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ABSTRACT 

A real-time monitoring framework is developed to detect 

operational anomalies in aircraft engine performance. A 

historical flight dataset recorded from commercial aircraft is 

utilized to perform the proposed method. Sampling frequency 

synchronization and denoise are performed on the flight 

dataset using signal processing techniques. A robust 

detection algorithm using the deep neural network is 

developed to capture flight performance anomalies that show 

significant off-nominal behavior in engine related and flight 

dynamic features. The accuracy and efficiency of the 

proposed monitoring method are validated through a 

demonstration of anomaly detection in the aircraft engine 

system associated with dynamic flight behavior. 

1. INTRODUCTION 

Flight passenger demand is expected by International Air 

Transport Association (IATA) to double by 2035, which may 

increase aviation safety issue due to the increase in air traffic 

density. Current air infrastructure heavily depends on human-

dominated systems such as manual inspection, manual 

controller, and communications between airlines, which 

motivates the significant need for automated health 

management of the National Airspace System (NAS) to 

ensure aviation safety (IATA, 2018). However, the 

development of the monitoring framework is challenging 

since operational anomalies may occur in various degree of 

severity at various location (Kobayashi & Simon, 2003). 

Furthermore, the complexity in aircraft structure and various 

operating condition make the analysis of current flight 

condition difficult. To mitigate these issues, many 

methodologies have been developed for monitoring aircraft 

status and identifying anomalies. A model-based method has 

been widely utilized for anomaly detection, which requires 

an explicit mathematical model to characterize aircraft 

system response using system identification (de Loza, 

Cieslak, Henry, Dávila, & Zolghadri, 2015; Hajiyev & Soken, 

2013; Kobayashi & Simon, 2003; Wang & Lum, 2007). An 

observer-based fault detection and isolation (FDI) technique 

is developed to capture actuator faults in the F-16 aircraft 

using the adaptive unknown input observers (Wang & Lum, 

2007). Kobayashi and Simon (2003) propose a bank of 

Kalman filters for aircraft engine FDI, which detects faults in 

sensors and actuators based on health parameter estimation 

and fault factor. However, modeling of the whole aircraft 

system is excessively limited without exhaustive a-priori 

knowledge of each included subsystem in aircraft (Yoon & 

MacGregor, 2000). Furthermore, these models are strictly 

system dependent and cannot be applicable out of the specific 

application that they are designed for (Hou & Wang, 2013). 

Instead, the data-driven method utilizes historical 

information to model system behavior without exhaustive 

knowledge of physics-based modeling and provide detection 

capabilities (Qin, 2012). However, a vital issue in the data-

driven method is the associated computational expense in 

training process, mainly due to the high dimensionality of 

training data. To mitigate this issue, the information fusion 

and feature extraction techniques have been developed such 
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as principal component analysis (PCA), support vector 

machine (SVM), and neural networks (NN) (Fujimaki, Yairi, 

& Machida, 2005; Jung, Berges, Garrett Jr, & Poczos, 2015; 

Kromanis & Kripakaran, 2013; Lee, Li, Rai, & 

Chattopadhyay, 2019; Mounce, Mounce, & Boxall, 2011; 

Tayarani-Bathaie, Vanini, & Khorasani, 2014; Vanini, 

Khorasani, & Meskin, 2014). Fujimaki et al. (2005) proposed 

the monitoring framework using kernel principal component 

analysis (KPCA) to monitor engine performance of 

spacecraft by analyzing deviations of eigenvectors in feature 

space. Kromanis and Kripakaran (2013) utilized the support 

vector regression (SVR) model with moving fast Fourier 

transform (MFFT) to investigate the behavior of large 

structures under abnormal scenarios. Tayarani-Bathaie et al. 

(2014) proposed multiple dynamic neural networks (DNN) 

for aircraft turbine FDI by embedding memory term to 

enhance estimation accuracy in a nonlinear aircraft system, 

where classical NN structures cannot represent system 

behavior due to complexity in the aircraft structure. The 

developed framework was performed on engine performance 

data from the numerical model and showed detection 

capability with a coupled response under a fault situation. 

Furthermore, outlier detection algorithms are also utilized for 

anomaly detection, which identifies anomalies in flight 

performance as outliers (Das, Matthews, Srivastava, & Oza, 

2010; Li, Rai, Lee, & Chattopadhyay, 2018). Das et al. (2010) 

developed multiple kernel anomaly detection (MKAD) 

algorithm using one class SVM model to capture anomalies 

in discrete and continuous flight features induced by off-

nominal flight operations such as go-around operation. 

Even though many approaches have been proposed, the 

development of a robust monitoring framework is required to 

mitigate drawbacks in current methods: (i) lack of the 

integrated aircraft health monitoring which can monitor the 

flight performance associated with aircraft subsystems; (ii) 

demonstration of the developed method to commercial flight 

data such as onboard sensor data in aircraft to validate 

detection ability in realistic flight situation. 

Motivated by these challenges, a real-time monitoring 

framework for aircraft engine systems using the deep neural 

network (DNN) is presented. A historical flight dataset 

recorded from onboard sensors in commercial aircraft is 

utilized to conduct the proposed method and detect 

performance anomalies in the aircraft engine system. Signal 

processing using decimation and Savitzky-Golay filter 

method is conducted to preprocess the flight dataset. 

Subsequently, the DNN model is trained by the processed 

flight features to estimate normal engine system behavior of 

commercial aircraft associated with flight dynamics. The 

potential anomalies are detected when the estimation error 

exceeds pre-defined rational bound due to significant 

deviation in monitoring features. Demonstration of anomaly 

detection is performed with simulated historical flight dataset 

in real-time to validate the real-time detection capability of 

the proposed monitoring method. 

2. HISTORICAL FLIGHT INFORMATION 

Sanitized commercial flight data recorder (FDR) datasets, 

obtained from the National Aeronautics and Space 

Administration (NASA) Discovery in Aeronautics Systems 

Health (DASH) link network (Monroe, Freeman, & Jones, 

2012), is utilized to perform the proposed monitoring method. 

The FDR dataset is comprised of flight features recorded 

from the onboard sensors in commercial aircraft during in-

flight and on-ground operation and is generally used for flight 

analytics after flight accidents. The FDR dataset includes 186 

flight features that can be categorized into continuous and 

discrete features. The continuous features generally indicate 

aircraft states and performance such as fan speed, engine gas 

temperature, and velocity and angle components of aircraft 

coordinate system while the discrete features denote binary 

information such as system alarms and landing gear status. 

Besides, the sampling frequency of flight features varies 

between 0.25 Hz to 16 Hz, which restricts the direct 

application of the dataset to the proposed framework. In this 

study, a total of 2044 flights are investigated, where the flight 

times in the dataset vary from 56 minutes to 3 hours and 22 

minutes and flight phases are labeled in to 7 digits, parking 

(1), taxi (2), takeoff (3), ascent (4), cruise (5), descent (6), 

and landing (7) as shown in Figure 1. Among the flight 

phases, the proposed monitoring work focuses on detecting 

engine performance anomalies in cruise phase. The 

magnitude of engine-related features such as fan speed and 

exhaust gas temperature are ideally maintained during cruise 

phase, while fluctuations are observed during multiple ascent 

and descent phases. Therefore, off-nominal behavior of flight 

performance is relatively distinguishable compared to other 

flight phases. However, health metric and standard operation 

ranges are not presented in the FDR dataset, so it prevents 

cross-validation of captured operational anomalies from 

flight accident reports and literature because of unknown 

information about aircraft type, flight plan, and weather 

condition. With this limitation, a decision boundary was 

formed under the assumption that the anomalous flight 

behavior is uncommon patterns in dataset and presents 

significant deviation from common patterns due to non-

standard flight operations or mechanical issues in the aircraft 

systems. 

 

Figure 1. Flight phases of scheduled flight in FDR dataset 
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3. MONITORING FRAMEWORK 

3.1. Preprocessing 

In order to estimate engine performance with dynamic flight 

behavior, the number of 47 features, including engine related 

features and flight dynamic features, are selected to be 

monitored as presented in Table 1. Subsequently, a down-

sampling technique called decimation is implemented to 

synchronize the various sampling frequencies of the selected 

features, which leads to consistency of features in the time 

domain to train the DNN model. In general, a process of 

decimation is divided by two steps: (i) eliminate high-

frequency elements that provoke aliasing using a digital low 

pass filter; (ii) implement down-sampling by an integer factor 

(Milic, 2009). In this work, finite impulse response (FIR) 

filter is utilized for anti-aliasing method to take advantage of 

beneficial properties of the FIR filter; no iterations are 

required due to inherent stability (Milic, 2009). In each flight 

𝑝, where 𝑝 = 1, 2, … , 𝑝𝑚𝑎𝑥 (𝑝𝑚𝑎𝑥 = 2044 in this study), the 

flight features are denoted as 𝑥𝑖
𝑗
, where feature index 𝑖 =

1, 2, … , 𝑛, 𝑛 is the number of features (𝑛 = 47), and time step 

𝑗 = 1, 2, … , 𝑙𝑖 , 𝑙𝑖  is the length of 𝑖𝑡ℎ  feature. Therefore, the 

decimated  𝑖𝑡ℎ feature for the synchronized time step 𝑘 can 

be described by 

�̃�𝑖
𝑘 = ∑ 𝑥𝑖

[𝑗𝐷−𝑣]

𝑉−1

𝑣=0

∙ ℎ[𝑣]  (1) 

where �̃�𝑖
𝑘 and 𝐷 indicate the decimated features and integer 

factor while ℎ  and 𝑉  represent impulse response and its 

length, respectively. With this approach, the sampling 

frequencies of the selected features are synchronized to 1 Hz, 

which results in the synchronization of selected feature length. 

As an example, the sampling frequency of original VS (16 

Hz) and EGT (4Hz) are synchronized to 1Hz as shown in 

Figure 2 (a) and (b) respectively.  

 
(a) 

 
(b) 

Figure 2. Comparison of original and decimated features: (a) 

VS and (b) EGT 

 

For the features that are recorded initially under 1Hz of the 

sampling frequency, the Savitzky-Golay filter (Hargittai, 

2005) is implemented to reduce their inherent noise while 

maintaining useful information. The filtered 𝑖𝑡ℎ  feature for 

the time step 𝑘 through the Savitzky-Golay filter is described 

as follows 

�̃�𝑖
𝑘 = ∑ 𝐶𝑢

𝑓−1
2

𝑢=
1−𝑓

2

𝑥𝑖
𝑘+𝑢  (2) 

where 𝐶𝑢 and 𝑓 indicate the convolution coefficient and a set 

of 𝐶𝑢. 
 

Table 1. Description of selected features 

 

Feature name Description Unit 

ALT Altitude ft 

VS Vertical speed ft/min 

TAS True airspeed knots 

GS Ground speed knots 

LGA Longitudinal acceleration G 

VTA Vertical acceleration G 

LTA Lateral acceleration G 

FPAC Flight path acceleration G 

AOA Angle of attack deg 

TH True heading deg 

ROLL Roll angle deg 

DA Drift angle deg 

WS Wind speed knots 

WD Wind direction deg 

FSC Fan speed command %rpm 

PLA 1~4 Power lever angle input 1~4 deg 

FF 1~4 Fuel flow rate in engine 1~4 lbs/hr 
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FS 1~4 Fan speed in engine 1~4 %rpm 

CS 1~4 Core speed in engine 1~4 %rpm 

VIB 1~4 Vibration in engine 1~4 in/sec 

OIP 1~4 Oil pressure in engine 1~4 psi 

OIT 1~4 
Oil temperature in engine 

1~4 
deg 

EGT 1~4 
Exhaust gas temperature in 

engine 1~4 
deg 

 

3.2. Anomaly Detection using Deep Neural Network 

The DNN model is a feed forward NN that includes multiple 

hidden layers between its inputs and output layer. It is capable 

of modeling complex and highly nonlinear relationship 

between input and outputs (Hinton et al., 2012). Main issue 

in the DNN model is expensive computational cost during the 

training phase, but computational expense in testing phase is 

relatively low, which indicate potential applicability of the 

DNN model to real-time monitoring framework. Therefore, 

the DNN is utilized in this work to estimate aircraft engine 

and flight dynamic features for anomaly detection. Initially, 

the selected features are normalized between 0 and 1 to avoid 

optimization issue in loss function during the training process. 

The normalized features are then introduced in the input layer 

that is formed with 47 neurons to train the DNN model. In 

this case, each selected feature is estimated with coupled 

responses in other features for each time step as follows 

�̂�𝑖 = 𝑓(�̅�1, �̅�2, ⋯ , �̅�𝑛 ) (3) 

where �̂� and �̅� denote the estimated and normalized feature. 

Therefore, the number of neurons in the input layer and the 

output layer are set to be the same. This process enables an 

integrated estimation of flight features with dependencies 

between engine system and flight performance, which 

permits a comprehensive health monitoring with analysis of 

coupled response under anomalous flight situation. The 

number of 12 hidden layers are defined with 64 neurons in 

each hidden layer. In general, rectified linear unit (ReLU) 

function is used for the activation function to mitigate 

gradient vanishing or exploding problem in DNN due to the 

multiplication of too small or large gradient during 

backpropagation process. However, the ReLU function may 

result in the deactivation of neurons under certain condition 

(dead ReLU) (Lau & Lim, 2017). Therefore, leaky ReLU 

function is utilized in this work to take advantage of ReLU 

property while avoids dead ReLU issue. The formulation of 

leaky ReLU function is defined by 

𝑅(𝑧) = {
𝑧, 𝑧 > 0

𝛼𝑧, 𝑧 ≤ 0
 (4) 

and 

𝑧 = ∑ 𝑤𝑖

𝐾

𝑖=1

�̅�𝑖 + 𝑏 (5) 

where 𝑅() and 𝛼 represent the leaky ReLU function and its 

coefficient while 𝑤 and 𝑏 denote weight vector and bias term 

in hidden layer neuron. Subsequently, the optimized model 

parameters 𝑤  and 𝑏  are obtained by minimizing the loss 

function. In this work, mean square error (MSE) function that 

measures the error between ground truth feature and the 

estimated feature is used as follows 

𝜀 =
1

𝑛
∑(�̅�𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 (6) 

where 𝜀 and 𝑛 are the MSE and number of measured features. 

In addition, a strategy called dropout is implemented in this 

work to enhance the generalization capability of the DNN 

model, which enables the DNN model to detect off nominal 

behavior in the FDR dataset. The dropout randomly excludes 

a certain percentage of neurons in input and hidden layer 

during training the DNN model, which leads to model 

averaging to mitigate overfitting problem (Xu, Du, Dai, & 

Lee, 2014). In this case, flight performance anomalies that 

significantly deviates from standard behavior may not much 

contribute to train the DNN model. Because the significant 

off nominal response in the selected feature is a minor portion 

of the FDR dataset and therefore these trends are most likely 

ignored during the training process. Therefore, the DNN 

model parameters are mainly determined by the majority of 

the FDR data, which is considered as normal response in 

engine related and flight dynamic features. To fulfill the 

estimation accuracy and generalization capability, the 

percentage of dropout is set to be 5%. With this assumption, 

a large estimation error between features from the FDR and 

trained model is expected to be observed under the presence 

of operational anomalies. The estimation error is measured 

by root mean square error (RMSE) and the coefficient of 

determination (𝑅2). In particular, the RMSE are assumed to 

be normally distributed. A normal error bound 𝛿𝜀𝑖

𝑗
 is utilized 

for a safety baseline and defined by the mean and variance of 

the observed RMSE in the 𝑖𝑡ℎ features for 𝑘𝑡ℎ time step as 

𝛿𝜀𝑖
𝑘 =  [𝜇𝜀𝑖

𝑘 − 𝜏𝜎𝜀𝑖
𝑘 , 𝜇𝜀𝑖

+ 𝜏𝜎𝜀𝑖
𝑘 ].  (7) 

where 𝜇𝜀𝑖
𝑘  and 𝜎𝜀𝑖

𝑘  denote mean and variance of RMSE while 

𝜏 is the coefficient to determine distribution bound. In this 

work, 𝜏 = 3 is used to define the normal error bound with the 

assumption of 0.3% anomaly ratio. Therefore, operational 

anomalies are detected when the value of 𝛿𝜀𝑖
𝑘  violates normal 

error bound. The anomaly label 𝜃 in observed RMSE in 𝑖𝑡ℎ 

feature at 𝑗𝑡ℎ time step is defined by the binary variable as 
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𝜃𝑖
𝑗

= {
1, 𝑖𝑓 |𝜀𝑖

𝑘| ≤ 𝛿𝜀𝑖
𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

where 1 and 0 indicate the anomaly and normal flag. In 

particular, the anomalies are flagged when these off-nominal 

errors are continued for at least 5 seconds to exclude data 

acquisition error in this analysis. 

4. RESULTS AND DISCUSSIONS 

4.1. Evaluation of trained model 

In this section, the training process of the DNN model is 

described and the performance of the trained model is 

evaluated. Initially, the monitoring features (47 features) are 

introduced as normalized form (between 0 and 1) to train the 

DNN model. The normalized features are then scaled back to 

the original scale in the testing phase for anomaly detection. 

The adaptive moment estimation (Adam) method is used for 

the training algorithm to utilize its performance on sparse 

gradient problem (Kingma & Ba, 2014). Among the 2044 

flights investigated in this work, 1635 flights (80% of data) 

are utilized for training, and 409 flights (20% of data) are 

used for testing. To obtain the generalized model, the DNN 

model is trained with a five-fold cross-validation method. In 

particular, the preprocessed dataset is randomly divided by 

five segments; four segments are used to train the model, and 

one segment is utilized to validate the model. The overall 

estimation errors are measured by 0.0148 RMSE and 0.8432 

𝑅2  in training phase, and 0.0195 RMSE and 0.7313 𝑅2  in 

testing phase, respectively, which shows a high estimation 

accuracy of the trained model. An example is presented in 

Figure 3, where the estimated GS (Figure 3 (a)) and FS 

(Figure 3 (b)) in testing phase are compared with the recorded 

GS and FS. In general, the estimated GS and FS show good 

agreements with the recorded GS and FS in the FDR dataset. 

The behavior of GS and FS are estimated within 3% error.  

 
(a) 

 
(b) 

Figure 3. Comparison of features from FDR dataset and 

estimated features through DNN model in testing phase: (a) 

GS and (b) FS 

4.2. Anomaly detection in historical flight data 

Before conducting anomaly detection, the estimation time of 

the proposed monitoring work is measured to validate 

computational efficiency for real-time monitoring. The time 

measurement is conducted by introducing 50 seconds time 

step of 47 features into the trained DNN model using an Intel 

Core i5-7200U mobile processor (dual cores with 2.5 GHz 

base core clock) with 8GB memory. A total of 10 

measurements is performed, and the averaged calculation 

time shows 0.1538 seconds, which demonstrates the real-

time applicability of the proposed method. 

Subsequently, the proposed monitoring framework is 

validated through a demonstration of anomaly detection in 

the FDR dataset. In particular, the selected features during 

cruise phase are simulated for real-time analysis. The 

detection time with a duration of anomalies in engine 

performance and flight dynamic features are analyzed. As 

shown in Figure 4, sudden changes in engine performance 

features are detected during cruise phase. It should be note 

that four features in each engine performance feature are 

averaged for visualization. For instance, four features in PLA 

(i.e., PLA 1-4) are averaged and then denoted as PLA in this 

work. In general, the value of engine performance features 

such as PLA, FS, CS, and OIT are relatively stable during 

cruise phase compared to the other flight phases. However, a 

sudden drop in PLA, FS, and CS is detected at 1749 seconds 

with a duration of 22 seconds (Figure 4 (a)-(c)) while a 

sudden increase in OIT is captured at 1769 seconds with same 

anomaly duration (Figure 4 (d)). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. Detected anomalies in engine performance features: 

(a) PLA, (b) FS, (c) CS, and (d) OIT 

 

These anomalies in engine-related features result in rapid 

changes in flight dynamic features, as shown in Figure 5. The 

degree of TAS and AOA is ideally maintained during cruise 

phase while sudden drop and increase are observed in TAS 

and AOA respectively. In particular, the anomalies in TAS is 

detected at 1785 seconds and continued for 223 seconds 

(Figure 5 (a)) while the anomalies in AOA is captured at 1807 

seconds with a duration of 176 seconds (Figure 5 (b)). It is 

hypothesized that the potential cause of this event may be due 

to a temporary malfunction of the autopilot system or control 

mistake by pilots. 

 
(a) 
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(b) 

Figure 5. Detected anomalies in flight dynamic features: (a) 

TAS and (b) AOA 

 

5. CONCLUSION 

This paper presents a real-time aircraft engine health 

monitoring framework using DNN, which detects flight 

performance anomalies during cruise flight operation. A 

historical flight dataset recorded from multiple onboard 

sensors in aircraft was utilized to perform the proposed 

method. Signal processing technique called decimation, and 

Savitzky-Golay filter was used to synchronize different 

sampling frequencies and reduce inherent noise in the FDR 

dataset. The DNN model was adopted to estimate normal 

engine system behavior related to flight dynamics and trained 

by the preprocessed features, including engine performance 

and flight dynamic features. The accuracy of the trained DNN 

model was evaluated by error measurements (0.0148 RMSE 

and 0.8432 𝑅2) and the estimation showed good agreements 

with the features in the dataset. In order to perform anomaly 

detection, the trained model was combined with a normal 

estimation error bound for a safety baseline. The real-time 

detection capability of the proposed monitoring framework 

was validated through the FDR dataset simulated for real-

time and the results showed promising ability in detecting 

anomalies in engine performance and flight dynamic 

behavior. Future work will include a development of a 

monitoring framework that can monitor the whole aircraft 

system in all flight phases to improve aircraft safety 

management. 
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