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ABSTRACT 

Safety enhancement is a major goal of the aviation industry 

owing to the predicted increase in air travel. There is also the 

need to prevent fatalities, increase reliability and reduce 

monetary costs suffered as a result of delays and accidents 

that still occur. Accidents today are complex as a result of 

many causal factors acting alone but more often as a 

combination with other contributing factors. In tackling this 

trend, proactive measures have been put in place to find 

hazardous combinations that occur during flights in order to 

mitigate them before accidents occur.  Flight Anomaly 

Detection (AD) methods are aimed at highlighting abnormal 

occurrences of a flight, that are different from the norm. As 

an improvement on the current state-of-the-art method, 

previous works have proposed different AD techniques for 

detection of previously unknown flight risks such as 

component faults, aircraft operational inefficiencies and 

some abnormal crew behaviour. However, current AD 

methods individually have limitations that prevent them from 

detecting certain significant anomalies in flight data. This 

paper surveys current flight AD approaches, their strengths 

and limitations as well as brings to light the benefits of a 

hybrid AD method to extend previous work and find safety-

critical events, particularly those related to abnormal crew 

activity: a class of events known to amount for a substantial 

number of accidents/incidents today. It also highlights 

another emerging AD application opportunity, its challenges 

and how AD is beneficial in addressing them. 

1. INTRODUCTION 

The sharp decline in aviation accident rates from 5 to 0.22 per 

million departures (Boeing, 2017) over the last 50 years is the 

reason air travel is deemed the safest means of transportation 

today as shown in Figure 1. However, accidents and severe 

incidents still occur which affect the reputation of the 

industry. An Accident refers to an occurrence associated with 

the operation of an aircraft in which any person suffers death 

or serious injury, or in which the aircraft receives substantial 

damage. An Incident is "an occurrence, other than an 

accident, associated with the operation of an aircraft which 

affects or could affect the safety of operation." (FAA, 2015). 

Examples of incidents are: high-speed approach, improper 

flap configuration, controlled flight into terrain only 

marginally avoided, aborted take-offs/landings on a closed or 

engaged runway. Improper actions often lead to a hazardous 

system state which in turn lead to an incident effect and if not 

addressed in time, will eventually lead to accidents. 

In addition to the loss of lives involved in air accidents, 

airlines suffer huge monetary costs as a result of aircraft 

damage, delays, and other accident-related costs (Čokorilo, 

Gvozdenović, Vasov, & Mirosavljević, 2010). For example, 

Boeing publicises it costs approximately $300 million to buy 

one of the newer commercial aircraft models (Boeing) and no 

less than $10,000 per hour may be expended for any delay in 

getting the aircraft airborne (Pohl, 2015). With the growing 

demand for air travel (IATA, 2016), there is a possibility that 

accident numbers could increase if the safety levels are not 

enhanced simultaneously. According to the International 

Civil Aviation Organisation (ICAO) which is responsible for 

providing the standards for aviation safety, performance 

monitoring of the aircraft systems, maintenance operations, 

as well as the monitoring of the flight crew are some of the 

plans in place to achieve the desired safety level (ICAO, 

2013). This monitoring aims to detect risks well in advance 

of serious accidents thereby preventing loss of lives and 

lowering the financial losses in the aviation sector (Cavka & 

Cokorilo, 2012). 
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Within the aerospace industry, an aircraft is able to gather up 

to 300,000 parameters from its sensors, depending on aircraft 

type and flight hours (Emmanuell Badea, Alin, & Boncea, 

2018). A practical example in Pohl (2015) shows that a cross- 
country flight in the United States is able to produce 240 

terabytes of data from both engines of a Boeing 737 aircraft 

after a 6-hour flight. This size of data increases rapidly 

depending on the number of aircraft in the sky and for say, a 

year. Such data is referred to as “Big Data” and the above 

example shows that the aerospace industry understands more 

than other industries, the challenges involved in making use 

of technologies to extract value from these huge volumes of 

data. Big data is often in varied formats that change at a high 

velocity and vary in context. Data Analytics (DA) is the 

science that acts on Big Data by using automated algorithms 

to uncover hidden patterns and insights for better decision 

making. In the aerospace industry, data analytics can be 

generally useful for cost reduction and revenue maximization 

which is achieved through means like better maintenance 

scheduling, performance monitoring and optimization of 

resources. Performance monitoring of systems, processes and 

people has become essential to safety in the aerospace 

industry (ICAO, 2013).  

Improvements made to enhance safety have mostly been 

reactive as a response to accidents that have occurred. Flight 

Data Monitoring (FDM) programmes were introduced as a 

proactive approach for gathering and analysing routine flight 

data to improve flight crew performance, operating 

procedures as well as aid pilot training. These programmes  

 

were aimed at identifying hazards before they led to accidents 

thereby aiding the establishment of appropriate mitigation 

strategies to prevent such occurrences. Data gathering for 

FDM programmes are available from onboard aircraft 

recorders, voice systems, maintenance reports, safety reports, 

cockpit display messages, or weather systems. The onboard 

data recorder sources, however produce the “Big Data” 

mostly useful for the analysis phase of FDM. 

1.1. The Flight Data Recorder – Data Variability 

The Flight Data Recorder (FDR) provides access to aircraft 
system data with which data analytics techniques extract the 
information required to carry out their processes. Figure 2 
shows the flow of data to and from the FDR. All monitored 
aircraft systems pass their measurements through the 
information bus for the Flight Data Interface Unit (FDIU) and 
Data Management Unit (DMU) to select the parameters they 
have been programmed to process. Different recording units 
such as the current Solid-State Flight Data Recorder (SSFDR) 
and the Digital FDRs (DFDRs) store the appropriate 
parameters and produce different data frames which in turn 
require decoding programs to output useful data formats for 
analysis.  

The SSFDR has expanded recording capacity and improved 
recorder reliability as an improvement to the DFDR which in 
turn replaced the older magnetic tape versions. The FDIU 
provides the required interface between the various sensors 
and the DFDR thereby solving the problem of the DFDRs’ 
inability to process the larger amounts of incoming sensor 

Figure 1. Accident rates and fatalities by year (Boeing, 2017) 
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data. It converts analogue signals from the sensors to digital 
signals suitable for recording by the DFDR. However, the 
FDIU is not programmable by the operator as it sends only 
basic regulatory information to the DFDR/SSFDR. The 
DMU, on the other hand, can be programmed by an operator 
to record any convenient parameters ultimately producing the 
DAR (Digital ACMS - Aircraft Condition Monitoring System 
Recorder) data as also shown in Figure 2. 

For analysis purposes, both the QAR (Quick Access 
Recorder) and DAR data are used based on ease of 
information retrieval and/or variability of parameters they are 
able to provide. The QAR is a copy of the FDR on a non-crash 
resistant recorder which has the specificity to be easy to 
download and interchangeable (ATR, 2016). DARs are like 
QARs (ICAO, 2016) however, while the QAR data originates 
from the FDIU with minimum regulatory parameters as the 
FDR, the DAR data, on the other hand, is the product of the 
DMU able to include many more convenient parameters. Both 
systems were developed to ease data recovery for the airlines’ 
needs and contain high-frequency sensor data.  

 

Figure 2. FDR formats and flow (ICAO, 2016). 

These different aircraft devices record parameters of different 
volumes, different data types and at varied speeds thereby 
giving rise to multiple data dimensions and data 
inconsistencies among other challenges of flight data 
analytics. Examples of varied FDR parameter types are 
discrete variables such as landing gear state, landing flap 
position, autopilot modes, flight director status and 
continuous variables like altitude, wind speed, airspeed, roll, 
pitch, angle of attack and so on. Though the varied nature of 
the parameters that recorders are now able to record can 
provide more insights into occurrences during a flight, data-
driven AD techniques have to deal with these data variability 
challenges in various ways in order to achieve desired results. 

The following sections reveal the effectiveness of current and 
emerging flight data analytics techniques, their strengths and 
weaknesses with regards to detecting anomalies while dealing 
with data variability from FDR.  

1.1. Flight Data Analysis 

The success of FDM depends on insights that can be gained 

from existing flight data through Flight Data Analysis (FDA) 

also known as Flight Operations Quality Assurance (FOQA) 

in the improvement of aviation safety. The effective analysis 

of flight data has been enhanced by the increased number of 

parameters that can be measured and the emerging techniques 

in data analytics. 

Exceedance Detection (ED) is one of such data analytics 
techniques. It is the state-of-the-art method used across the 
industry for flight data analysis. ED is implemented as a 
knowledge-based technique which relies on input from 
domain experts to make its inference within the data. It is, 
therefore, only able to highlight known risks within the data. 
More recent studies have built on the limitation of the ED 
method giving rise to the Anomaly Detection (AD) approach 
aimed at identifying unknown abnormalities during the flight 
which cannot be detected by the current method. Highlighting 
unknown combinations within the aircraft environment is 
useful in detecting operationally significant events that could 
potentially lead to accidents. Anomaly Detection approaches 
could either be Model-based relying on domain knowledge to 
build models or Data-Driven which focuses on automatically 
learning the general rules to build models directly from the 
data. However, for a complex system like the aircraft, it is not 
possible to model every combination of factors using model-
based methods. Therefore, the advancement in technologies 
like data mining, data analytics and machine learning are 
moving the focus from knowledge-based approaches to data-
driven methods of improving FDA. 

Data-driven approaches are used to describe system behaviour 
using only the data. Data-driven methods for data analysis 
exploits large amounts of data available to better understand 
behaviours and operational faults. These approaches learn by 
observing and analysing system behaviour of complex 
systems. The goal here is to build systems that can observe, 
diagnose, recognize unusual events and inform operators for 
more effective decision making (Biswas et al., 2016). 

This paper thus explores existing data-driven flight AD 
techniques, their applications, strengths, limitations and 
proposes a more robust hybrid AD technique to detect a wider 
range of significant anomalies aimed at enhancing flight 
safety. The paper is organised as follows. An introduction of 
FDM, the FDR data variability and FDA are provided in this 
section. Section 2 reviews the flight AD evolution, its 
architecture, aviation applications and its methods as well as 
the strengths and limitations of these methods. Section 3 
summarises limitations in existing flight AD techniques and 
proposes a hybrid AD opportunity to mitigate some of them. 
Also, the application of AD to the area of Standard Operating 
Procedure (SOP) deviation detection was introduced as 
another opportunity. Lastly, section 4 concludes the paper. 
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2. REVIEW OF FLIGHT ANOMALY DETECTION METHODS 

Anomaly Detection refers to the task of identifying new or 
unknown patterns which, in many cases are abnormal or 
inconsistent from the norm. AD finds patterns in data that do 
not conform to expected behaviour (Chandola, Banerjee, & 
Kumar, 2009). These patterns are called anomalies or outliers 
and they are often sufficiently different from the majority of 
data points in the dataset. Since the aircraft operations are 
standardized, it is assumed that the majority of flights 
represent normal operations at that given time. Flight data 
analysis has given rise to a number of AD techniques for 
discovering anomalies. 

This section details the general architecture of an AD method. 
It also provides a review of current flight AD application 
areas, the different AD techniques developed for use in each 
application as well as the strengths and limitations of these 
techniques. 

2.1. AD Architecture 

Each AD technique has a slightly different way of 
approaching the AD problem depending on available data and 
anomalous behaviour they wish to detect. The available flight 
data could be FDR, voice, maintenance data, safety reports, 
cockpit display messages, or weather data. Analysts may wish 
to detect anomalies in flight operations, components, crew 
actions or even predict system failures.  

Figure 3 gives an overview of the generic AD architecture. 
Flight AD is generally based on the assumption that most of 
the flights in the dataset represent normal operations. The DA 
process thus involves preparing the data for analysis and the 
AD process begins with the output from the DA into a 
detection phase and then followed by the characterisation of 
the anomalies found as the output of the AD process. The 
detection phase generally entails performing similarity 
measures between data points thereby determining the 
nominal group and using this to ascertain the outlier groups; 

giving each output an anomaly score say, a zero score 
referring to a nominal event. The characterisation phase 
involves identifying the dominant features associated with 
each anomaly then a domain expert validates its operational 
significance. 

2.2. Anomaly Detection Applications and Techniques  

AD has been proposed for use in different industries for 
diverse applications such as intrusion detection and fraud 
detection on networks/systems. In this work, we focus only on 
the aviation sector and how various AD techniques have been 
applied to FDR data to detect unknown flight profiles and 
abnormal events. Applications of AD for flight data are 
condition-based monitoring, condition-based maintenance 
and safety performance. Some of the current flight AD 
application areas and techniques are presented here. 

Aircraft Condition-based Monitoring (ACM). This refers 
to the measuring of system parameters over time and while in 
operation. It is majorly used for predicting failure and 
calculating the remaining life trends of components. With 
ACM, replacement, for example, is only performed when the 
analysis of the data reveals degradation in the monitored 
components. Some AD methods have been proposed to help 
anticipate aircraft system failure risks as summarised in the 
next paragraphs.  

The Aviation Performance Measuring System (APMS) was 
developed by NASA aimed at going one step further than ED 
by examining trends in multiple flights rather than single 
flight analysis (Statler, 2007). Further to this was the Morning 
Report (Chidester, 2003) developed in the late 90s as a 
software tool developed by NASA. The Morning Report relies 
on statistical means to identify atypical flights from 
multivariate comparison with baseline typical flights and tells 
which parameters contributed to an anomaly in a flight phase. 
This tool was designed for individual airlines attempting to 
address the problem of balancing between analysis for each 
flight and across multiple flights. It also clustered the resulting 

Figure 3. General AD Architecture 
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flights to help interpret the anomalous event. Morning Report, 
however, only focuses on continuous data. 

Other clustering techniques and data analysis approaches were 
introduced such as Inductive Monitoring System software 
(IMS) (Iverson, 2004). It is a distance-based AD technique 
applying an unsupervised algorithm and using incremental 
clustering to build models of the expected operation of the 
system on a set of normal data. The model is then used to test 
new data and the distance score determines if it is classed as a 
nominal mode or anomalous mode. A limitation of this 
method is its vector space-based method which becomes 
computationally expensive as point by point analysis is 
performed. IMS does not consider temporal patterns in data 
hence sequential dependencies in the data are not 
incorporated. Also, the Euclidean distance used for measuring 
the similarity between discrete values is limited. 

Developed by (Bay & Schwabacher, 2003), Orca is a k-
nearest neighbour based unsupervised AD algorithm.  It has a 
nested loop structure to calculate pairwise distances between 
data points but uses a simple pruning rule to keep the time 
complexity significantly less than the number of data points 
achieving near-linear performance with high dimensional data 
thereby making it appropriate for analysing large datasets. It 
can process both continuous and binary data format. A 
limitation of this method is that since each data point is scored 
independently, anomalies in the time domain cannot be 
detected (Das, Sarkar, Ray, Srivastava, & Simon, 2013). iOrca 
(Bhaduri, Matthews, & Giannella, 2011) is a scalable version 
of Orca since the developers of iOrca introduced an indexing 
strategy and an early termination criterion to make it scalable 
to extremely large datasets during processing (Das et al., 
2013) but still suffers from the time domain limitation of Orca. 

Aircraft Condition-Based Maintenance (CBM). AD for 
Maintenance Operations was motivated by the possibility that 
large flight datasets could be useful in understanding 
undesirable events like aircraft failures and need for scheduled 
maintenance. Maintenance activities ensure that the system 
does not fail, is functional and available for operation.  

A new data analysis algorithm (C.-H. Lee, Shin, Tsourdos, & 
Skaf, 2017) for FDR data was proposed focusing on 
improving airline maintenance operations. This new approach 
categorizes the FDR time series data into continuous, discrete 
and warning signals according to their parameter 
characteristics. A type of k-nearest neighbour approach is 
used to detect abnormal patterns in FDR coupled with the 
basic data analytics process involving appropriate techniques 
for Data Filtering, Data Transformation, Feature generation, 
Correlation Relaxation and Dimensionality Reduction. The 
performance of this algorithm was tested with NASA data. 
Results showed that it can detect unusual patterns within FDR 
regardless of parameter types thereby helping domain experts 
interpret data in less time for high-level fault diagnosis. 

Safety Performance. This refers to the reduction to an 
acceptable level, risks associated with the operation of the 
aircraft and/or other aviation activities. Its continuous 
enhancement is deemed a fundamental objective of the ICAO 

and other aviation organisations. Many AD techniques have 
been developed to tackle the requirements for safety 
enhancements. 

Sequence Miner technique (Budalakoti, Srivastava, & Otey, 
2009) was developed as an unsupervised method to analyse 
discrete parameters and reveal atypical flight sequences. Only 
discrete parameters were considered, and it solves the problem 
of detecting and describing anomalies in large datasets of 
high-dimensional symbol sequences. It does this by using the 
nLCS (normalized Longest Common Subsequence) based 
distance measure. It is able to detect anomalies across a fleet 
of aircraft. It is, however, limited to analysing similar flights 
and aircraft since discrete sequences can vary greatly 
depending on the route, airport and equipment. It is unable to 
integrate its findings of discrete actions with other continuous 
flight parameters since its performance degrades with 
interaction with continuous data. 

One of the more recent techniques is the Multiple Kernel 
Anomaly Detection commonly known as MKAD (Das, 
Matthews, Srivastava, & Oza, 2010). It has been extended and 
investigated for small and medium-sized medical and finance 
datasets (Gautam, Balaji, Sudharsan, Tiwari, & Ahuja, 2019). 
MKAD is a semi-supervised algorithm proposed for AD. 
Heterogenous parameters (continuous and discrete) were 
handled together. Discrete binary switch sequences are used 
in the discrete kernel and discretized continuous parameter 
features are used to form the continuous kernel. MKAD 
combines multiple kernels into a single optimization function 
using the One-Class Support Vector Machine (OCSVM) 
framework. The OCSVM uses a training set of nominal 
examples (in this case, flights) and evaluates test examples to 
determine whether they are anomalous or not. It combines the 
strength of both vector space and sequential AD techniques to 
allow a wider range of anomaly detection. Its ability to 
combine information from both data types makes it able to 
identify more complex behaviours of the crew in the anomaly 
detection process, unlike previous methods. It is, however, 
more able to find anomalies in discrete data than it is able to 
detect those from continuous data. For example, while is it 
was able to detect anomalies in an auto-landing state due to an 
autopilot mode anomaly, it was unable to detect a high-speed 
approach based on relevant continuous parameters (Das, Li, 
Srivastava, & Hansman, 2012). MKAD also needs nominal or 
near nominal data to learn proper hyperplanes hence, is not 
appropriate for including multiple nominal data patterns since 
the trained model could identify other nominal patterns as 
anomalous.  

ClusterAD (L. Li, Das, John Hansman, Palacios, & 
Srivastava, 2015) is a type of unsupervised learning method 
to detect an abnormal operation of an aircraft using FDR data. 
Euclidean distance was used as the similarity measure for both 
continuous and discrete parameters thereby giving rise to the 
possibility of incorrectly computed discrete parameters. A 
density-based clustering algorithm called Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) 
was used also to automatically determine the number of 
clusters, progressively find clusters based on density criterion 
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and find outliers in the feature space, but an output of this 
algorithm is sensitive to its design parameters (Ester, Kriegel, 
Sander, & Xu, 1996). ClusterAD has also been used for flight 
AD through its combination with the LoOP – Local Outlier 
Probability machine learning technique (Oehling & Barry, 
2019).  ClusterAD is tuned to find anomalies in FOQA type 
data but does not clearly define the similarity measure of 
discrete data thereby producing a low performance in finding 
issues in discrete data (S. Lee, Hwang, & Leiden, 2014). It 
also loses temporal information during the reduction step 
thereby making interpretation of anomalies harder and even 
missing some vital short-length anomalies. 

Mack, Biswas, Khorasgani, Mylaraswamy, and Bharadwaj 
(2018) contributed to improving aviation safety by proposing 
a general methodology of combining completely 
unsupervised learning techniques with supervised expert 
anomaly identification for large volumes of data. The method 
involves using diverse techniques for data pre-processing, 
data reduction, applying clustering algorithm, determining 
nominal and outlier cluster groups, identifying significant 
feature parameters associated with the anomalous group, 
domain expert characterization of special nodes and 
anomalous behaviours within the system. It further details 
how experts work with the anomalies produced and how they 
may extract information for decision-making. This work 
focused on the take-off phase of flight and was able to 
discover interesting anomalies such as a dead engine, near 
stall and a pilot choice to delay switching to autopilot mode 
soon after take-off. This work seeks to use a similar method 
developed by the author but proposes a hybrid AD technique 
to address the limitations of existing methods while 
combining their individual strengths. A summary of these 
application areas and respective techniques used is 
summarised in Figure 4. 

3. FLIGHT AD LIMITATIONS AND OPPORTUNITIES 

In this section, the limitations of techniques highlighted in the 
previous section are summarized and a more robust data-
driven hybrid AD opportunity for detecting a larger range of 
anomalies is proposed. Also, the challenges SOP deviation 
detection and the opportunity of using AD to address them 
are reviewed. 

3.1. Hybrid AD Opportunity 

The previous section detailed the strengths and limitations of 
existing flight AD methods. Many AD techniques have been 
able to find component faults and operational faults but only 
a few of these (W.-C. Li, 2011; Shappell et al., 2017) are able 
to detect some type of anomalies of crew activity. Here, we 
propose a hybrid technique to combine the strengths of 
multiple AD techniques with the aim of detecting a more 
varied range of anomalies than individual techniques. 

For example, while some techniques are able to detect 
anomalies influenced by deviations in discrete parameters, 
some are better at effectively detecting anomalies of 
continuous variables.  Moreover, some techniques are unable 
to identify nominal instances and some techniques that can, 
are only able to do so for certain portions of flight.  
Furthermore, while all the flight AD techniques mentioned 
were able to detect anomalies of either discrete, continuous, 
sequences, long-length anomalies, there is no evidence that 
any would detect short-length anomalies. This could be due 
to the need for dimensionality reduction by these techniques 
which often filters out vital information (Nanduri & Sherry, 
2016). Detecting short-length delays are important because 
(Donald L. Wood, 2018) detailed how a 4.5s delay in putting 
down the lift dump at touchdown, caused the aircraft to 
overrun the runway leading to other incurred costs. A hybrid 
AD technique will be useful in combining the strengths of 
these multiple methods into one thereby finding anomalies in 

Figure 4. Summary of AD techniques and opportunity 
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discrete, continuous, sequence parameters as well as 
inculcating the capability for detecting long and short-length 
abnormalities in the data. 

Figure 5 gives an overview of this mixed approach. The FDR 
data is pre-processed using appropriate methods including 
the selection of relevant features to ensure that vital 
information in the data is retained as much as possible. It is  

 

filtered for small portions of certain phases of flight to ensure 
all flights are comparable. The detection phase combines 
multiple data-driven techniques which output individually-
detected anomalies with their respective scores. The anomaly 
labels/scores can be numerical representing the extent at 
which a technique perceives the anomaly as significant. The 
hybrid AD technique includes a score merger function which 
takes the output scores of the multiple algorithms and outputs 
a final score that effectively represents how normal or 
abnormal an event is from the fleet-wide analysis. The 
scoring algorithm will use a detection threshold set at 
different sensitivity levels to ascertain the number of flights 
classed as anomalous thereby detecting, for example, the top 
y% anomalies in a set of flights. The score merger should also 
be able to make accurate judgements on anomaly 
classification in cases of conflicts in output between 
individual techniques. The final output of the hybrid 
algorithm is measured against baseline techniques and 
validated using domain experts and/or available safety 
reports which in turn validate the actual significance of the 
anomalies found.  

3.2. AD-SOP Opportunity 

A Standard Operating Procedure or Checklist is a series of 
steps laid out to guide flight crew in appropriately and safely 
controlling the functioning of the aircraft.  

Boeing reports that 80% of accidents today are caused by 
human errors (Boeing, 2007). In aviation, flight crew error 
could be in the form of pilot mistakes, oversights/omissions, 
commissions and failure to adhere to Standard Operating 
Procedures (Key Dismukes, 2004). As commercial flights 
are highly standardized, aircraft operations are described 
through SOPs. Depending on the operational situation, the 
appropriate procedure is expected to be applied by the crew.  

 

However, it is found that deviations from SOP form a 
significant part of aviation accidents today involving loss of 
lives and other accident-related costs (CIAIAC, 2008). 

Possible scenarios that occur in the operation of a flight in 
relation to SOP adherence are cases where: 1) Procedures are 
followed but no accidents occur. 2) Procedures are not 
followed, and an accident occurs. 3) Procedures are followed 
but accidents still occur. 4) Procedures are not followed but 
no accident occurs. In other to proactively tackle the 
occurrence of SOP non-adherence, it is critical to focus on the 
latter scenario with a view to also detect incidents that occur 
due to SOP deviations during such flights so that mitigation 
strategies can be put in place to prevent any impending 
accidents. 

There are however, challenges in detecting SOP deviation. 
One of these is the difficult task of building a representation 
for every procedure (e.g operator, airline and/or airport 
procedures) which requires a good knowledge of the domain. 
It is also challenging to analyse and isolate the source of every 
crew anomaly algorithmically. Furthermore, a case of 
normalization of deviance where an SOP deviation error 
among the majority of the crew over a long period has become 
perceived as normal, could occur. 

The state-of-the-art outlier detection method is able to detect 
known procedure deviations but does not allow the discovery 
of emerging/unknown deviations from procedure. Some 
research (Callantine, 2001; Maille, 2013, 2015, 2017) have 

Figure 5. Hybrid AD Overview. 
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addressed this gap by introducing expert-based methods for 
modelling SOP normal behaviour and then detecting 
unknown procedure deviation anomalies that arise. However, 
an improvement on modelling SOP with more unsupervised 
learning methods is desired. 

There is, therefore, the need to explore flight data using 
Anomaly Detection framework to detect subtle underlying 
misunderstandings of the flight crew in relation to deviations 
from laid down procedures, which do not lead to accidents or 
incidents under most conditions or even hard to detect by the 
existing methods. (Jingru Yan, 2013). It is beneficial in not 
only implicitly considering the crew behaviour (in terms of a 
sequence of switches the crew may have triggered) as 
highlighted in Figure 4, but also the relation between pilot-
related parameters and existing standard operating 
procedures. A data-driven AD approach can address the 
highlighted SOP deviation detection challenges by using 
patterns within the flight data to better identify and understand 
significant crew deviations that occur during portions of 
flights, simplify the validation work of experts by giving 
scores to anomalies, give more insight into understanding 
pilot aircraft operations and highlight ways to improve aircraft 
design or procedures. 

The use of data-driven AD techniques in the detection of crew 
procedure deviations is a step in the direction of identifying 
leading indicators in safety management. This could then 
serve as advance warnings of latent problems in training, 
procedure design or understanding automation to enhance 
safety. It also complements the state-of-the-art method by 
highlighting new exceedances related to crew activity by 
moving from a “was the lift dump deployed 1s after 
touchdown?” to “how many seconds after touchdown was the 
lift dump deployed?”. 

4. CONCLUSION 

As also summarised in Figure 4, this paper presented a review 
of flight anomaly detection techniques highlighting the 
application areas where they have been useful. The paper 
provides the strengths and limitations of these techniques as 
well as an emerging challenge of detecting deviations from 
standard operating procedures. It proposes the opportunities 
of using a data-driven hybrid AD method to address the 
limitations in existing techniques and the benefits of applying 
an AD approach to tackling SOP deviation challenges. The 
hybrid AD framework combines the strengths of multiple 
flight AD techniques to detect a wider range of anomalies than 
individual methods. A general overview of this approach is 
given from data pre-processing to the identification and 
characterisation of the detected anomalies by experts.  

The primary contribution of this work is the discussion on the 
opportunities of AD approaches in improving existing 
limitations and emerging challenges for flight safety by 
carrying out a review of flight AD techniques. Specifically, it 
proposes a more robust data-driven AD method for the 
detection of a varied range of anomalies in high dimensional 
flight data by using a score merging function. The use of 

anomaly detection for aviation applications described in this 
paper provides avenues to complement existing detection 
methods and ultimately contribute to global safety 
enhancement initiatives. 
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