
Unsupervised Ranking of Outliers in Wind Turbines
via Isolation Forest with Dictionary Learning

Sergio Martin-del-Campo1 and Kammal Al-Kahwati2
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ABSTRACT

Predictive maintenance strategies for the detection of faults in
wind turbines require approaches that consider the limited hu-
man resources available responsible for the final assessment
of the machine. Here, we present an unsupervised framework
for the ranking of wind turbines (assets) in a wind farm (fleet)
based on the detection of faults in the monitored machine ele-
ments, which will help experts determine the turbine that has
higher priority in further machine diagnostics. Previous work
has shown that the use of sparse coding with dictionary learn-
ing enables the identification of faults in rolling element bear-
ings. However, it has not shown how the information of the
identified faults can be used in an unsupervised strategy that
enables a detector to provide some sort of recommendation
on how to proceed with the information of the detected faults.
We describe how features derived from the sparse coding with
dictionary learning method are used together with the isola-
tion forest outlier detection algorithm to create a score for the
ranking of the monitored assets. We consider scenarios where
all the turbines are evaluated together and each of them indi-
vidually in the creation of the ranking and we compare these
results with a condition where features taken from the time-
domain are considered. Sparse coding with dictionary learn-
ing together with isolation forest produces an anomaly score
that can be used to rank wind turbines by their need for a
maintenance action given the presence of faults in their sys-
tems resulting in an unsupervised warning system that can
support the work of maintenance experts.

1. INTRODUCTION

The demand for reliable condition monitoring systems on ro-
tating machinery for power generation is continuously increas-
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ing due to the wider use of wind power as an energy source.
Simultaneously, the availability of human resources who per-
form the evaluation and diagnostics is not increasing at the
same rate. In addition, the wind farms are typically located
in remote locations where access is difficult and the transmis-
sion of data to other sites for evaluation is expensive. This
situation results in a need for condition monitoring systems
that are capable to detect the complex and weak signatures of
the faults and can provide the information needed with the
limited communication capacity. These diagnosis systems
should support experts in the decision process to monitor a
bearing and machine condition and act as an early warning
system, while requiring a minimum of manual configuration.

Machine maintenance strategies have evolved over time to in-
crease efficiency, while the organizations owning them evalu-
ate whether the loss of an asset or the interruption of its oper-
ation would be critical to overall production and performance
(Randall, 2011). Originally, bearings would continue to be
used until failure under a strategy called corrective mainte-
nance. Under a preventive maintenance strategy, a period of
time or number of cycles interval is defined and an expert
evaluates the condition at the end of this interval. The length
of this interval is based on previous experience and calcu-
lations of bearing lifetime endurance. A detriment of this
strategy is the length of this interval, which can be longer
than some fault processes and it is increasing given the lim-
ited human resources available (Harris & Kotzalas, 2007).
Condition-based maintenance or predictive maintenance aims
to plan maintenance actions based on the collected informa-
tion. Thus, avoiding unnecessary maintenance through fault
diagnostics and estimation of remaining useful life. Under
this strategy, condition-based maintenance technologies mon-
itor the condition of a machine continuously or periodically
(Jardine et al., 2006). Continuous monitoring requires the
definition of a series of alarms that can be applied to the raw
signals and which are typically based on time or frequency
domain features. These alarms are triggered once something
wrong is detected with the detection of a value out of the
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alarm level. Periodic monitoring can be used with more so-
phisticated methods derived from machine learning to diag-
nose the machine condition. However, because of the com-
putational demands of these methods, the monitoring cannot
be done in the raw signal and it requires the definition of an
interval upon which do the evaluation. Therefore, periodic
predictive maintenance faces similar challenges as preventive
maintenance.

According to Dias Machado de Azevedo et al. (2016), an effi-
cient condition monitoring system for wind turbines needs to
consider the following challenges: ease of automation, ample
warning time and the behavior of each turbine. Ease of au-
tomation enables scalable solutions that can be applied to a
wide number of turbines. The need for ample warning time
in the form of an early warning system is relevant not only for
the opportunity to introduce measures that extend the lifespan
of the bearing but also because replacements can take a long
time before they become available, and longer stopping times
are not desirable. Finally, many of the alarms that permit the
continuous monitoring of the wind turbine are designed for
that specific turbine under its specific environmental and op-
erational conditions and not all of them can be translated from
one asset to another.

Machine learning solutions for condition monitoring can help
to alleviate the above challenges. The number of works that
consider machine learning as a tool for advanced condition
monitoring and early diagnosis in wind turbines is increas-
ing, see Hossain et al. (2018) for a recent review. Many
of the strategies proposed use time-domain features that are
known, frequency-domain features or features derived from
signal processing techniques such as the envelope or wavelet
analysis. These approaches require proper selection of the
features that are introduced into a machine learning algorithm
that predicts the fault. The resulting constraint is a model
tuned to detect a specific fault or a feature set that enables
fault detection under specific conditions. Thus, wind turbine
condition monitoring and their experts can benefit from an
unsupervised machine learning approach that requires a min-
imum of human intervention in their configuration, can adapt
to the environmental and operational conditions and provides
an early warning. Our method aims to address these concerns
with the adoption of sparse coding with dictionary learning to
process the raw vibration signals and the use of the resulting
model together with isolation forest for outlier detection to
generate a ranking of the assets deviating the most from the
fleet behavior and that might require further investigation to
identify the cause of a likely fault.

Former work in the area of machine learning approaches to
the condition monitoring of wind turbines aiming to improve
the maintenance strategies has focused on the modeling of
the wind turbine or its elements while using simulated or pro-
cess data. In these approaches, preventive maintenance is car-

ried out to reduce downtime losses rather than to enhance
the resources available. Furthermore, none of these studies
had used real-world raw wind turbine data in their modeling.
Zhang et al. (2017) proposes a two-level maintenance thresh-
old strategy to merge maintenance actions of wind turbines
with an imperfect schedule during machine shutdown. They
propose a hybrid model that determines the elements most
likely to require maintenance giving their deterioration up to
the time of the machine shutdown. A decision-making proce-
dure to determine the most suitable time to perform mainte-
nance is proposed by Ghamlouch et al. (2019). Their pro-
cedure models the deterioration of the system while intro-
ducing an uncertainty element to represent the stochastic en-
vironmental and operational conditions of the wind turbine,
which results in a recommendation on the most suitable time
to perform the maintenance action. An approach based on
artificial neural networks that use SCADA data is proposed
by Bangalore et al. (2017). Their proposed approach is ca-
pable to detect faults in the gearbox of a wind turbine but
requires the definition of multiple models to handle different
operational conditions. H. Liu et al. (2011) uses an unsuper-
vised machine learning approach based on sparse coding with
dictionary learning to detect the presence of faults in a bear-
ing. This approach considers fault detection as a classification
problem focusing entirely on whether a fault is present.

In this paper, we utilize an unsupervised feature learning method
called sparse coding with dictionary learning on raw vibration
signals from wind turbines to derive a set of features, which
are in turn used on an isolation forest outlier detection method
to rank wind turbines needing maintenance actions. Sparse
coding with dictionary learning models a vibration signal as a
linear superposition of atomic waveforms plus noise. Our in-
terest here focuses on the fidelity of the sparse representation,
which can be used to reconstruct the original vibration sig-
nal, and in the dictionary distance measure of learned dictio-
nary as it propagates over time. Sparse coding with dictionary
learning has proven useful for online monitoring (Martin-del-
Campo et al., 2013) and identification of bearing characteris-
tic frequencies Martin-del-Campo et al. (2019). The work
presented here is novel because it presents a score that can
be used to rank wind turbines on how much the operation
is diverging from the population without incorporating prior
information on the state of the machine. We observe lower
scores at periods when a fault is present in a turbine than when
it operates in healthy conditions. Under the presence of a fault
in the rolling element bearing of the bearing, the distribution
of the fidelity and dictionary distance features diverge signif-
icantly than under healthy bearing conditions. Furthermore,
we compare the features derived from the sparse coding and
dictionary learning to time-domain features under the isola-
tion forest outlier detection strategy. These results indicate
that the features derived from the sparse coding with dictio-
nary learning method are suitable for the detection of outliers
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of a wind turbine within a wind farm and can be used together
to the isolation forest method to rank the turbines most need-
ing of a maintenance action.

2. METHODOLOGY

We present our ranking framework with an introduction of the
sparse coding with dictionary learning unsupervised method,
a description of used features and the background of the isola-
tion forest algorithm. Figure 1 shows a diagram of the frame-
work, which presents the stages that form the framework and
how each stage is related to each other. The input is the raw
vibration signal from a rolling element bearing in the wind
turbine, and the output is a score derived from the isolation
forest algorithm.

2.1. Sparse Coding with Dictionary Learning

The sparse coding with dictionary learning method generates
succinct representations of signals. This means that the re-
sulting sparse representation holds a minimum of space while
still useful and informative for analysis. Here, we use a model
developed by Smith & Lewicki (2006), which is inspired by
the earlier work of Olshausen & Field (1997). Smith & Lewicki
(2006) describes how the learned waveforms, referred to as
atoms, from speech data mirror cochlear revcor functions.
The operating hypothesis underlying our work is that fea-
tures, which characterize the vibration signals originating from
rotating machines, can be learned with a similar procedure.
A sparse coding model represents a signal x(t) as a linear
superposition of noise and atomic waveforms with compact
support

x(t) = ε(t) +
∑
i

aiφm(i)(t− τi). (1)

The atoms φm(t) represent shift-invariant morphological fea-
tures of the input signal with ai and τi specifying the ampli-
tude and the shift (temporal position) respectively. The values
of ai and τi are calculated using the matching pursuit (MP)
algorithm (Mallat & Zhang, 1993) and the triple m(i), ai, τi
represents one atomic event. A collection of atoms is known
as a dictionary

Φ = {φ1, · · · , φM} . (2)

where M expresses the number of atoms in the dictionary.

The optimization of the waveforms (atoms) is carried out via
an unsupervised approach using an update rule based on the
gradient ascent of the approximate log data probability (Smith
& Lewicki, 2006)

∂

∂φm
log [p(x | Φ)] =

1

σ2
ε

∑
i

ai(x− x̂)τi , (3)

where (x − x̂)τi is the residual from the matching pursuit
algorithm over the support of atom φm at time τi with an
atom amplitude of ai. This rule implies that the shape and

length of each atom are adapted from a weighted average of
the residuals of the matches identified by the matching pursuit
algorithm. The sparseness of the representation is defined by
the stop condition of the matching pursuit algorithm. It is
important to note that the resulting sparse representation is
not a linear function of the input signal because the matching
pursuit algorithm is non-linear.

The optimization of the dictionary Φ is done iteratively. The
procedure begins with the initialization of the dictionary. In
the beginning, each atom in the dictionary has an initial length
of fifty with amplitudes sampled from a Gaussian distribution
plus zero padding. The matching pursuit algorithm operates
as the cross-correlation of the vibration signal (residual) with
all atoms in the dictionary. The maximum cross-correlation
sets one event, m(i), ai, τi. The corresponding waveform,
aiφm(i)(t − τi) is subtracted from the signal. The resulting
residual is used as input in the next iteration of the matching
pursuit algorithm. The procedure continues until reaching the
stop condition, which is defined by the sparsity level that is
the number of events per signal sample.

The main challenge and area of opportunity of this approach
is learning the dictionary Φ. The result is an approach that is
fundamentally different from other condition monitoring ap-
proaches like Fourier and wavelet analysis. Dictionary learn-
ing aims to learn a dictionary of atoms Φ that maximizes the
expectation of the log data probability

Φ = arg maxΦ〈log [p(x | Φ)]〉, (4)

where
p(x | Φ) =

∫
p(x | a,Φ)p(a)da. (5)

The prior of the amplitude, p(a), is defined to promote a
sparse representation in terms of statistically independent atoms
(Olshausen & Field, 1997). The integral is approximated with
the maximum a posteriori estimate resulting from the match-
ing pursuit algorithm. The result is a learning algorithm that
uses gradient ascent on the approximate log data probability
defined by Eq. (3). The gradient of each atom in the dic-
tionary is proportional to the sum of residuals corresponding
to the activation of that atom. The term σ2

e is the variance
of the residual that remains after the matching pursuit algo-
rithm. Furthermore, we introduce a learning rate parameter
η so that Eq. (3) is modified to

∆φm =
η

σ2
e

∑
i : m=m(i)

ai(x− x̂)τi . (6)

The resulting adaptation rate of each atom depends on the
matching-pursuit activation rate. Consequently, this implies
that some atoms may adapt slowly or not at all. The motiva-
tion behind our approach is the relatively low complexity and
simplicity of the algorithm.
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Figure 1. Diagram of our proposed ranking framework. Features derived from the Convolutional Sparse Coding with
Dictionary Learning method are used with the Isolation Forest algorithm to generate the ranking.

2.2. Fidelity and Dictionary Distance

The features that we consider from the sparse coding with
dictionary learning method are fidelity and dictionary dis-
tance. We define the fidelity of the sparse representation as
the ratio between the sparse approximation and the signal
residual

dB = 20log10

(
x̂

ε(t)

)
, (7)

where dB is the fidelity in decibels, x̂ is the sparse approx-
imation of each signal segment and ε(t) is the residual. The
residual is the difference between the input signal and the re-
sulting sparse representation when the stop condition of the
matching pursuit is fulfilled.

The dictionary distance feature quantifies the similarity of
one learned dictionary at two different points in time. The
first point in time is fixed and it is the initial dictionary, which
is trained during a period when the machine was known to be
in a healthy condition. The second point in time is the up-
dated dictionary after the completion of the matching pursuit
algorithm, as it propagates over time. Thus, the updated dic-
tionary is compared against the initial dictionary φ0 to quan-
tify the difference between both. The procedure is repeated
for each new signal segment. We quantify the difference be-
tween the two dictionaries using a distance measure proposed
by Skretting & Engan (2011) and defined as

β(Φk,Φ0) =
1

2M

( M∑
i=1

β(Φk, φ0
i ) +

M∑
j=1

β(Φ0, φkj )
)
, (8)

where both dictionaries have the same number of atoms M ,
and the membership of each dictionary is φk ∈ Φk and φ0 ∈
Φ0. The function β indicates the maximum similarity of an
atom φ to the atoms in dictionary Φ and it is given by

β(Φ, φ) = arccosµ(Φ, φ). (9)

The function µ is the mutual coherence, which is defined

as Elad (2010):

µ(Φ, φi) = max
∀φj∈Φ
j 6=i

|φTi φj |
‖φi‖2 · ‖φj‖2

. (10)

The unit of the dictionary distance measure is degrees.

2.3. Time-domain features

We consider three time-domain features in our comparison.
First, we consider the root mean square (RMS) of each signal
segment. We calculate the RMS value in the following way

RMS =

( N∑
n=1

x2
n

N

) 1
2

, (11)

where N is the total number of samples of the signal segment
with values xn. The second feature we consider is the crest
factor. The crest factor is used to describe how extreme is the
peak value in a signal Patidar & Soni (2013). The crest factor
value is calculated using the equation

CF =
|xpeak|
RMS

, (12)

where xpeak is the peak sample value. The third time-domain
feature that we consider is kurtosis. Kurtosis describes the
shape of the distribution of the sample values of a signal seg-
ment Patidar & Soni (2013) and it is a commonly used feature
in the diagnostics of gearboxes Qu et al. (2014). We estimate
the kurtosis value using

K =
1

σ4

( N∑
n=1

(xn − µ)4

N

)
, (13)

where σ is the standard deviation and µ is the mean value of
the signal segment.
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2.4. Isolation Forest

The isolation forest algorithm was first proposed by F. T. Liu
et al. (2008). It operates under the principle that anomalous
points in a dataset are minority and as such, these points have
a different attribute value. The algorithm has a linear time
complexity and runs on a constant memory requirement.

Isolation forest operates by recursively partitioning the data,
until a single point has been isolated. The result is that sus-
pected anomalous points are isolated much faster than regular
points. The algorithm is a tree-based ensemble method that
uses a random tree structure to partition the data. The path
length of the collection of these random trees is stored for the
entire dataset. A shorter path length is used to indicate that
the point is an outlier. The anomaly score for each point is
calculated using

s = 0.5− 2−
E(h(x))

c(n) , (14)

where E(h(x)) is the average value of the path length h(x)
for data point x and c(n) is the average path length of un-
successful searches in the binary search tree under n num-
ber of nodes. The resulting anomaly score covers the range
[−0.5, 0.5] where a value closer to 0.5 is considered the most
anomalous.

3. REAL-WORLD CASE STUDY

3.1. Description

We apply our unsupervised ranking methodology to vibra-
tion data from a real-world condition monitoring system. The
source of the data is a database that collects the information
from the condition monitoring system of a wind farm located
in northern Sweden. The wind farm is formed by six similar
wind turbines. Each wind turbine has a three-stage gearbox
that includes two sequential planetary stages, followed by a
helical gear stage. An accelerometer mounted on the hous-
ing of the output shaft bearing measures the raw time-domain
vibration signals in the axial direction. Raw vibration sig-
nal recordings have a sampling frequency of 12.8 kHz. Each
vibration signal segment is 1.28 seconds long and they are
recorded at intervals of approximately 12 hours over a pe-
riod of 46 consecutive months. The data is made publicly
available by the Luleå University of Technology (Martin-del-
Campo et al., 2018).

In the period for which the data was made available to this
investigation, two out of the six wind turbines experienced a
form of fault. We refer to one of these turbines as Turbine
2 and it experienced an electrical fault, where the vibration
sensor was not installed properly at the beginning of opera-
tion of the wind turbine and resulted in an improper recording
of the vibration data. However, the wind turbine was healthy
during the electrical fault and remained to be healthy during
the entirety of the investigation. The second turbine, which

we refer to as Turbine 5, experienced two faults related to the
bearings located in the gearbox. The first fault was an in-
ner raceway failure on a four-point ball bearing on the output
shaft that resulted in the replacement of the bearing after 1.2
years of operation. The second failure occurred in one of the
cylindrical roller bearings supporting one of the planets in the
first planetary gear of the gearbox. This failure required the
replacement of the entire gearbox after two years of operation
of the wind turbine. The remaining wind turbines were com-
pletely healthy during the entire period of our investigation.
During the processing of the vibration signals with the sparse
coding with dictionary learning method, we filtered signal
segments that corresponded to an unloaded condition of the
wind turbine. Afterwards, a baseline initial dictionary was
trained using 5000 segments of one-second duration (12800
samples) from a period of time where the wind turbine op-
erated in healthy conditions. After the baseline initial dictio-
nary was learned, it was propagated over time using all signal
segments where the wind turbine was loaded. A similar pro-
tocol was followed for all six wind turbines.

The vibration data is processed with our own implementa-
tion of matching pursuit along with the dictionary learning
algorithm presented by Smith & Lewicki (2006). Each signal
segment is preprocessed to have zero mean with unit vari-
ance. The stop condition of the matching pursuit algorithm is
a sparsity level of 90%, which is equivalent to a data compres-
sion ratio of 0.1. Therefore, each signal segment, which is
16384 samples long, was modeled using 1600 atomic events.
The dictionary contains eight atoms and during the dictio-
nary update step, we use a step size of η = 10−6. The atoms
are normalized after each learning iteration. Details of the
wind turbine dataset and data collection conditions, as well as
method evaluation setup is available in (Martin-del-Campo et
al., 2019).

The fidelity is estimated using the resulting sparse represen-
tation of the matching pursuit algorithm and the dictionary
distance measure is calculated using the resulting dictionary
from the dictionary update step, which is compared against
the initial dictionary. Both measures are used as inputs to the
isolation forest algorithm. We use a contamination factor of
0.01 in the isolation forest algorithm to further isolate each of
the samples. Our interest is in the resulting anomaly score for
the ranking and not in the labels that the algorithm generates.
We apply the isolation forest algorithm in two different sce-
narios. The first scenario considers the data from all the tur-
bines aggregated together and the isolation forest is applied
to all of it. This scenario considers a situation where the data
analytics can be carried out in a remote station that can collect
the data from all the turbines. The second scenario considers
the data from each turbine individually and the isolation for-
est algorithm is applied to each of them. This scenario intends
to replicate a condition where the data analytics is carried out
directly in the condition monitoring system of the wind tur-
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bine and the data cannot be transferred to a remote station.

The framework aims to rank the turbines in the order where
further assessment for further diagnostics is required. There-
fore, turbines that have some sort of imperfect should come at
the top of the rank, independently of the type of problem that
the turbine might have. The anomaly score resulting from the
isolation forest algorithm is used to create this rank. A lower
score is indicative of an outlier, which results in a guideline
where the lower the anomaly score of the signal segment, the
higher the ranking of the wind turbine. The feature-pair eval-
uated with the isolation forest algorithm include three cases:
dictionary distance and fidelity; RMS and kurtosis; and crest
factor and kurtosis. The feature-pair of RMS and crest fac-
tor is not considered given the high correlation between both
variables. Figure 2 shows the scatter plots of the three fea-
ture cases in the scenario where the feature values of all the
turbines are aggregated into a single plot. The case that uses
dictionary distance and fidelity as the feature-pair is shown in
Figure 2a. It can be seen that a normal condition encompasses
a specific high-density region within the fidelity and dictio-
nary distance range and values marked as outlier are outside
that high-density range. Meanwhile, the spread of the values
for the cases of RMS, crest factor and kurtosis is higher and
outlier values tend to be at the edges of those spreads.

Table 1 presents the lowest ten anomaly scores for the three
feature-pairs cases evaluated. Next to the scores, the turbine
to which the score is associated is included. The table high-
lights the scores that correspond to signal segments where it
is known the asset is faulty. Each anomaly score corresponds
to different signal segments. All anomaly scores are shown
for the cases of RMS and kurtosis, and crest factor and kur-
tosis point to turbines which were completely healthy during
the period under investigation. The case that uses the dic-
tionary distance and fidelity features shows anomaly scores
corresponding to the two turbines that registered some type
of fault under the period of investigation. The top ten low-
est anomaly scores in the dictionary distance and fidelity case
correspond to signal segments recorded in the period of one
month prior to the fixing of the sensor fault in Turbine 2 and
the bearing replacement in Turbine 5.

3.2. Results of the individual scenario

In the individual scenario, the isolation forest algorithm is ap-
plied to the feature values individually to each turbine. The
aim remains the same, to create a turbine ranking based on
the resulting anomaly scores. Figure 3 shows the scatter plots
of the six turbines for the case of the dictionary distance and
fidelity features. Similar to Figure 2a, the healthy signal seg-
ments of all turbines lie within a positive range of dictionary
distance and fidelity values. However, it becomes evident
how the outliers found in Turbine 2 and Turbine 5 are out-
side the positive value range, while the segments marked as

Table 1. Anomaly scores for the aggregated scenario.

Dict. distance RMS Crest Factor
Fidelity Kurtosis Kurtosis

Turbine Score Turbine Score Turbine Score
2 -0.109 6 -0.057 4 -0.092
2 -0.096 3 -0.055 4 -0.091
2 -0.082 6 -0.053 4 -0.090
2 -0.079 3 -0.053 4 -0.089
5 -0.078 6 -0.052 4 -0.085
2 -0.077 4 -0.052 4 -0.080
5 -0.077 6 -0.051 4 -0.077
5 -0.076 3 -0.050 4 -0.075
5 -0.075 3 -0.048 4 -0.074
5 -0.074 6 -0.045 4 -0.071

outliers in the healthy turbines are within the positive range of
the feature values. The feature-pair cases that use RMS and
kurtosis, and, crest factor and kurtosis are shown in Figure 4
and Figure 5, respectively. In both cases, the results are dif-
ferent and it is not clear the presence of a high density region
within which all the segment values are located. In the case
shown in Figure 4, the distribution of the values for Turbine
4 has a larger spread than all the other turbines and Turbine 4
is a healthy turbine with no reported faults. The case shown
in Figure 5 is a little different, the spread of the values has a
similar shape across the six turbines, even if the range is not
the same. In this case, it becomes easier to appreciate outliers
far apart from where the main values are located in Turbine 2
and Turbine 5.

Table 2. Lowest anomaly score for each turbine.

Dict. distance RMS Crest Factor
Turbine Fidelity Kurtosis Kurtosis

1 -0.033 -0.044 -0.081
2 -0.098 -0.055 -0.102
3 -0.039 -0.087 -0.080
4 -0.035 -0.071 -0.060
5 -0.054 -0.085 -0.127
6 -0.043 -0.092 -0.064

Table 2 presents the lowest anomaly score for each turbine
under the three feature sets while highlighting the lowest two
scores on each feature-pair. The case that uses RMS and kur-
tosis as features shows the lowest anomaly score belonging
to Turbine 6, followed by Turbine 3. Both of these turbines
are healthy and did not show any faults during the period un-
der investigation. The cases that use dictionary distance and
fidelity and crest and kurtosis as features have a similar re-
sponse. Both of these cases point towards Turbine 2 and Tur-
bine 5 with the lowest anomaly scores and as a result a higher
priority in the ranking. Both of these turbines experienced a
form of fault and should have a higher ranking in the priority
for further evaluation and diagnostics of the wind turbine.
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Figure 2. Scatter plots of the aggregated scenario for the selected features, which includes the data from the six wind turbines.
Signal segments labeled as outliers are marked in red and segments labeled as normal in green.

4. DISCUSSION

This work focuses on creating a ranking of assets (wind tur-
bines) within a fleet (wind farm) for further evaluation and
diagnostics in an unsupervised way. In particular, we use the
sparse coding with dictionary learning method together with
the isolation forest algorithm to generate a set of anomaly
scores, which are used to rank the wind turbines requiring
further evaluation. The aim is to provide support to vibration
and condition monitoring experts on the selection of the as-
sets that need further study when the assets are most needed
for further evaluation instead of defining a time or number
of cycles for evaluation, which is typical in preventive main-
tenance strategies. We find that the framework proposed in
this work highlights wind turbines with faults over healthy
turbines by giving them a lower anomaly score on the period
where the fault occurs. In a scenario where the data of all
turbines is aggregated for the study, using dictionary distance
and fidelity as features provide significantly better results than
using time-domain features. In a scenario where the scores
are generated individually for each wind turbine, using dic-
tionary distance and fidelity or crest factor and kurtosis as
features provide equally useful results. These results moti-
vate further investigation of the framework in other opera-
tional conditions to determine if this unsupervised framework
is scalable to different applications. An improvement where
other distance measurements are considered could help in
taking into consideration issues related to concept drift where
the properties of the system are changing over time. Sparse
coding with dictionary learning is an interesting approach to
condition monitoring automation given that it enables the re-
duction of the amount of data to transmit without significant
loss of information and requiring few assumptions about the
machine or structure of the signal. This method together with

isolation forest further permits detecting the presence of sig-
nal outliers, which might be representative of a fault condition
in a machine element of the wind turbine. Both of these meth-
ods together permit the detection of faults in wind turbines
and result in a reduction of the workload of experts whose
responsibilities will be redirected into the assessment of the
fault nature.
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Figure 3. Individual scatter plots of all turbines for the feature-pair: dictionary distance and fidelity. Signal segments labeled
as outliers are marked in red and segments labeled as normal in green. All plots have the same limits.
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Figure 4. Individual scatter plots of all turbines for the feature-pair: RMS and kurtosis. Signal segments labeled as outliers
are marked in red and segments labeled as normal in green. All plots have the same limits.
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Figure 5. Individual scatter plots of all turbines for the feature-pair: crest factor and kurtosis. Signal segments labeled as
outliers are marked in red and segments labeled as normal in green. All plots have the same limits.
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