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ABSTRACT

To fulfil market demand, the complexity of high-tech indus-
trial systems is increasing every year. As a consequence, di-
agnosing failures leads to long down times, often because the
issue at hand has to be escalated all the way to the develop-
ment department to access the required knowledge. In this
paper we propose a model based diagnostic methodology to
support the field service engineer in finding the root cause of
an unscheduled downtime in a timely way by bringing ac-
tionable design knowledge at the service engineer’s finger-
tips. We start by modeling the knowledge on the machine
hardware decomposition, deployment and functional behav-
ior by using a domain specific language. The language al-
lows for an object oriented description of the system, with
the functional behavior captured as probabilistic relationships
between hardware components. This system description is
then automatically transformed into a Bayesian belief net-
work (BN): the diagnostic model. When a diagnosis is re-
quired, we infer the health state of the system’s components
by instantiating the BN with discretized sensor and control
data collected prior to the occurrence of a downtime. Finally,
we compute the root cause hypotheses as the minimum sets
of faulty components that are consistent with the evidence.
We explain in a visual way the essential part of the diagnos-
tic reasoning by pruning the causal graph underlying the BN,
augmented with the data items supporting the hypothesis. We
illustrate the methodology on a thermal conditioning subsys-
tem. Our approach is domain independent and applicable to
a wider range of cyber physical systems (CPS).

1. INTRODUCTION

Serviceability of today’s high-tech system is a difficult task
even for experienced personnel.The growing complexity of
the high tech system leads to an increasing probability of oc-
currence of a fault within one of its parts. A failing part trig-
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gers a subsequent cascade of misbehaving parts, i.e. parts
which do not have faults but which do not behave as expected
because of their connection with the faulted one. Finding the
root cause becomes a cumbersome task.

At the same time, there is a transition towards systems which
by design adapt their behavior according to the health condi-
tions of their components, either by control loops or by in-
strumented safety measurements. Such adaptive system are
designed to mitigate the effect of tear and wear of a compo-
nent on the overall system behavior. In this case, the system
level performance is no longer reflecting the health of indi-
vidual components.

Diagnosis effort is also influenced by an increasing distance
between the service and the development (design and engi-
neering) departments. On the one hand the service personnel
has to find the smallest replaceable part which after substi-
tution will ensure a correct behavior of the system. On the
other hand, the development personnel will seek the failure
mode leading to the malfunctioning of such part, in order to
redesign it and avoid similar failures in the next generation
of the system. For diagnosing complex systems, the service
department has to rely on actionable information from the de-
velopment department, which in practice does not meet the
service needs.

The challenges described above are unavoidable: the first two
are dictated by the market’s demand of growing productivity
and efficiency of the industrial system while the latter is in-
trinsic to an industrial organization. To tackle the increasing
difficulty in serviceability of high tech systems, in this pa-
per we offer a model based diagnostic methodology which
by means of proper transformations brings the knowledge of
the expected system behavior, from the development to the
service department.

The paper is organized as follows: Section 2 introduces the
relevant literature, Section 3 describes the steps involved in
the methodology, Section 4 shows its implementation on an
industrial use case, remarks and directions for future research
are drawn in Section 5.
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2. RELATED RESEARCH

The field of diagnostics is wide and has many different facets.
Starting from the diverse diagnostic goals such as a reactive or
a proactive one, which can be reached with different methods,
knowledge based, data based or hybrid (Isermann, 2006).

Diagnostics has different targets: component, system or the
product of an industrial process. (Yang, Duan, Shah, & Chen,
2014). Where a component is a basic element, such as a spare
part an electronic board or a software function, a system is
a set of connected components that perform a specific task.
While the product is the output of a system, its quality is
defined by the actions of the system but also by other sys-
tems, in the case of a manufacturing line. For these reasons,
the literature in the field is abundant and the outcomes are
continuously summarized in thorough reviews such as (Solé,
Muntés-Mulero, Rana, & Estrada, 2017) and (Escobet, Bre-
gon, Pulido, & Puig, 2019).

Despite the varied landscape of the diagnostic field, from a
general point of view, it is possible to observe only two main
approaches. In the first approach, one tries to identify the
failure modes of faulty components and the propagation of
each mode through the different parts of the system, by pro-
viding the set of expected symptoms.The second approach is
to model only the normal, i.e. expected, behavior of the sys-
tem’s components and the interconnection between the com-
ponents: Model Based Diagnostics (MBD).

Traditionally, the industry has adopted failure modes based
approach and implements it by using standards methods such
as failure mode and effects analysis, fault tree analysis or
their combination (Stamatelatos, Vesely, Fragola, Minarick,
& Railsback, 2002) and (Peeters, Basten, & Tinga, 2018).
The advantage of such an approach is that it provides a direct
mapping from symptoms to faults. However, it has several
limitations (Pillay & Wang, 2003). For example the space
of all possible faults of a complex industrial systems is very
large, with a considerable number of faults not foreseen at de-
sign time, but only discovered during the operational phase.
Additionally, many faults have cross-functional collateral dam-
ages that would require multidisciplinary teams to define them.
Finally, this approach increases the workload on the develop-
ment organization.

MBD models have the advantage that can be extracted from
design models and functional requirements, discovered from
data or directly made by experts. Given such models the di-
agnostic problem then becomes a consistency problem be-
tween observed behavior and modeled behavior (de Kleer &
Williams, 1987) and (Reiter, 1987). Several algorithms have
been developed for the MBD approach (Wotawa, 2001) and
(Feldman, Provan, & Van Gemund, 2010).

Most of the papers (Wotawa, 2001; Feldman et al., 2010),
translate the MBD into a first order logic representation that

allows fast inference. In this paper, we use Bayesian belief
networks (BN) as reasoning engine for MBD due to their
ability to deal with partial observability of a system, which is
very often encountered in large systems (Flesch, 2008). This
allows inference of the health state of components even with
a limited set of sensors deployed in the system. Moreover,
BNs have reached a maturity level for industrial application,
thanks to software (Norsys, 2019) which provides BN model-
ing environment together with the necessary reasoning algo-
rithms.

The disadvantage of MBD lies in the fact that the negation
of normal behavior contains also physically unlikely behav-
ior, thus generating false diagnoses. However this is miti-
gated by excluding them during the modelling phase. This
approach provides excellent results on localization of the de-
fective components, and in capturing the effect of the propa-
gation of a failure in the system.

3. METHODOLOGY

In this paper we adopt MBD due to its fault localization power
that guides a field service engineer towards the right correc-
tive measure. In this section firstly we introduce some defi-
nitions from the MBD approach, then we show how to build
a diagnostic model for a small system. Furthermore, given
such a model, we illustrate how to perform diagnostic infer-
ence and finally we show how to help the field service engi-
neer by explaining the results. Note that throughout the paper
we assume to start our diagnostic analysis from a machine
hard-down, i.e. after fault detection was already performed.

3.1. Model based diagnosis

MBD (Reiter, 1987) assumes the system S = (SD,CMP )
where SD is the system description, given as a finite set of
logical formulae, and CMP is a finite set of components.
A component c can be Normal or Abnormal, i.e. behav-
ing as expected or not. The Normal behavior is defined by
functions on the inputs and outputs of a component. The
Abnormal behavior is defined as negation of the Normal
behavior. We use the shorthand notation c = Abnormal to
express if a component is in an Abnormal state. Components
are connected via functions, linking the outputs of a compo-
nent to the inputs of another component. Both the functions
describing the behavior of the components and their intercon-
nections belong to the SD.

Given a set of observations OBS (assignment of inputs and
outputs of components to a specific value or state) and D the
assignment of CMP to Normal or Abnormal. D is called
a diagnosis iff the observations are consistent both with the
system description SD and the diagnosis D:

SD ∪D ∪OBS 6|=⊥ (1)
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Figure 1. Model of expected behavior for a small system.

Where 6|= stands for the negations of the logical entailment
relation and ⊥ represents a contraction.

Given D a diagnosis and AB ⊂ CMP the set of components
such that D = {c = Abnormal | c ∈ AB}∪{c = Normal |
c ∈ CMP \ AB}. D is a minimum diagnosis iff 6 ∃ AB′ ⊂
AB, such that D′ = {c = Abnormal | c ∈ AB′} ∪ {c =
Normal | c ∈ CMP \AB′} is a diagnosis.

3.2. Modeling

As an illustrative example of our methodology let us consider
a small system S consisting of two heaters (H1, H2) powered
by a power supply unit (PSU ). For S we have CMP =
{H1, H2, PSU}. Then, to define SD, we start by modeling
the expected behavior of the system’s components. This is
shown in Figure 1.

Each component has Inputs, Outputs and Relations. Inputs
and Outputs consist of variables, e.g. Command for the
PSU , where each variable can take only discretized states,
e.g. On or Off . Relations are between states of Input vari-
ables and states of Output variables, e.g. if the Command
is On in a PSU we expect Power to be On. Relations are
captured as first order logic.

Then, we define Connections between components, as shown
with blue arrows. Connections are between states of Output
variables of one component and states of Input variables of
another component. For this system, SD is then constituted
by both Relations and Connections.

Finally, we define observables the variables for which we can
measure the state, e.g. by sensor data. Usually, the number of
observables is a small subset of the total number of variables.

3.2.1. Bayesian belief networks for MBD

In this paper we implement MBD by translating SD into a
Bayesian belief network (BN) (Pearl, 1986). A BN is defined
as a directed acyclic graph, and a joint probability distribution
of a set of random variables X. There exists a 1–1 correspon-

Figure 2. BN for the small system (a). Conditional probabil-
ity table for the node PSU Power (b).

dence between the nodes of the graph and the random vari-
ables in X. The arcs of the graph express causal dependence
relationships between the variables. For each of the nodes,
a local conditional probability table (CPT) is defined. In the
following we use the Netica software from (Norsys, 2019) for
visualization of BNs and its API for the Bayesian inference.

We translate the system SD into a BN with five steps, simi-
larly to (Flesch, 2008):

1. Map each variable in SD to a node in the BN, i.e. a
random variable with name �component� �variable�

2. Insert edges between Inputs and Outputs nodes to cap-
ture Relations

3. Insert edges between Outputs and Inputs nodes to cap-
ture Connections

4. Add a Health node (denoted �component� Health)
with states Normal and Abnormal for each component

5. Insert an edge between the Health node and the Outputs
nodes for each component

The role of the Health nodes in the BN is to monitor the
Input-Output relations. After applying these steps, the re-
sulting BN for the system of Figure 1 is shown in Figure 2 (a).

For the prior probabilities of the BN we set a uniform distri-
bution for all the root nodes, e.g. Inputs and Health nodes.
For the conditional probability table of the Outputs nodes,
we have to fill in all the combinations between states of the
Inputs nodes and the two states of the Health node. We use
the first order logic from the Relations, for the combinations
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containing the Normal state. While we use their negation for
the combinations containing the Abnormal state.

Finally, we modify all the physically impossible Abnormal
behaviors. For example, for a PSU the physically impossi-
ble behavior is PSU Command = Off , PSU Health =
Abnormal and PSU Power = On, as negation of Relation
PSU Command = Off , PSU Health = Normal and
PSU Power = Off . We modify the impossible behavior
into PSU Power = Off . An example of a CPT is shown
in Figure 2 (b).

3.2.2. Implementation via domain specific language

Industrial systems contain thousands of components and knowl-
edge on their behaviour is distributed between multiple de-
partments. For this reason, the diagnostic model has to be
implemented in a compositional and scalable manner. Ad-
ditionally, systems are built incrementally or as a family of
systems that share a common platform. So one wants to be
able to re-use parts of the model that are still relevant.

To answer the above requirements on compositionality, scala-
bility and re-usability, we propose to construct the diagnostics
models by using a Domain Specific Language (DSL) which
allows for an object oriented approach. Throughout this pa-
per we use a DSL previously introduced by the authors in
(Velikova, Bratosin, Ypma, Lemmen, & van Wijk, 2019).
This DSL allows for a quick generation of large models.

Specifically, in the DSL we define classes for each type of
component. Then we create and interconnect instances of
these classes according to the system description. The DSL
has an import functionality that we use to import the cre-
ated instances and to add hierarchy to the diagnostic model.
The DSL tooling then automatically generates the BN and a
graphml (GraphML, 2019) representation of the DAG. In this
way the DSL allows us to quickly generate large BNs in an
object oriented way (Borth & Barbini, 2019).

In Figure 3 (a) and (b) we show the DSL instances to repre-
sent the small system of Figure 1. Specifically (a) shows the
instance describing the PSU and (b) the small system. For
details on the semantics of the language we refer the reader
to (Velikova et al., 2019). The DSL instance of Figure 3 (b)
automatically generates the BN of Figure 2 and the graph of
Figure 3 (c).

3.3. Diagnostic inference

Given a generated BN for a system S the MBD consistency
diagnosis of Equation 1 can be translated into classical Bayesian
reasoning (Geffner & Pearl, 1992) and (Flesch, 2008). That
is, given the observations OBS, on the states of the observ-
able nodes of the BN, and D the diagnosis as the set of Normal

/ Abnormal values for the Health nodes:

SD ∪D ∪OBS 6|=⊥⇐⇒ P (OBS|D) 6= 0 (2)

where P (OBS|D) is the probability of OBS given D for
BN.

Practically, when we have to solve a diagnostic problem, we
determine the set of abnormal components AB as all compo-
nents with a Health node with probability higher than 0.5 of
being in state Abnormal, when adding OBS as evidence in
the BN, i.e.: AB = {c | c ∈ CMP and P (�c� Health =
Abnormal|OBS) > 0.5}

Algorithm 1 Minimum Diagnoses
function MINIMUMDIAGNOSES(BN,AB,OBS)

MD ← {}
for number failures ∈ [1 : length(AB)] do

AB′ ← combinations(AB,number failures)
for comps ∈ AB′ do

D′ ← {c = Abnormal | c ∈ comps}
D′ ← D′ ∪ {c = Normal | c ∈ AB \ comps}
if P (OBS|D′) 6= 0 then

if {m ⊂ comps | m ∈MD} = ∅ then
MD ←MD ∪ {D′}

end if
end if

end for
end for
return MD

end function

Note that AB defines diagnosis D = {c = Abnormal | c ∈
AB} ∪ {c = Normal | c ∈ CMP \ AB} that is a superset
of all possible minimum diagnosis, as defined in Section 3.1.
To find the minimum diagnosis we use Algorithm 1.

The inputs to Algorithm 1 are BN, OBS and the set AB.
Note that we iterate the subsets from length 1 to the length
of AB and we check that new found diagnoses are minimum
with respect to previous ones. Algorithm 1 returns MD as
the set of sets of minimum diagnoses. The number of com-
putations of Algorithm 1 can be greatly reduced by iterating
only up to a given number of allowed simultaneous diagno-
sis instead of the length of AB, i.e. by using the principle of
minimal cardinality.

For the simple system considered here, let us suppose that
the observations are: OBS = {PSU Command = On,
H1 Warm = False,H2 Warm = False}. Then us-
ing Bayesian inference AB = {PSU,H1, H2} and using
the above algorithm MD = {{PSU = Abnormal,H1 =
Normal,H2 = Normal}, {PSU = Normal, H1 = Ab−
normal,H2 = Abnormal}}, i.e., either the PSU is broken,
or the two heaters H1 and H2 are simultaneously broken.
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Figure 3. DSL instances for the PSU (a) and the system (b). Causal graph for the system (c).

Figure 4. BN with expected behavior (a). BN with observed behavior (b). Explanation graph (c)

3.4. Diagnostics under dynamic behaviour

The diagnostic inference approach described above returns
the diagnoses for the system given OBS at only one times-
tamp, i.e. is a static approach. As faults typically cause a cas-
cading effect of misbehavior, the diagnostic process requires
going back in time to identify the root cause.

For example, let us think of a system with a built-in safety
function. With the function triggered whenever one of its in-
puts exceeds a safety value. From a diagnostic point of view,
one then needs to diagnose which failing components trig-
gered the safety function, not the safety function itself.
To tackle this intrinsic dynamic property of the diagnostic
analysis, we apply Algorithm 1 at different time stamps. Specif-
ically, given the time sequence of observations

[OBStinc
, OBStinc−1, OBStinc−2 · · · ]

we start from the machine hard-down time, i.e. incident time
tinc, and we repeatedly apply the algorithm while proceed-
ing backwards in time. Further, we compute the minimum
diagnoses only when we observe a state change in the sys-
tem: OBSk 6= OBSk−1. This gives us a time sequence of
minimum diagnoses

[MDtinc
,MDtinc−i,MDtinc−j , · · · ]

where i, j are the timestamps of the states changes preceding
tinc. Given this sequence, each MD holds from the state

it is computed up to to the next state change, i.e. MDtinc−i
holds up to MDtinc . We stop this iterative approach based on
manual input from the service engineer, when the computed
MD satisfies the diagnostic needs.

3.5. Explanation

Besides delivering the diagnoses, in an industrial application
being able to explain the diagnostic reasoning that led to such
an outcome is a great added value. To do so we propose a
visual explanation of the diagnoses. We achieve this in two
steps: pruning to remove irrelevant facts and coloring to con-
vey essential information.

To prune the BN we repeatedly use the notion of Markov
Blanket (MB) (Pearl, 1988) of a node n in a BN. That is,
all the nodes that make n conditionally independent from the
rest of the BN. MB(n) is represented by the children of n,
its parents and its children’s parents. Algorithm 2 presents the
pruning algorithm. The inputs are BN, AB as the set of ab-
normal components and O as nodes with evidence in OBS.
The algorithm stops when all boundary nodes of the pruned
graph are either a root node or a node in O. As a second
step we use different colors for nodes and edges in the graph
which have a different meaning for the diagnostic reasoning.
Specifically, for all nodes in AB with red and all nodes in
CMP \ AB with green. Further, we emphasize the nodes
in the observed behavior (OB) that differ from the expected
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Figure 5. Dynamic reasoning with BN for the industrial use case.

behavior (EB) of the system.

EB is defined as the states of BN nodes when all Health
nodes states are Normal and all root nodes are set to ex-
pected values by design. For the example of Section 3.2 to
obtain EB we add as evidence PSU Command = On,
PSU Health = Normal, H1 Health = Normal, and
H2 Health = Normal. Figure 4 (a) shows the resulting
EB. The OB for a diagnosis D, is obtained by inserting
OBS and all components AB in D with Health state Ab-
normal as evidence. Figure 4 (b) presents OB when we insert
OBS = {PSU Command = On,H1 Warm = False,
H2 Warm = False} and PSU Health = Abnormal. Fi-
nally, the nodes with different states in OB and EB are col-
ored in orange, together with the shared edges. Nodes with
same state are colored in white. Finally, for all nodes with
evidence in OBS and all Health nodes we draw a thick bor-
der. For our example we present the explanation graph in
Figure 4 (c).

Algorithm 2 Pruned Graph
function PRUNEDGRAPHNODES(BN,AB,O)

Q← ∅
PG← ∅
Q← Q ∪AB
while Q 6= ∅ do

n = removeElement(Q)
if n 6∈ O ∪ rootNodes(BN) ∪ PG then

PG← PG ∪ {n}
Q← Q ∪MB(n)

end if
end while
return PG

end function

4. INDUSTRIAL APPLICATION

We applied our approach for the heating subsystem of a cy-
ber physical system (CPS). The heating subsystem contains
the following components: 16 PSUs, 70 heaters and 24 ther-
mocouples. The PSUs, heaters and thermocouples form 16
groups. Each group is controlled with a closed loop that reg-
ulates the heaters temperature.

Two safety systems are present in the CPS, one at the level of
the heating subsystem and one at the CPS level. The former
instantaneously stops the heating on detection of an error on
any of the heating subsystem’s components. The latter, stops
the CPS after two hours of continuously missing heating sup-
port.

We model this system using our methodology and we abstract
from the control and safety loops by defining Control and
Safety as On/Off switches. To perform diagnostics we
instantiate the BN with discretized sensor data coming from
a CPS which resulted in system downtime. For the discretiza-
tion we use expert-defined thresholds.

The results of our methodology applied on a specific down-
time are summarized in Figure 5. The top plot shows possible
diagnosis computed by the BN, the bottom plot shows state
changes across the discretized sensor data. In Figure 5 the
moment of the incident, i.e. the moment when the field ser-
vice engineer is alerted, is on the right hand side. We observe
that according to our model the system is shut down because
Safety was triggered.

To further diagnose what triggered Safety, we repeat the
analysis going backwards in time, as explained in Section
3.4. In Figure 5 we notice that the diagnosis remains the
same until two hours and ten minutes before the incident time,
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Figure 6. Explanation graph for PSU5 Abnormal behavior.

i. e. machine hard-down. Before that moment the system
was in a Normal state. So, we conclude that in the win-
dow of time between the Normal diagnosis and the diagno-
sis Safety = Unsafe, one of the components failed. To
finalize our diagnosis, we use data from additional sources,
e.g. event logs and board dumps, at this specific window of
time and we identify the component that failed.

Without our model in place, the field service engineer would
manually check at the incident time the health of 110 com-
ponents. Furthermore, he would not have the knowledge that
the failure that actually triggered the safety measure occurred
more than two hours before and that all the following behav-
ior of the CPS was as expected by the safety system. There-
fore, he would end up in a long service action. For the inci-
dent in Figure 5 a downtime of almost six hours was recorded.
Our analysis took less than a minute where sensor data was
available for a time frame of 24 hours.

As described in the previous section, we also provide an ex-
planation graph of the diagnosis. Specifically, we produce an
explanation graph for each minimal diagnosis at each time for
which we perform diagnostics. Figure 6 shows an example of
such an explanation graph for a diagnosis for the CPS. Please
note that this is a different downtime than the one shown in
Figure 5. By using our pruning algorithm, the DAG of the
CPS was reduced of a factor of 6 , from more than 600 nodes
to approximately 100 nodes and colouring quickly leads to
the faulted component.

5. CONCLUSIONS

In this paper we showed how to exploit model based diag-
nosis to support field service engineers in the localisation of
faults in complex industrial systems. To build our diagnostic
models we used a domain specific language combined with
an object oriented modeling approach. This allowed us to
create large models quickly and with little effort. In addition,
we used Bayesian networks to perform diagnostic inference.
In this way we coped with the partial observability of the sys-

tem.

In our work we extended state of the art by introducing an
algorithm to compute minimal diagnosis given the diagnos-
tic outcome of the Bayesian network. Also, we showed how
to explain a diagnosis in a visual way by pruning and color-
ing the graph underlying the Bayesian network. Finally, we
applied our methodology on an industrial use case and we de-
scribed how to cope with the dynamic aspect of the diagnostic
problem by using the model at different moments in time.

Our diagnostic models are currently instantiated using oper-
ational sensor data, i.e. data that is often used for control
purposes. However this data is often not enough to solve di-
agnostics problems and additional data sources must be taken
into account. For this reason, in the future we want to aug-
ment our models by connecting to machine event logs or elec-
tronic boards dumps that are automatically collected when-
ever there are state changes at the hardware or software level.
As future work, we are also looking into further ease the mod-
eling efforts by automatically extracting the models from de-
sign artefacts as in (Tretmans, 2007). Lastly, we are currently
extending our methodology to support design engineers in us-
ing model based diagnosis to define an optimal sensors place-
ment, i.e. design for diagnostics.
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