarajan and Gollnick optimize the deci-
sion on whether to repair, replace, or discard a component 
(2018). 

Operational. Operational decisions go beyond maintenance 
decisions. Here, further operations are considered, such as 
scheduling and routing, automatic control, logistics, and 
service. 

Scheduling and routing. In scheduling and routing, a fit 
between the scheduling of maintenance and other tasks, 
such as the production schedule, must be found. In other 
terms, all problems, representable as a TSP or JSP, fall 
under this type. Production scheduling, route planning, as 
well as mission planning, comprise scheduling and routing 
decisions. The first considers a production schedule (e.g., 
Bougacha et al., 2018), the second a sequence of destina-
tions (e.g., Meraghni et al., 2016) and the latter an assort-
ment of machines, such as aircraft, to missions (e.g., Li et 
al., 2016). 

Automatic Control. Prognostics results can also be used for 
automatic system control. For instance, a pneumatic con-
veyor belt can be actuated to use only healthy valves (Skima 
et al., 2019), stress of fuel cells can be balanced between 
healthy and degraded cells by automatically controlling the 
energy output (Chrétien et al., 2015), and the rotor speed of 
a wind turbine can be automatically adjusted based on a 
prognostics model incorporating RUL and current wind 
speed (Niknam et al., 2015) 

Logistics. When considering maintenance, logistic decisions 
must also be derived. These can include that spare parts are 
ordered to be available at the exact time of maintenance or 
that a maintenance crew is deployed just-in-time when the 
asset is at a remote location. Wang et al. proposed a spare 
part ordering method that finds the optimum between short-
age and holding costs (2015). Meraghni et al. presented a 
route optimization for remote assets where the maintenance 
crew must arrive before failure (2018). 

Service Adjustment. PDM can also be applied when adjust-
ing the service offer of a company, such as warranty or full-
service contracts based on RUL (Ning et al., 2013).  

It must be noted that processes can comprise multiple deci-
sions, and the main strength of PDM is to consider not only 
decisions about maintenance but also operational decisions 
conjointly. Vice versa, not all decisions must be regarded at 
once. Choosing the right set of decisions will facilitate good 
decision-making, but for that, the use of decisions within 
processes must be analyzed more extensively. 

3.2. What Decisions to Consider for a Process 

The majority of identified processes combine many deci-
sions, but not all decisions are relevant for each process. To 
provide guidance on which decision(s) to consider for a 
business process, a relationship matrix was developed based 
on Ruschel et al. (2017). The matrix is depicted in Table 4 
and can be calculated with Eq. (1). 

 
#ሺܲሺሻ ת ܲሺ݀ሻሻ

#ܲሺሻ
݅  א ሾ1, … ,6ሿ, 

݆  א ሾ1, … , 7ሿ  (1) 

Here, the intersection of the number of publications ܲ that 
address process  and the decision ݀ is divided the number 
of publications that address  . Cells highlighted in bold 
correspond to a strong relation, italic letters represent medi-
an relationships, and non-highlighted rows have a weak or 
no relation. The strong and median relations are also plotted 
in Figure 4 and give insights about which decision should be 
regarded when trying to optimize a specific process. The 
numbers in the figure represent the number of works that 
address the particular process or decision. The sum of publi-
cations comprising individual decisions is greater than 21 
because a process can consist of multiple decisions. 

It is important to note that a decision-maker would typically 
consider multiple processes. By connecting processes to 
underlying decisions, a better understanding of how struc-
turally similar decisions can help to improve different pro-
cesses is facilitated. This can be seen by looking at which 
decisions are connected to different processes. It can be seen 
that route planning should consider the decision of what 
system to maintain at which time and that it can be repre-
sented as a scheduling and routing decision. On the other 
hand, the scheduling and routing decision cannot only be 
found there but also within production and mission planning 
processes. The analysis facilitates PDM by revealing rela-
tions between different processes that are not trivially evi-
dent. For example, ideas and advances in mission planning 
research could be generalized and adapted to production 

Table 4. Relation matrix of processes and decisions. 
 

 s t a sr au l se 
pr .22 .67 .22 .67 .67 .00 .00 
rp .75 .75 .00 .75 .25 .50 .00 
sp .00 1.00 .00 .00 .00 1.00 .00 

mm .00 .00 1.00 .00 .33 .00 .00 
mp 1.00 1.00 .00 1.00 .00 .00 .00 
wm .00 .00 .00 .00 .00 .00 1.00 

Legend: pr = production; rp = route planning; sp = spare 
parts procurement; mm = maintenance management; mp 
= mission planning; wm = warranty management; s = 
system; t = time; a = action; sr = scheduling and routing; 
au = automatic control; l = logistics; se = service 
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research as one underlying decision is alike.  

Now that it is known which decisions might be regarded for 
which business process optimization, we can also analyze 
which decisions are often regarded in conjunction with 
others. For that, a co-occurrence matrix was developed 
following a similar principle as the first matrix. The calcula-
tion of a co-occurrence factor was calculated by Eq. (2). 

 
#ሺܲሺ݀ሻ ת ܲሺ ݀ሻሻ

#ܲሺ݀ሻ
,݅  ݆ א ሾ1, … , 7ሿ (2) 

Here the cardinality of the intersection of publications that 
address two decisions ݀ and ݀ is divided by the number of 
publications that contain ݀ . The factor is calculated for 
each combination of two decisions (and their reciprocals). 
The final co-occurrence matrix can be seen in Table 5. The 
co-occurrence ratios are highlighted analog to Table 4. 
Again, median and strong relations are plotted (Figure 5). 
Arrows are used to depict whether a decision strongly de-
pends on another, e.g., if a maintenance action is consid-

ered, time and automatic control should also be considered. 
Bi-directional arrows indicate a bi-lateral dependence, e.g., 
if a system decision is made, a time decision should also be 
made and vice versa. 

Figure 5 also shows a chronological and operational order 
between different decisions. It can be seen that logistics 
decisions, like the appropriate supply of spare parts (cf. 
Wang et al., 2015), heavily rely on the decision of what 
system to maintain at what time. Logistics decisions are 
often made jointly with scheduling and routing decisions 
that determine the point at which logistics requirements 
must be fulfilled, e.g., between production jobs (cf. 
Bougacha et al., 2018). Only after a schedule or route has 
been determined an automatic control action can be made to 
adjust a system during operation, e.g., actuating healthy 
systems (cf. Skima et al., 2019). While most publications 
focused on one or a few decisions, all should be acknowl-
edged for post-prognostics. 

4. CHALLENGES AND BENEFITS OF POST-PROGNOSTICS 
DECISION-MAKING 

Decision-making based on prognostics results must be able 
to cope with a combination of challenges that do not occur 
in 'traditional' maintenance. When these challenges are 
addressed, however, they can leverage the benefits of prog-
nostics. 

Real-time nature of CBM. In the best case, condition data is 
collected in short intervals. On the one hand, this causes 
data volume challenges; on the other, an increased velocity 
must be handled. This is critical, as optimization algorithms 
can have a high computational complexity for larger prob-
lems (Herr et al., 2014), and new condition data might inval-
idate prior results. Especially for automatic control deci-
sions, that are made in real-time, computationally efficient 
PDM algorithms must be found. Some successful publica-
tions were identified that capitalize on the real-time nature 
of prognostics. For instance, Skima et al. used incoming 
condition data to automatically control a pneumatic convey-
or and maximize its useful life (2019).  

Table 5. Co-occurrence matrix of decisions. 
 

 s t a sr au l se 
s - 1.00 .17 .83 .17 .33 .00 
t .46 - .13 .44 .17 .38 .00 
a .20 .40 - .07 .18 .00 .00 
sr .50 .70 .10 - .20 .15 .00 
au .13 .38 .25 .38 - .00 .00 
l .40 1.00 .00 .40 .00 - .00 

se .00 .00 .00 .00 .00 .00 - 
Legend: s = system; t = time; a = action; sr = scheduling 
and routing; au = automatic control; l = logistics; se = 
service 

  
Figure 4. Relations between processes and decisions. 

  
Figure 5. Co-occurene of decisions. 
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Uncertainty. Uncertainty is a major risk in PDM, and its 
management an integral part of PHM (Niknam et al., 2015). 
As the future is unknown, uncertainty plays a significant 
role when forecasting the RUL (Sankararaman, 2015). In 
section 2.2, different solutions for managing uncertainty 
were presented. Uncertainties can have different causes, 
such as model uncertainty, training bias, or future usage 
uncertainty (Sun et al., 2012). At least the latter can be re-
duced, as fault growth is dependent on the future usage of 
the system (Bole et al., 2015), which is the outcome of PDM 
(e.g., a job schedule). If possible, this outcome should be 
returned to the prognostics algorithm in a feedback loop 
(Bougacha et al., 2018). 

Closed-loop PDM. In theory, this feedback loop is challeng-
ing to employ, because knowledge about future usage is 
worthless when it is not known how much wear is exerted 
by it. The majority of works employed no feedback loop at 
all and only few presumed that job-specific degradation is 
known in advance (cf. section 2.2). Moreover, none of the 
works employed more complex prognostics methods such 
as neural networks or support vector machines that are 
proven to be very useful PHM tools (Lei et al., 2018). Due 
to their 'black-box' nature and weak 'explanation ability' 
(Kotsiantis, 2007), a feedback loop might be even harder to 
implement.  

Generalizability. As mentioned earlier, some processes 
comprise inherently similar decision problems. For instance, 

the assignment of jobs to machines, maintainers to repair 
tasks or aircraft to sorties are alike. Nevertheless, research is 
often addressing specific problems and instantiations in 
isolation. Many scientific ideas and findings might be gen-
eralizable and transferable to other domains. 

5. CONCLUSION AND RESEARCH AGENDA 

In the conducted literature review, current applications of 
PDM have been examined, and a generic PDM process was 
synthesized. A final PDM framework that synthesizes the 
findings of the review can be seen in Figure 6. Through an 
in-depth analysis, processes that can be optimized through 
PDM were identified. It could be seen that the RUL as a 
result of prognostics comes in various forms that represent 
its inherent uncertainty. This uncertainty needs to be ade-
quately addressed within the decision-making phase of 
PDM, along with different objectives that can consider 
costs, availability, OEE, and logistics. The typification of 
decisions revealed that seven distinct decisions exist and 
that the same decisions are used in different types of pro-
cesses. Through analyzing relations and co-occurrences of 
processes and decisions, the modeling of PDM problems is 
facilitated by disclosing which decisions are predominantly 
used for which business processes. All in all, the real-time 
nature, potential to reduce uncertainty in a closed-loop, and 
its potential to be used in multiple domains are challenges 
that, when addressed, make PDM a great tool to reduce 

  
Figure 6. A Framework for Post-Prognostics Decision-Making 
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costs and improve performance. 

Conclusively it is to note that this review is representative 
and by no means exhaustive. Especially the keywords 
"prognostic* based", "post prognostic*", and "prognostic* 
informed" restrict the reviewed works. Consequently, there 
might be, e.g., RUL representations that can be found in 
prognostics research that were not used in the reviewed 
works on PDM. Additionally, there might be connections 
between processes and decisions that were not revealed in 
the review because there was no literature on the subject or 
because existing publications were not included. It is there-
fore desirable to extend the scope of the review and test the 
framework further by applying it within a case study. Still, 
the review revealed significant findings, and almost every 
second queried paper was deemed relevant. The majority 
exploited prognostics information in a new and innovative 
way, which includes methods that are not only used to op-
timize the decision of what, when, and how to maintain, but 
also optimize related processes, such as production or spare 
parts procurement.  

At last, the review also revealed research gaps that should 
be addressed in future research. 

x The review focuses on currently applied process 
optimization. Further processes that can benefit 
from PDM must be identified, e.g., by looking at 
processes that make use of the identified character-
istics (decisions, objectives).  

x The review must be extended through more explor-
ative research (e.g., expert interviews), and the 
findings be tested by applying the framework in 
case study research. 

x Future research in PDM needs to address its real-
time nature, uncertainty, establish closed-loop 
feedback between decision-making and prognos-
tics, and should be generalizable. 

x Job-specific degradation is often not known in ad-
vance, but the knowledge might be inherent in the 
prognostics algorithm. Together with the future us-
age plan returned by PDM, it must facilitate im-
proved predictions through closed-loop feedback. 

x There is a distinctive potential for generalization of 
scheduling and routing decisions. A general ab-
straction of the decision-problems to a scheduling 
problem (according to Conway, 1967) might facili-
tate future research that is valuable to multiple pro-
cesses and domains. 
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Legend: Process - pr = production; rp = route planning; sp = spare parts procurement; mm = maintenance management; mp = 
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RUL – dt = deterministic; d = distribution; tr = (Markov) transition probability; f = fuzzy number; mc = Monte Carlo simula-
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Decision - s = system; t = time; a = action; sr = scheduling and routing; au = automatic control; l = logistics; se = service 


