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ABSTRACT

Rolling element bearings are critical components in industrial
rotating machines. Faults and failures of bearings can cause
degradation of machine performance or even a catastrophe.
Bearing fault diagnosis is therefore essential and significant
to the safe and reliable operation of systems. For bearing
condition monitoring, acoustic emission (AE) signals attract
more and more attention due to its advantages on sensitivity
over the extensively used vibration signal. In bearing fault
diagnosis and prognosis, feature extraction is a critical and
tough work, which always involves complex signal process-
ing and computation. Moreover, features greatly rely on the
characteristics, operating conditions, and type of data. With
consideration of changes in operating conditions and increase
of data complexity, traditional diagnosis approaches are in-
sufficient in feature extraction and fault diagnosis. To ad-
dress this problem, this paper proposes a Deep Belief Net-
work (DBN) and Principal Component Analysis (PCA) based
fault diagnosis approach using AE signal. This proposed ap-
proach combines the advantages of deep learning and statis-
tical analysis, DBN automatically extracts features from AE
signal, PCA is applied to dimensionality reduction. Differ-
ent bearing fault modes are identified by least squares sup-
port vector machine (LS-SVM) using the extracted features.
An experimental case is conducted with a tapered roller bear-
ing to verify the proposed approach. Experimental results
demonstrate that the proposed approach has excellent feature
extraction ability and high fault classification accuracy.

Guangxing Niu et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

Rolling element bearings are key components in mechanical
systems. They are subject to various stresses, transmissions
and shocks, which may cause bearing fault, and eventually
lead to system breakdown. The degradation of bearing con-
dition will definitely affect the performance of the systems.
To prevent unexpected system failure and reduce the mainte-
nance cost, bearing fault diagnosis is desired to detect fault as
early as possible.

A rolling element bearing is composed of rolling elements, an
inner race, an outer race, and a cage. The faults can appear on
any component, and these faults can be roughly divided as lo-
cal faults and distributed faults (Zhang et al., 2008; Cerrada et
al., 2018). Local faults are defined as a single localized fault,
such as pitting, scratch, crack, hole, etc. Distributed faults
are defined as irregularities of bearing structure, such as mis-
alignment of shaft or races, eccentric races, off-size rolling
elements, roughness, etc. These faults can be caused by many
reasons, such as, overheating and load, improper installation,
imperfect manufacturing. These distributed faults will cause
excessive contact force and friction, which will finally lead to
local faults. When a bearing operates under fault conditions,
they cause certain characteristic signals in the form of sound,
vibration, energy, or acoustic emission.

With the advancement of machine condition monitoring tech-
niques, many different types of signals such as vibration,
acoustic emission, ultrasound have been used for diagno-
sis (Rai & Upadhyay, 2016; Zhang et al., 2010; Li et al.,
2018). Among these signals, acoustic emissions are the tran-
sient elastic waves, which are generated from a rapid release
of localized stress energy caused by deformation or defect
within or on the surface of a material (Al-Ghamd & Mba,
2006). Compared with most widely used vibration signals,
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AE signals have many advantages: 1) insensitive to mechani-
cal disturbances and noises caused by different operating con-
ditions; 2) sensitive to fault size, which can offer earlier fault
detection than vibration signals. These advantages make AE
signals promising in bearing fault diagnosis.

Over the past decades, a lot of efforts have been presented
for bearing fault diagnosis. These existing works are mainly
divided into signal processing based approach and learning
based approach (Cerrada et al., 2018; S. Guo, Yang, Gao,
Zhang, & Zhang, 2018). For signal processing based ap-
proaches, feature extraction is needed to extract a fault in-
dicator that is related to fault modes and fault state. Zhao
et al. (S. Zhao, Liang, Xu, Wang, & Zhang, 2013) applied
Empirical Mode Decomposition and Approximate Entropy
based approach to detect different fault modes. Khanam et al.
(Khanam, Tandon, & Dutt, 2014) employed Discrete Wavelet
Transform (DWT) to decompose signals and estimate ball
bearing faults. Hilbert transform (Bujoreanu, Monoranu, &
OLARU N, 2014), matching pursuit method (Cui, Zhang,
Zhang, Zhang, & Lee, 2016), spectral analysis and statisti-
cal analysis (Gerber, Martin, & Mailhes, 2015) and envelop
analysis (Sun, Guo, & Gao, 2015) are also very effective sig-
nal processing techniques in bearing monitoring.

In practical applications, however, fault characteristic signals
are often corrupted by noises, which makes feature extrac-
tion and fault diagnosis difficult and challenging. For differ-
ent monitoring signals and different fault modes, no generic
feature extraction method is available. As a result, feature
extraction is ad-hoc for different systems and this process
is time-consuming, requires complex signal processing tech-
niques, and needs extensive human involvement. All these
limitations severely hinder the development of applications
of signal processing based diagnosis approaches.

Learning-based approach, on the other hand, aims to learn po-
tential signal patterns that are related to different fault modes
or fault levels (Wang, Xiang, Zhong, & Zhou, 2018). More-
over, learning-based approaches, as a supervised learning
process, require data including fault samples and their labels.
The process involves feature extraction and feature classifica-
tion. Feature extraction can be conducted in the time domain,
the frequency-domain, and transform-domains, such as statis-
tical parameters, signal energy of Intrinstic Mode Functions
(IMFs) from Empirical Mode Decomposition (EMD), Dis-
creet Wavelet Transform (DWT), Hilbert-Huang transform,
etc. With feature extracted, a classifier is designed to clas-
sify features under different fault conditions for fault detec-
tion. Some widely used classifiers include neural networks,
Support Vector Machines (SVM), and Bayesian estimation,
among others.

Recently, with the successes of deep learning in image recog-
nition and speech processing, many deep learning based fault
diagnosis approaches were proposed for many applications

(Cococcioni, Lazzerini, & Volpi, 2013; Tang et al., 2018;
Chen & Li, 2017). Guo et al. proposed a continuous wavelet
transform scalogram (CWTS) and convolutional neural net-
work (CNN) based approach for rotating machinery fault di-
agnosis (S. Guo, Yang, Gao, & Zhang, 2018) . Qin et al.
presented an optimized DBN and improved logistic sigmoid
unit based fault diagnosis for planetary gearboxs of wind tur-
bines (Qin, Wang, & Zou, 2019). These applications show
that deep learning has great potentials in feature extraction
and data mining.

These reported learning based approaches, although achieved
good performance in some aspects, are insufficient in deal-
ing with bearings under complex operating conditions and
the continuously increase of volume and complexity of mon-
itoring data. As a result, diagnosis accuracy can be affected.
Another limitation of these proposed approaches is that sig-
nal transformation or feature extraction are also involved.
Thus, the strong feature extraction and learning ability of
deep learning cannot be fully exploited. Inspired by these
limitations, a deep learning and statistics based approach is
proposed in this paper. This proposed approach integrates
DBN and PCA to extract features from raw data and, there-
fore, can avoid complex signal processing and correspond-
ing feature extraction. LS-SVM is an effective pattern recog-
nition approach, which is an extension and improvement of
SVM. It has been widely used in fault diagnosis, and has
shown excellent fault identification capability. Due to this
feature, it is employed to process the extracted features for
diagnosis in this paper. Experimental result shows that it can
achieve high accuracy.

This paper is organized as follows. A brief introduction of
DBN, PCA and LS-SVM is presented in Section 2. Section 3
describes the fault diagnosis steps of the proposed approach.
Experiments are presented and results are analyzed and vi-
sualized in Section 4 to demonstrate the performance of the
proposed approach. Finally, Section 5 provides concluding
remarks and some future research directions.

2. PRINCIPLE OF RELATED APPROACHES
2.1. DBN principle

DBN can be regarded as a special neural network constructed
from multiple Restricted Boltzmann Machines (RBMs)
(G. Zhao et al., 2017). Fig. 1 shows the schematic rep-
resentation of a two hidden layer DBN. DBN has a strong
capability in capturing representative information from raw
time series data. The output of the learning information
is extracted features, which can be utilized as the input of
supervised learning algorithms in classification or regression
for fault diagnosis.

RBM is a special probabilistic model of Boltzmann machine,
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Figure 1. The structure of a 2 hidden layer DBN

which consists of a visible input vector v and a hidden vector
h, connected by weighting factors, as shown in Fig. 2.

h Hidden Layer

Visible Layer
Figure 2. Structure of Restricted Boltzmann Machine

The joint configuration (v,h) can be given by the energy
function (1).

m
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where v; and a; are the binary states and bias of the j-th
element of the visible vector, h; and b; are the binary states
and bias of the i-th element of the hidden vector, w;; is the
weight of the connection between the visible layer and the
hidden layer. The joint distribution over the visible layer and
hidden units is defined as

1
p(v,h) = Ze BN @

where Z is a partition function, which can be described as

Z =Y e BOM 3)
v,h

In DBN structure, the connections just exist between the visi-
ble layer and the hidden layer. The neurons in the same layer
are independent with each other. The conditional probabili-
ties of the hidden layer and the visible units are given as

1
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The learning process of DBN can be divided into two stages:
pre-training and fine-tuning (Hinton, Osindero, & Teh, 2006).
In the pre-training process, the RBMs are trained layer by
layer with an unsupervised manner. The forward pre-training
process can be regarded as a construction and reconstruction
process using Eq. (1). After all the RBMs in the DBN are
pre-trained, the fine-tuning step will be applied to DBN us-
ing backpropagation algorithm (G. Zhao et al., 2018). In this
fine-tuning process, the weights and biases of every layer are
adjusted continuously until the error becomes smaller than
predefined threshold. The trained DBN model is obtained af-
ter the fine-tuning step and can be used in describing the fault
dynamics.

As mentioned earlier, the training procedure includes pre-
training and fine-tuning. Pre-training stage aims to extract
features based on its learning rules automatically. In pre-
training, the stacked RBMs are trained layer by layer using
greedy learning algorithm (Hinton et al., 2006). This is an
unsupervised training process.

Given training input data and the initialization parameters, the
first hidden layer can be trained greedily by (4) and (5). This
process is a positive phase, in which the gradient of the log
probability of the given training data can be described as:

0 log p(v°
L) — )~ ) ©
The learning rule aims at maximizing the log probability of
the data, which is equal to minimizing the divergence of the
distribution defined by the model and the given training data.
Based on the Contrastive Divergence (CD) algorithm (Hinton
et al., 2006), in the training process, the parameters of DBN
can be adjusted by

wii " = wij +y((vihj)o — (vihy)k) (7
aii" = aij +y((vihj)o — (vilj)k) (8)
b = bij + y((vik)o — (vihj)i) 9)

where v €[0,1] denotes the learning rate, which can be used
to adjust the learning speed.

The fine-tuning process is conducted to optimize the pre-
trained network parameters and this supervised learning pro-
cess will further adjust the structure to improve the classifi-
cation accuracy. Conjugate gradient algorithm is applied to
fine-tune the trained parameters using the labeled data. In
this step, all parameters are updated at the same time until the
fine-tuning threshold is reached. The trained DBN model can
be got after these two steps are finished.

2.2. PCA principle

Principal component analysis is a traditional statistical analy-
sis approach which can be used to get principal components.
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This technology has been widely used in fault diagnosis for
data dimension reduction, feature extraction and fusion, visu-
alization of high-dimensionality, data regression, etc (Chang,
Wang, Liu, & Wang, 2008; T. Guo, Zhou, Zhang, Chen, &
Tai, 2019).

PCA can be assumed as a transformation that projects origi-
nal data to a new space with lower dimension (Chang et al.,
2008). Given original data vector x;(¢ = 1,..m), the covari-
ance matrix of the data vector can be calculated as:

1 & T
COU:EZ(@—M)(%—M (10)
i=1
where 11 is the mean value of the vector, = = > ;.
Assume that the origin data vector is a n dimensional data,
the eigenvalue of the covariance matrix can be described as:

(j=1,..m) (1)

where \; are the eigenvalues of the covariance matrix, which
are sorted in descending order and u; are the corresponding
eigenvectors.

Aju; = Covyy

To get the first &k eigenvectors (k < n) that corresponding to
the k largest eigenvalues, let

Uy = [u1,uz, ...ug] (12)
Ak = diag[)\l,/\g,.../\k] (13)

The principal components of the original data can be com-
puted as the orthogonal transformations of x;:

P=Uz (14)

The obtained components are named as principal compo-
nents. Dimensional reduction can be achieved by using the
first several eigenvectors of the eigenvectors. In this paper,
the distribution of the extracted features are assumed as Gaus-
sian, this work mainly uses the characteristic of dimensional
reduction of PCA.

2.3. LS-SVM principle

LS-SVM is an extension of SVM. It changes the inequality
constraints in SVM to equality constraints, which transforms
the quadratic problems in SVM into linear equations prob-
lems. Compared with traditional SVM, LS-SVM has higher
operation efficiency and solution accuracy.

Given training dataset (z;, y;) with z; being the input vector
and y; being its corresponding output label, we define y as
the corresponding feature vector that can be used to map the
input vector into a new feature space. Then a hyperplane can
be described as:

w-x(z;)+b=0 (15)

where w denotes the weight of the orientation of the hyper-
plane, b is the bias. LS-SVM based identification problem
can be regarded as the following optimization problem (Liu,
Bo, & Luo, 2015):

N
1 1
min  J(w,e) = inw + 572@? (16)
i=1

st yi=w x(z) +b+e i=1,..N (17
where J is the objective function, v is the tradeoff coefficient.
Sample z; can be projected into high-dimensional space by

nonlinear mapping x. To minimize the objective function, the
first step is to define the corresponding Lagrange function:

N
L(W,b,e,B) = J(w,e) = Y B{w"xi +b+e; —yi}

i=1

(18)

where [3; is a Lagrange multiplier. The conditions for opti-
mality are given as:

OL/ow =0
OL/0b =10
(19)
8L/aez =0
OL/0B; =0
Eliminate w and e, a linear equation can be obtained as:
0 T b 0
el i ]-l0] @
where Yy = [yiay27"'7yN]T; I = [1517"'71]T; B =

(81, B2, ., BN]T; @55 = (1) (x4), I is the unit matrix. Fi-
nally, LS-SVM classification decision-making model can be
described as:

N
§(x) =D BiK (z,2:) +b @1
1=1

where K (z,z;) = e~ (7i=2i1/7%) is the Radial Basis Func-
tion (RBF) kernel function to be used in this paper, and o is
the kernel bandwidth.

Bearing fault diagnosis is an multi-classification problem
in which the classification model is actually constructed by
combining multiple two-class SVM classifiers. In this pa-
per, one-against-one SVM is applied to identify different fault
modes.

3. DBN-PCA-LSSVM BASED BEARING DIAGNOSIS

This research presents a bearing diagnosis using AE signals.
Fig. 3 illustrates the implementation of the proposed diag-
nostic approach. The features of different fault modes are ex-
tracted by DBN from raw data automatically. PCA is then ap-
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Figure 3. DBN-PCA-LSSVM based fault diagnosis

plied for dimensionality reduction, LS-SVM based fault clas-
sification and identification are finally implemented based on
the extracted features for fault diagnosis.

The proposed approach includes offline modeling and online
testing processes. In the modeling process, acoustic emission
signals collected from bearings are pre-processed and fed into
the initialized DBN structure, through which features can be
extracted automatically layer by layer.

The detailed implementation diagnostic procedure steps are
described as follows:

Step 1: Partition the time series data into segments based on
the data sampling rate and roller bearing operation state, and
divide the data into training data and testing data.

Step 2: Define the DBN structure, and train the DBN using
the training data set. In this step, the number of hidden lay-
ers, the number of neurons in each hidden layer, the learning
rate, and the initial weights should be defined. The training
process is finished when the performance meets pre-defined
requirements or iteration number reaches the threshold.

Step 3: PCA is applied on the extracted features
([z1,x2, ..., x,]) from DBN to reduce dimensionality. Low-
dimensional training features ([21, 22, ..., Zm], m < m) can be
obtained in this step. Besides, a projection matrix, which will
be used in the testing process, is also obtained.

Step 4: Optimize LS-SVM by using training labels and the
low-dimensional features obtained in Step 3 to identify dif-
ferent bearing fault modes.

Step 5: Test the trained model with the testing data set, trained
DBN model, eigenvector of PCA, and trained LS-SVM. An-
alyze the performance on test data.

This proposed DBN-PCA-LSSVM based bearing diagnostic
approach can extract features from raw data automatically,
classify the fault mode, and estimate the fault severity. It
avoids complex signal processing and human involvement in
feature selection and extraction, which makes it more appli-
cable, and easier to be extended to other applications.

4. EXPERIMENTAL RESULTS
4.1. Acoustic emission data preparation

The bearing used for the verification of the proposed ap-
proach is a tapered roller bearing: Timken LMS501310 cup
and LM501349 cone. The structure of the rolling bearing is
described in Fig. 4 (Zhang et al., 2008) and the main geomet-
ric parameters are listed in Table 1. The data was collected
from the AE sensors with the sampling rate of 50kHz, and the
experimental test was conducted under different fault sizes
with three different rotating speeds and three different loads,
which makes nine different data sets for each fault size. The
details of the collected AE data are described in Table 2.

Figure 4. Tapered Roller Bearing Structure and Photo
(Zhang et al., 2008)

Table 1. The geometric parameters of bearing

Parameter Value Parameter Value
Pitch diameter | 5.715c¢cm | Roller diameter | 0.784cm
Roller number 19 Contact angle 13.13°

For each test, the fault size is given by depth and width mea-
sured by microns to show fault severity. To utilize the data
efficiently, the fault size is defined as the sum of width and
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Table 2. AE testing data description

Test No. Width Depth Speed(rpm) Load(psi)
Co 0 0
C1 3533 246 800 200
C2 37.67 10.56
C3 48.33 238 1200 400
C4 4933  4.88
C5 61.00 5.80 1600 600
C6 64.00 11.00
C7 131.3  1.40
D1 64 11 800 200
D2 64 11 1200 400
D3 64 11 1600 600

depth. For example, for C1 in Table 2 with fault width and
depth of 35.33 and 2.46, respectively, the fault dimension is
measured as 35.33+2.46=37.79, as shown in Table 3. Based
on this fault size definition, the fault mode is defined from F-1
(Health) to F-6 as shown in Table 3.

Table 3. Fault mode discretization

Dataset No.  Fault dimension  Fault mode
C0,G2 0 F-1(Health)
Cl 37.79 F-2
C2,C3,C4 48.23~54.21 F-3
C5 66.8 F-4
C6,D1,D2,D3 75 F-5
C7 132.7 F-6

4.2. Feature extraction and fault classification

Table 4. Training parameters

Parameter Value
Iteration of each RBM 300
Learning rate 0.1

Fine-tuning iteration 1200
Momentum 0.9

For bearing fault diagnosis, the information in one cycle of
rotation should be included in the input vector of DBN. For
this reason, consider the lowest rotating speed, the input vec-
tor size is set as 3750. The DBN structure is given as 3750-
1500-600-200. Other training parameters are given in Table
4. Each fault mode has 2250 samples in which 60% are used
for training and the remaining 40% are used for testing. To

train the DBN with a fair way, each raw data set is separated
into several segments, which are randomly selected to con-
struct the training set and testing set.

To show the feature extraction performance, principle com-
ponent analysis (PCA) is applied on the output of each layer.
Only the first three main components are visualized in the 3-
D space to make the performance of feature extraction clear.
Fig. 5 is the visualization of raw AE data while Fig. 6 is the
visualization of the extracted features by DBN.

Fig. 5 shows that the raw data of all the fault modes have
severe degrees of overlapping. In other words, it will be very
difficult to classify different fault modes and severity from
raw data. With DBN learning outputs at different layers, the
degrees of overlapping of the outputs from each DBN layer
is decreasing. At the output layer, the extracted features are
almost separated, as visualized in Fig. 6.

* Faul-1
* Fault-2
+ Fault-3
* Fault-4
Fault-5
Fault-6

Figure 5. Raw data

Figure 6. Visualization of extracted features

After the feature extraction step, features are obtained for
training classifier. The training process is shown in Fig. 7. It
is clear that the classification accuracy converges to a constant
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Figure 7. Training process

after about 500 iterations. Based on the extracted features, an
accuracy of 93.46% is achieved. This result shows that DBN
is an effective and powerful feature extraction approach for
bearing fault diagnosis.

However, the accuracy and efficiency of fault diagnosis may
get impacted due to the high dimensionality of the extracted
features. PCA is applied to the extracted features to reduce
the dimensionality of the feature vectors before performing
fault identification. PCA can also cluster the main character-
istics of different fault modes and increase the spatial distance
among them. LS-SVM training process is implemented on
the features after dimension reduction to obtain the optimal
classification model. The dimension size for PCA is an im-
portant parameter that affects diagnosis results. Fig. 8 shows
the diagnosis results obtained by the proposed DBN-PCA-
LSSVM approach with dimension sizes of PCA changes from
10 to 200 with an increase step of 10. It is clear that the high-
est accuracy of 95.48% is achieved when the PCA dimension
size is 50.

100 r L
99| / —*— Training Accuracy| |
—*— Testing Accuracy

98

97

96

Accuracy(%)

95

94t

931

92

0 50 100 150 200
Reduced Dimension

Figure 8. Diagnosis results obtained by DBN-PCA-LSSVM
with different dimension sizes for PCA

Table 5 analyzed the misclassification results of each fault
mode. The misclassification samples mainly appear on F-4
and F-6, 104 samples from F-4 are misclassified as F-6, and
75 samples from F-6 are misclassified as F-4. These results
are also consistent with the results in Fig. 6, in which the
degrees of overlapping of F-6 (cyan samples) and F-4 (black
samples) are larger than others. Here is an example: One
sample of F-6 is incorrectly classfied as F-4. Based on the
outputs of DBN, the probabilities of this sample belongs to
F-4 and F-6 are 0.5909 and 0.4087, respectively. Both of the
probabilities are not large enough for the classifier to make
a strong decision. In this case, misclassification occurs. The
potential causes and advanced approach to make correct clas-
sification will be further investigated in the future work.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a DBN-PCA-LSSVM based rolling ele-
ment bearing fault diagnosis approach. In the proposed ap-
proach, DBN is developed to extract feature automatically
from raw sensor data, PCA is applied to reduce the dimen-
sionality of the extracted features, and LS-SVM is performed
to identify different fault modes. The rolling bearing fault di-
agnosis experiment is presented to validate the proposed ap-
proach.

The contributions of this paper are as follows: 1) By combin-
ing PCA with DBN, an integrated, accurate and intelligent
fault diagnosis is proposed, in which DBN and PCA are used
for bearing feature extraction, and LS-SVM is used for fault
diagnosis. This integration takes full advantages of strong
feature learning ability of DBN and statistic analysis of PCA.
2) Features with different dimension sizes are analyzed to find
the optimal feature size for LS-SVM, which can achieve the
highest classification accuracy.

With a DBN structure designed, the raw AE data are fed into
the DBN and features are extracted automatically for fault
diagnosis. PCA is applied to reduce the dimension of the ex-
tracted, then improve the accuracy and efficiency of fault clas-
sification. The experimental results show that this approach
can achieve high diagnostic accuracy. From this perspective,
the proposed DBN-PCA-LSSVM based approach provides a
generic solution that can be applied to a variety of systems.
Compared with the traditional signal processing and machine
learning based approaches, the proposed method does not re-
quire complex signal processing techniques and human in-
volvement.

The future research work will mainly focus on optimizing
the structure and analyzing the misclassification causes of the
proposed approach to enhance fault diagnosis accuracy and
efficiency.



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Table 5. Fault diagnosis results

Diagnosisresult | £\ £5 RE3 F4 E5 F6 | Accuracy(%)
Actual fault mode
F-1 894 0 0 0 6 0 99.3
F-2 0 900 0 0 0 100.0
F-3 0 0 81 0 0 9 99.0
F-4 0 0 0 79 0 104 88.4
F-5 25 0 0 0 875 0 97.2
F-6 0 0 25 75 0 800 88.9
Overall N N 95.5
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