
Multivariate Bernoulli Logit-Normal Model for Failure Prediction
Huijuan Shao1, Xinwei Deng2, Chi Zhang3, Shuai Zheng4, Hamed Khorasgani5, Ahmed Farahat6, and Chetan Gupta7

1,3,4,5,6,7 Industrial AI Lab, Hitachi America, Ltd. R&D, Santa Clara, CA, 95054, U.S.A.
huijuan.shao@hal.hitachi.com, chi.zhang@hal.hitachi.com, shuai.zheng@hal.hitachi.com,

hamed.khorasgani@hal.hitachi.com, ahmed.farahat@hal.hitachi.com, chetan.gupta@hal.hitachi.com

2 Department of Statistics, Virginia Tech, Blacksburg, VA, 24060, U.S.A.
xdeng@vt.edu

ABSTRACT

The failures among connected devices that are geographically
close may have correlations and even propagate from one to
another. However, there is little research to model this prob-
lem due to the lacking of insights of the correlations in such
devices. Most existing methods build one model for one de-
vice independently so that they are not capable of captur-
ing the underlying correlations, which can be important in-
formation to leverage for failure prediction. To address this
problem, we propose a multivariate Bernoulli Logit-Normal
model (MBLN) to explicitly model the correlations of devices
and predict failure probabilities of multiple devices simulta-
neously. The proposed method is applied to a water tank data
set where tanks are connected in a local area. The results
indicate that our proposed method outperforms baseline ap-
proaches in terms of the prediction performance such as re-
ceiver operating characteristic curve.

1. INTRODUCTION

Failure prediction is an important problem in industry and has
been studied over decades in various areas. Generally, ma-
jority of equipments, and industrial components deteriorate
after running for a period of time. The failures among mul-
tiple devices, which are physically connected to each other,
may propagate. When a component of a system fails, other
relevant components may break down too. For example in a
mill plant, when a motor fails, the bearings, which are phys-
ically connected to it, may fail as well. Although the prop-
erties of these multiple devices are different, they may have
correlations to each other. However, there is little research to
provide approaches to solve this critical issue. In this work,
we intend to study this problem by modeling the relationship
between devices or components.
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In practice, multiple devices installed in the same location
may have failures at the same time. In many cases, the re-
lationship between the devices’ measurements may have big
impact in predicting their failures. To capture these relation-
ships, model-based techniques use system equations to ex-
tract analytical redundancies between devices’ measurements
(Ragot & Maquin, 2006),(Ferrari, Parisini, & Polycarpou,
2011). Unfortunately, for complex systems, the system mod-
els are not easy to develop. Moreover, the environment keeps
on changing during the system life-cycle. Therefore, reliable
models are not always available (Khorasgani, 2017). An al-
ternative approach is to apply a data-driven solution that uses
information from similar devices for failure prediction. Data-
driven methods use system’s measurements as the features for
failure prediction (Khorasgani, Farahat, Ristovski, Gupta, &
Biswas, 2018), (Zheng, Ristovski, Farahat, & Gupta, 2017),
(Q. Wang, Zheng, Farahat, Serita, & Gupta, 2019). In order to
predict multivariate responses from multiple devices simulta-
neously with higher accuracy, we use the correlated features
from these devices. The common features are either explicitly
or implicitly hidden in the data, which is captured by sensors
or monitored events. Compared to only utilizing the data of
each device or component, the combined information from
multiple devices or components can borrow strength from
each other.

How to use such common features is a challenge. To the
best of our knowledge, there is a lack of adequate methods
to leverage correlation for model building. The majority of
research builds an individual model for each type of devices
and predicts the failure for each device separately. A com-
mon research direction is multi-task learning (Gong, Ye, &
Zhang, 2012a), (Gong, Ye, & Zhang, 2012b), (Gong, Zhou,
Fan, & Ye, 2014), (Jalali, Sanghavi, Ruan, & Ravikumar,
2010). These methods build a model for each type of devices
or components then aggregate these models and extract simi-
larity among models. Another research direction is to utilize
regularization to estimate the p×q regression coefficients and
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obtain the correlation among predictors (Liu, Wang, & Zhao,
2014) , (Lozano, Jiang, & Deng, 2013), (Rothman, Levina,
& Zhu, 2010), (W. Wang, Liang, & Xing, 2013). But the
responses in all these papers are continuous multivariate vari-
ables rather than multivariate binary variables, which are not
applicable to failure prediction. Other researchers employ
existing network structure of physical models (Khorasgani,
Farahat, Hasanzade, & Gupta, 2019) as one of the inputs for
failure prediction. However, in reality we may not be able to
obtain the graph structure inside a system or among devices.

In this paper, we introduce multi-Bernoulli distribution with
logit transformation to learn the correlation between the pre-
dictors and multivariate responses. We handle the depen-
dency of multivariate response through the analysis between
one device and another device. Therefore, we build a single
model for multiple devices at once rather than creating mul-
tiple models. The advantages of our model over other mod-
els are listed as below. First, it can capture the correlation
among different physical devices by computing a coefficient
matrix and an inverse covariance matrix. The learned corre-
lation can help to interpret the underlying correlation among
multiple devices, even with significantly different physical
properties. Thus, it may help us have more insight into the
domain knowledge. Second, our method generates a unified
model rather than a combination of multiple models. This
makes model development process much simpler. Having a
single model for several devices, can simplify model man-
agement task and reduce cloud computing costs during the
application. Moreover, our unified model can be applied to
multiple types of devices.

This paper is organized as follows: Section 2 briefly describes
the multivariate Poisson log-normal model (MVPLN), on
which this model is proposed. In Section 3, we formulate
the concurrent multiple devices failure prediction problem as
a multivariate Bernoulli logit-normal model. Section 4 fo-
cuses on estimating the parameters of this model using the
Monte Carlo expectation maximization algorithm. In Section
5, we apply this MBLN model to a water tank dataset gener-
ated by a simulator. Section 6 discusses the pros and cons of
this approach, and proposes future work.

2. BACKGROUND

There are a few approaches which can capture the correlation
of devices with different features. A comparable approach
is MVPLN (Wu, Deng, & Ramakrishnan, 2018). MVPLN
model was proposed to solve the prediction problem where
both predictors and responses are count data. In order to link
the input variables {x1, . . . , xp} to the output discrete vari-
ables {y1, . . . , yq}, it builds a linear regression model and in-
troduces a latent variable to reflect this relationship. Since the
responses are count data, the MVPLN model assumes that
the responses conform to multivariate Poisson distribution.

The objective function of MVPLN is a sum of expected joint
likelihood function and l1 penalties on two model parame-
ters. To reach the optimal value of the objective function,
it utilizes a Monte Carlo expectation maximization (EM) al-
gorithm (Moon, 1996) to estimate the model parameters. In
the E-step, an expected log-likelihood function is formulated
by Monte Carlo techniques. In the M-step, the optimization
problem is not convex. Thus, it uses an iterative and alterna-
tive approach by fixing a model parameter and solving an-
other one. In each iteration, a model parameter is solved
by Lasso (Tibshirani, 1996) and another one is tackled by
Graph Lasso (Friedman, Hastie, & Tibshirani, 2008). This
research is motivated by multiple devices’ failure prediction,
where the responses are multivariate binary variables. We as-
sume the responses conform to certain distribution multivari-
ate Bernoulli distribution as multivariate Poisson distribution
in MVPLN model. Different from the log link function in
MVPLN, we use the logit function as link function instead in
order to predict binary variables.

This MBLN model overcomes two drawbacks: over-
dispersion and zero-inflation. For over-dispersion, the re-
sponses in that paper spread over the whole integer space.
With Poisson distribution to simulate the response, the vari-
ance would be very large. However, Poisson distribution only
has one free parameter. Researchers cannot adjust the vari-
ance independent of the mean, i.e. Poisson distribution over-
dispersion problem. In the MVPLN model, zero-inflation
appears in the sampling step of the Metropolis-hasting algo-
rithm, during which a lot of negative values are sampled but
discarded. MBLN avoids the zero-inflation problem because
of two reasons. (1) The response of this model falls between
0 and 1. The variance of the response is small. (2) This
model samples from the multivariate-normal distribution
directly rather than using the metropolis-hasting algorithm,
which eliminates the need to discard useless samples.

3. PROBLEM DEFINITION AND FORMULATION

The follow notations are used in this paper. Lower case let-
ters, such as x and y denote scalers, whereas bold lower case
letters such as x and y represent vectors. The jth component
of the vector x is shown as a lower case letter with subscript
xj . Bold calligraphic upper case letters X and Y denote ran-
dom column vectors. Bold norm upper case letters X and
Y stand for the matrices. The (j, k) entry of matrix Y is
expressed as yj,k.

Multivariate Bernoulli Logit-Normal Model
The input are features from multiple devices. These fea-
tures can be discrete or continuous variables. The output
are multivariate binary response for different devices. This
output can be represented as a multivariate random variable
Y = [Y1,Y2, ...,Yq]T ∈ Z+q , where the superscript T de-
notes the transpose, and Z+ denotes the set of binary integer
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variables. We assume that the binary response Y follows the
multivariate Bernoulli distribution. Each dimension of Y , i.e.
Yk, follows the univariate Bernoulli distribution with param-
eter θk. Thus, any dimension Yk is conditionally independent
of other dimensions given θk.

Yk ∼ Bern(θk) = (θk)yk(1− θk)1−yk .

θk ∈ (0, 1),∀k = 1, 2, ..., q
(1)

Given the predictor vector x = {x1, x2, ..., xp}T ∈ Rp, we
use a regression model to connect the relationship between Y
and x as Equation 2.

γ =



log θ1
1−θ1
...

log θk
1−θk
...

log
θq

1−θq


= BTx+ ε, ε ∼ N(0,Σ),

whereB is a p×q coefficient matrix, and Σ denotes a q×q co-
variance matrix which represents the covariance structure of
variable θ. With the conditionally independence assumption,
the probability mass function for the multivariate Bernoulli
random variable y is

p(Y = y|θ) =

q∏
k=1

p(Yk = yk|θk) =

q∏
k=1

(θk)yk(1−θk)1−yk .

(2)
Here θ = [θ1, θ2, ..., θq]

T given x. γ = log θ
1−θ follows the

multivariate Gaussian distribution N(BTx,Σ) with density
function

p(γ|x) =
1

(2π)q/2|Σ|1/2
exp(−1

2
(γ−BTx)TΣ−1(γ−BTx)).

(3)
Therefore, we derive the density function of θ|x as Equa-
tion 4.

p(θ|x) = pγ(log(
θ

1− θ
)|x)|diag(

1

θk(1− θk)
)|

=
exp(− 1

2 (log θ
1−θ −B

Tx)TΣ−1(log θ
1−θ −B

Tx))

(2π)q/2|Σ|1/2
∏q
k=1 θk(1− θk)

.

(4)

With n number of the predictors X = [x1,x2, ...,xn]T

and responses Y = [y1,y2, ...,yn]T , the log-likelihood of
the multivariate Bernoulli logit-normal model is computed as
Equation 5.

L(B,Σ) =

n∑
j=1

log p(Y = yj |xj), (5)

where,

p(Y = y|x) =

∫
θ

p(Y = y|θ)p(θ|x)dθ. (6)

Here, p(Y = y|θ) and p(θ|x) follow the multivariate
Bernoulli distribution and multivariate logit-normal distribu-
tion. In order to derive the coefficient matrix B and the
inverse covariance matrix Σ−1, we introduce l1 to penalize
these two model parameters. Therefore the loss function be-
comes as Equation 7.

Lp(B,Σ) = −L(B,Σ) + λ1||B||1 + λ2||Σ−1||1, (7)

where ‖ · ‖1 denote the l1 matrix norm, which is defined as
‖B‖1 = Σj,k|bj,k|, and λ1 > 0, λ2 > 0 are two tuning
parameters.

4. MONTE CARLO EM ALGORITHM FOR PA-
RAMETER ESTIMATION

The paper (Wu et al., 2018) uses a Monte Carlo expectation
maximization (MCEM) algorithm to estimate the model pa-
rameters B and Σ. This MBLN model utilizes a similar
MCEM algorithm to approximate a numerical solution for
the same two model parameters. Also, we adopt the same
criteria EBIC to select the turning parameters λ1, λ2. In the
E-step, MBLN uses the logit function as link function rather
than log function in that paper. Therefore, the formulation
and derivation are different when deriving the log-likelihood
function.

4.1. Monte Carlo (MC) E-step

In the iteration t + 1 of the MC E-step, in order to
obtain the conditional probability distribution of θj =
[θj1, ..., θjk, ..., θjq]

T , we use a m × q matrix Θj =

[θ
(1)
j , ...,θ

(τ)
j , ...,θ

(m)
j ]T from p(θj |Y = yj ,xj ;B

(t),Σ(t))
to estimate the expected log-likelihood function.

Q̃(B,Σ|B(t),Σ(t)) =

n∑
j=1

1

m

m∑
τ=1

[log p(Y = yj ,θ
(τ)
j |xj ;

B(t),Σ(t))]. (8)

where, m is the maximal sampling size of θj . Here in
this model, we sample γj from multivariate-normal distribu-
tion as Equation 2 rather than sampling θj from p(θj |Y =
yj ,xj ;B

(t),Σ(t)). Then we use θj = 1
1+e−γj

to compute
θj . By combining Equation 2 and 4, we obtain the joint dis-
tribution of (Y = yj ,θ

(τ)
j ) given xj ,B(t),Σ(t) as the fol-
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lowing equation.

p(Y = yj ,θ
(τ)
j |xj ;B

(t),Σ(t))

= p(Y = yj |θj ,xj ;B(t),Σ(t))p(θj |xj ;B(t),Σ(t))

=

q∏
k=1

(θjk)yjk−1(1− θjk)−yjk

exp(− 1
2 (log

θj
1−θj −B

(t)Txj)
TΣ−1(log

θj
1−θj −B

(t)Txj))

(2π)q/2|Σ(t)|1/2
.

(9)

4.2. M-step: Maximize Approximate Penalized Expected
Log-likelihood

The M-step in this MBLN model is different from the pa-
per (Wu et al., 2018) in three aspects. First, the derivation
is different because we use logit as link function. Second,
this model uses a simpler technique for implementation. We
sample γ from a multivariate Gaussian distribution instead
of employing Metropolis-hasting algorithm. This reduces the
computational cost. Third, the input to estimate B and Σ is
different. It is caused by the derivation of distinct link func-
tion. Next, we will explain these differences.

In the iteration t+ 1 of the MC M-step, we aim to maximize
the joint probability of Equation 9. It is equivalent to mini-
mize the average negative log-likelihood Q̃′ in Equation 10.

Q̃′(B,Σ|B(t),Σ(t)) = − 1

mn

n∑
j=1

m∑
τ=1

[(log
θ
(τ)
j

1− θ(τ)j

−BTxj)
TΣ−1(log

θ
(τ)
j

1− θ(τ)j

−BTxj)− log|Σ−1|].

(10)

By adding l1 penalties into the two model parameters, the
overall objective function in M-step becomes as Equation 11.

min
B,Σ−1

Q̃′ + λ1‖B‖1 + λ2‖Σ−1‖1 (11)

Let aj = log
θj

1−θj − BTxj . Since aTj Σ−1aj =

tr(Σ−1aja
T
j ) and a(τ)

j = log
θ
(τ)
j

1−θ(τ)
j

−BTxj ,

m∑
τ=1

a
(τ)
j

T
Σ−1a

(τ)
j = tr(Σ−1(

m∑
τ=1

a
(τ)
j

T
a
(τ)
j )). (12)

The two model parameters in Equation 11 can be solved by

searching a minimal objective value in Equation 13.

B(t+1),Σ(t+1) = arg min
B,Σ−1

{tr(Σ−1(
1

mn

n∑
j=1

m∑
τ=1

a
(τ)
j

T
a
(τ)
j ))

− log |Σ−1|+ λ1‖B‖1 + λ2‖Σ−1‖1}. (13)

This optimization problem in Equation 13 is not a convex
problem but has been solved by an iterative algorithm in the
paper (Wu et al., 2018). It fixes either B(t) or Σ−1 in each
iteration, then solves another parameter alternatively. We
adopt a similar algorithm by supplying different input.

With B fixed at B(t), the optimization problem in Equa-
tion 13 turns into a convex optimization problem as shown
in Equation 14. We can solve Σ(t+1)−1 by Graphical
Lasso (Friedman et al., 2008).

Σ−1(B(t)) = arg min
Σ−1

{tr(Σ−1(
1

mn

n∑
j=1

m∑
τ=1

a
(τ)
j

T
a
(τ)
j ))

− log |Σ−1|+ λ2‖Σ−1‖1}. (14)

The input of Graphical Lasso is an empirical covariance ma-
trixD.

D =
1

nm

n∑
j=1

m∑
τ=1

a
(τ)
j a

(τ)
j

T

=
1

nm

n∑
j=1

m∑
τ=1

[log
θ
(τ)
j

1− θ(τ)j

−BTxj ]
T [log

θ
(τ)
j

1− θ(τ)j

−BTxj ].

When Σ−1 is fixed at Σ(t)−1, we can estimate B(t+1) from
the convex optimization problem presented in Equation 15 by
Lasso.

B(Σ(t)) = arg min
B
{ 1

mn

n∑
j=1

m∑
τ=1

(a
(τ)
j

T
Σ(t)−1a

(τ)
j )

+ λ1‖B‖1}.
(15)

If we writeA into the following block matrix.

A =


log Θ1 − log(1−Θ1)−X1B
log Θ2 − log(1−Θ2)−X2B

...
log Θn − log(1−Θn)−XnB

 .
where Xj is a m × p matrix with each row being xj for all
j = 1, 2, ..., n. After a series of transformations as shown
in Appendix, the objective function in Equation 15 becomes
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η(B) in Equation 16.

η(B) = λ1tr(B
′T
B
′
)+

1

mn

n∑
j=1

tr((log Θj−log(1−Θj)

−XjB)T (log Θj − log(1−Θj)−XjB)Σ(t+1)−1).
(16)

where B̂ is an estimated coefficient matrix in iteration t,
B
′

= B ◦ 1√
|B̂|

, and Σ(t+1)−1 is the latest computed

value in the t + 1 iteration. Taking the first order deriva-
tive of η(B) w.r.t. B and setting it to zero, and let
(
∑n
j=1X

T
j (log

θj
1−θj ))Σ(t+1)−1 = H and

∑n
j=1X

T
j Xj =

S, we can solveB.

vec(B) = [Σ(t+1)−1 ⊗ S + diag(vec(
λ1mn

|B̂|
))]−1vec(H).

(17)
All the detailed derivations are described in the Appendix.
Algorithm 1 summarizes this MCEM algorithm. In the E-

Algorithm 1 MCEM algorithm

Input: X , Y ,Σ(0)−1,B(0), λ1 and λ2
Output: MLE ofB and Σ
t = −1
repeat

t = t+ 1;
γj ∼ N (B(t)TXj , Σ(t)2) ;
aj = γj −B(t)Txj ;
Q̂′ = − 1

mn

∑n
j=1

∑m
τ=1[aTj Σ(t)−1aj−log |Σ(t)−1|];

obj = Q̂′ + λ1|B(t)|+ λ2|Σ(t)−1|;
A = [a

(1)
1 , · · · ,a(τ)

1 , · · · ,a(m)
1 , · · · ,a(1)

n , · · · ,a(m)
n ]T ;

Σ(t+1)−1 = GraphicalLasso(A, λ2) ;
S =

∑n
j=1X

T
j Xj ;

H =
∑n
j=1X

T
j γjΣ

(t+1)−1 ;

B(t+1) = [Σ(t+1)−1 ⊗ S +
diag(vec(λ1mn

|B̂| ))]−1vec(H);

Σ(t) = Σ(t+1);
B(t) = B(t+1);

until converge
return {B(t+1), Σ(t+1)−1};

step, it computes the sum of the log likelihood of the joint
probability and penalty on two parameters. In the M-step, It
alternatively solves B and Σ−1 with the other fixed at the
value of the latest iteration. When the value in the objective
function converges, we get the coefficient matrix B and in-
verse covariance matrix Σ−1 in the last iteration.

5. WATER TANK DATA STUDY

We use the simulated water tank system dataset (Khorasgani
et al., 2019) to demonstrate and validate the performance of
our method. This dataset includes a network of water tanks.
Each tank can be connected to several tanks in the system.
The measurements for each tank includes 1) tank’s pressure,
which represents the level of water in the tank, 2) tank refill
mode, which is equal to 1 when an outside source is filling
up the tank, and is 0 otherwise. A tank may start to leak at
any point. When the operators fix a leakage, the tank returns
to normal operation. The goal is to detect tank’s leakages.
A leakage in any tank can affect pressure in the tank. How-
ever, the leakage is not the only parameter that affects the
tank’s pressure. The flow-rate between the connected tanks,
and the refill flow from an outside source can also affect the
pressure. This makes the leak detection problem very chal-
lenging. There are totally 100,000 consecutive data points.
Each tank has two distinct features Tank Pressure and Tank
Refill.

We run this MBLN model on a subset of five connected tanks
as shown in Figure 1. The physical structure of these five
tanks is an indirected graph. T22 connects to T30 within a
distance of 7.10 and T30 bridges with T36, T66, T86 with
different distances of 5.25, 10.77 and 5.23. The smaller this
distance is, the higher influence of this tank in its neighbor.
We aim to predict whether there are leaks for two tanks T20
and T30. Figure 2 describes the data organization for this
MBLN model on this water tank data. Instead of only con-
sidering the features of itself, MBLN model incorporates the
features from each tank’s one-hop neighbor tanks. For in-
stance regarding tank T30, we add the features of T22, T36,
T66, and T86 besides the features of itself T30. To predict
the leak status of two tanks, this model uses all the features
from 5 tanks, i.e. 10 features in total. The responses are bi-
nary variables for T22 and T30 in parallel. We filter each data
point by time. There are four combinations of leak and non-
leak for T22 and T30. For example, the first data point has
10 features from T22, T30, T36, T66 and T66. The responses
are leaking for both T22 and T30.

T22T30

T36

T66

T86

10.01
5.32

5.25

5.67 5.23

7.1010.77

Figure 1. Graph Structure of Water Tank Data.

0The dataset is available at https://github.com/IndustrialNetwork/GraphDataset
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T22 1

T22 0

T30 0

Y

T30 1

filter 
by 

same 
time

T22 T30 1 1
X Y

T22 T30

T22 T30

T22 T30

1 0

0 1

0 0

T36,T66,T86

T36,T66,T86

T36,T66,T86

T36,T66,T86

X

T22 Tank 22 leak 

T22 Tank 22 non-leak 

T30 Tank 30 leak

T30 Tank 30 non-leak 

T36,66,86

One-hop neighbor tanks
of T30

Figure 2. Data Organization on Water Tank Data for MBLN.

We split the dataset into two categories. The first 90% dataset
is for training and the left 10% for test. When either T22 or
T30 leaks at the same time, this data point is set as leak data.
All leak data points from both T22 and T30 are selected in
both training and test dataset. In order to balance data for
models, we downsample the non-leak data as the same size
of leak data. Therefore, there are 37, 499 leak data and equal
amount of non-leak data in the training dataset, and 3,830
leak and non-leak data in the test dataset. MBLN model is
then applied to predict the leak information of T22 and T30
simultaneously. Other models, such as gradient boost de-
scent, random forest, logistic regression, glmnet and kNN,
are used to predict the leak information of T22 and T30 as
baselines.

We compare the receiver operating characteristic (ROC)
curve of these six models and illustrate them in the Figure 3.
It shows that the area under the ROC curve of MBLN model is
the largest 0.82. Other approaches, k-nearest neighbor, logis-
tic regression, glmnet, random forest, gradient boost descent
have an area of 0.64, 0.70, 0.70, 0.72, 0.79. MBLN performs
the best from the view of ROC curve because its estimated
parameters B̂ and Σ̂ reflect the correlation of 5 tanks and
contribute to the tank leak prediction of two tanks T22 and
T30.

6. CONCLUSION

This paper proposes a multivariate Bernoulli logit-normal
model for failure prediction for multiple devices. The in-
sight is that, for devices that are connected and geographi-
cally close, there are correlations in the monitoring data col-
lected from these devices. And these correlations can be used
to predict failures. We conducted an experiment on a wa-
ter tank dataset. The prediction results show that this MBLN
model is superior than traditional approaches that model each
device independently. This MBLN approach for failure pre-
diction has several advantages. First, it can model and predict
the failures of multiple devices in a single model so that it
predicts failure probabilities for all devices simultaneously.
Third, it can deal with both count data and sensor data, or
mixed data, as the input of MBLN is normalized before build-
ing the model. Last, it can learn the correlation of features

Figure 3. ROC Curve Comparison of Six Models.

from different devices, which can be used by domain experts
to learn insights and better understand the behavior of de-
vices.

The scope of this work consists of two main points. One is
that MBLN is more effective in handling at least two devices.
If only predicting with one device, MBLN becomes similar to
glmnet. The other is that the input data from multiple devices
should have some correlation. If there’s little correlation of
input data, the advantages of parametersB and Σ can not be
embodied.

In future work, we will explore and extend this work to failure
predictions for multiple types of devices (i.e., devices with
significantly different physical model). Additionally, the pro-
posed MBLN model assumes that the input data are linearly
correlated to each other. In the future work, non-linear corre-
lation will be studied.
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APPENDIX

M-step

When B is fixed at B(t), we solve Σ−1 by Graphical Lasso.
In order to obtain the covariance matrixD in M-step, we cre-
ate a virtual vectorXXj to restoreD.

XXj = [a
(1)
j , · · · ,a(τ)

j , · · · ,a(m)
j ]T . (18)

The input matrix XX is an mn × q matrix , which can be
represented as Equation 19.

XX = [a
(1)
1 , · · · ,a(τ)

1 , · · · ,a(m)
1 , · · · ,a(1)

j , · · · ,

a
(τ)
j , · · · ,a(m)

j , · · · ,a(1)
n , · · · ,a(τ)

n , · · · ,a(m)
n ]T . (19)

When Σ−1 is fixed at Σ(t)−1, we solve B(t+1) in Equa-
tion 15 by Lasso.

Suppose B̂ is the estimated value of B at iteration t and

1/
√
|B̂| denotes the matrix where each item is the inverse

of the square root of the absolute value of the corresponding
entry in B̂. Then, the l1 matrix norm penalty in Equation 14
can be approximated as Equation 20.

λ1‖B‖1 ≈ λ1tr(B
′T
B
′
). (20)

where B
′

= B ◦ 1√
|B̂|

. Here, ◦ represents the Hadamard

(element-wise) product.

The objective function is as Equation 16. Now we try to ob-
tain the derivation of the first term of Equation 16.

∂B
′T
B
′

∂B
= (

1√
|B̂|

)T ·(B◦ 1√
|B̂|

)+(B◦ 1√
|B̂|

)T · 1√
|B̂|

.

According to the trace rule operations tr(AT ) = tr(A) and
tr(AB) = tr(BA), we can derive that

tr(
∂B

′T
B
′

∂B
) = 2B ◦ 1

|B̂|
. (21)

Furthermore, let Ω(t+1) = Σ(t+1)−1, the derivation of the
second term of Equation 16 is as follows.

∂[(log
θj

1−θj −XjB)T (log
θj

(1−θj) −XjB)Ω(t+1)]

∂B

= −Xj
T log

θj
(1− θj)

Ω(t+1) +XT
j XjBΩ(t+1)

− (log
θj

1− θj
)TXjΩ

(t+1) +BTXT
j XjΩ

(t+1). (22)

Since tr(XT
j XjB) = tr(BTXT

j Xj) and tr(Xj
T log

θj
(1−θj) ) =

tr((log
θj

1−θj )TXj), we have the derivation of objective func-
tion as shown in Equation 23.
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∂η(B)

∂B
= 2λ1(B ◦ 1

|B̂|
) + 2

1

mn

n∑
j=1

[XT
j XjBΩ(t+1)

−XT
j log

θj
1− θj

Ω(t+1)]. (23)

Taking the first order derivative of η(B) w.r.t. B and setting
it to zero, we have Equation 24.

(

n∑
j=1

XT
j Xj)BΩ(t+1)+B◦λ1mn

|B̂|
=

n∑
j=1

(XT
j (log

θj
1− θj

))Ω(t+1).

(24)
If we let (

∑n
j=1X

T
j (log

θj
1−θj ))Ω(t+1) = H and

∑n
j=1X

T
j Xj = S, and apply the matrix vectorization

operator vec(·) to both sides of Equation 24, we have

(Ω(t+1)T ⊗ S)vec(B) + vec(
λ1mn

|B̂|
) ◦ vec(B) = vec(H).

(25)
Here ⊗ represents the Kronecker product. By pulling out
vec(B) to the left side of the equation, we have Equation 26.

vec(B) = [Ω(t+1) ⊗ S + diag(vec(
λ1mn

|B̂|
))]−1vec(H).

(26)
The estimated coefficient matrix B can be attained via re-
shaping vec(B).
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