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ABSTRACT

Powerful, small and lightweight sensors in combination with
advanced failure detection, diagnosis, and prognostics tech-
niques provide up-to-date data on the health status of an Un-
manned Aerial System (UAS) or autonomously piloted vehi-
cle. This information must be used for automatic planning
and execution of contingency actions to keep the UAS safe
in adverse conditions. We present DM (Decision Maker), a
software component which uses model-based reasoning and
backtracking search to iteratively construct contingency plans
that are safe for the UAS to execute and pose minimal in-
terruption to the mission goals. The DM is a discrete de-
cision making system has been developed within the NASA
Autonomous Operating System (AOS) project and fills the
gap between Prognostics and Health Management and au-
tonomous flight operations. In this paper, we describe DM
and its reasoning algorithm and present the supporting mod-
eling framework for the construction of system and fault mod-
els. Flights with a DJI S1000+ octocopter with fault injection
will be used as our case study.

1. INTRODUCTION

Modern system health management and diagnostics compo-
nents of the flight software can provide detailed up-to-date
information about the operational status and failure modes of
the aircraft during the flight. Advanced, model-based prog-
nostics systems can deliver—during the flight—accurate es-
timates on the remaining capacity (e.g., battery), estimated
time before a component (e.g., a bearing) fails (remaining
useful life), or the probability, with which the aircraft can suc-
cessfully and safely abort a take-off given its current acceler-
ation (Schumann, Zollitsch, Mumm, & Holzapfel, 2018).
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For a manned aircraft this information can be suitably pre-
sented to the pilot, who then makes a decision on the ap-
propriate action to take. During flight, knowledge, training,
and a large amount of experience enables the pilot to quickly
make decisions to alleviate the problem and find means to
continue and complete the mission or safely end the flight.
But what happens if there is no pilot on board or the aircraft
cannot be controlled remotely? Safe autonomous operation
of an Unmanned Aerial System (UAS) or an aircraft that is
autonomously piloted requires that the UAS can swiftly re-
act to unexpected failures without human intervention and
execute a suitable contingency plan to safely conclude the
mission. This capability has to go way beyond simple, often
hard-coded procedures like “land immediately” or “return to
home base”.

In this paper, we present DM (Decision Maker), a dis-
crete model-based on-board contingency planning system for
UASs that has been implemented on top of NASA’s Au-
tonomous Operating System (AOS). During the flight, DM is
provided with system health and failure information about the
on-board systems, relevant prognostics estimates, as well as
environmental awareness information, e.g., about other air-
craft or air traffic control information. This information is
provided in real-time by the on-board prognostics, diagnos-
tic, and monitoring systems. DM then performs the follow-
ing two tasks: (1) select and execute a suitable active diagno-
sis procedure if it is necessary to disambiguate failure modes,
and (2) construct a contingency plan, which retains safety and
impacts the mission as little as possible. This contingency
plan is constructed as a sequence of discrete, customizable
actions and must reflect all operational restrictions and lim-
itations that are imposed by the detected failures. For ex-
ample, a weak battery would prohibit strong climbs, a stuck
aileron would limit the safe roll rate, or a broken LIDAR al-
timeter might make it impossible to safely fly at a low altitude
over rough terrain. A typical contingency plan might entail a
modification of the flight plan giving priority to safety. For
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example, instead of climbing over a mountain to reach the in-
tended destination airport, the flight plan could be altered to
fly around a high mountain and reach an alternate destination
safely.

We have developed a customized domain-specific modeling
language using Web-GME (Maroti et al., 2014) to capture
failure modes, fault propagation, failure impact, active di-
agnosis procedures, and operational failure impacts. DM’s
contingency planning algorithm uses a combination of back-
tracking search, constraint solving, and simplified prognos-
tics algorithms in order to come up with suitable and safe
candidates for contingency plans.

The main contributions of this paper are:

• realization of a model-based on-board autonomous con-
tingency planner,

• model-based activation and triggering of active diagnos-
tic procedures,

• use of advanced, schema-based discrete search to come
up with suitable contingency plan, taking into account
the constraints imposed on state-predictions by the cur-
rent flight plan, air traffic control information, system
and failure state, capacity reductions and prognostic es-
timates, and

• implementation as part of the AOS system and test-flight
at NASA on DJI S1000+ octocopter.

The rest of the paper is structured as follows: in Section 2 we
briefly describe the underlying AOS system and the NASA
cFS/cFE architecture as well the on-board monitoring, diag-
nosis, and prognostics systems. Section 3 provides a high-
level architecture of our model-based contingency planner
and describes principles of operations. In Section 4 we fo-
cus on our modeling language and the various models that
are used by the contingency planner. Section 5 describes de-
tails of the algorithms underlying the Decision Maker (DM).
A case study with a test flight and injected failures is pre-
sented in Section 6. In Section 7, we highlight related work
before we discuss future directions and conclude (Section 8).

2. BACKGROUND

Our model-based contingency system has been implemented
as part of the NASA Autonomy Operating System (AOS). In
this section, we provide a brief background of AOS, its un-
derlying software platform cFS, and about the on-board diag-
nosis and monitoring systems.

2.1. NASA Core Flight System

The NASA core Flight System1 (cFS) is an Open-Source plat-
form and framework that has been developed at the NASA
Goddard Space Flight Center. Its component-based design,

1https://cfs.gsfc.nasa.gov/

layered software and dynamic runtime environment has been
used in a number of successful space missions and has been
certified for man-rated space applications. The cFS archi-
tecture simplifies the flight software development process by
providing the underlying infrastructure and hosting a runtime
environment for mission-specific applications.

2.2. The Autonomy Operating System (AOS)

The Autonomy Operating system (AOS) is a software sys-
tem that enables core capabilities for the autonomous oper-
ations for an unmanned aircraft (Lowry et al., 2018). It is
based on the NASA cFS system and provides a higher-level
layer of infrastructure and applications for the execution of
flight plans, natural-language communication with Air Traf-
fic Control (Lowry, Pressburger, Dahl, & Dalal, 2019), Diag-
nostics, Prognostics, and contingency planning (Schumann et
al., 2019).

The AOS architecture shown in Figure 1 illustrates the struc-
ture of the system. The underlying cFS system provides
a “software bus,” a publish-subscribe architecture, which is
used by numerous applications to communicate with each
other. Apps can be activated on regular schedule or can be
event driven. Numerous apps are provided by the cFS soft-
ware (shown as circles and “lollipops” in Figure 1) and help
to facilitate the design of new flight software.

AOS is communicating with a low level flight control soft-
ware to obtain sensor and aircraft status information and to
issue low level commands. In our case, we use a slightly
modified version of the Open-source ArduCopter software,2

running on a PixHawk hardware,3 which directly interfaces
with sensors and controls the motors of the aircraft.

The AOS applications and engines (shown as yellow boxes)
provide specific capabilities and the “knowledge bus” infras-
tructure that enable autonomous UAS operations: automated
reasoning, based upon an underlying Prolog or Z3 reasoner,
is used for navigation, contingency planning, and interaction
with Air Traffic Control (ATC). Spoken ATC commands are
processed by the Natural Language Processing (NLP) unit
(Lowry et al., 2019). PLEXIL is an event-driven planner
(Verma, Jonsson, Pasareanu, & Iatauro, 2006) that has been
customized to execute flight plans for nominal/off-nominal
operations, and procedures, which require Air Traffic Control
(ATC) interaction.

The applications for diagnosis, prognostics, and runtime as-
surance are based on the Diagnostic Reasoner (DR) and the
R2U2 (Realizable, Responsive, Unobtrusive Unit) compo-
nents, which will be described in some more detail in the
following subsections.

Our model-based contingency planning framework is cen-

2http://ardupilot.org/copter/
3pixhawk.org
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Figure 1. High-level architecture of AOS based on cFS/cFE. cFS architecture diagram from (Gundy-Burlet, 2013)

tered around the the model-based Decision Maker “DM”,
which exchanges information using the Knowledge Bus with
the other AOS components.

2.3. Diagnostic Reasoner (DR)

The Diagnostic Reasoner (DR) is a cFS component, which
monitors and diagnoses the vehicle on which AOS is running
(Schumann et al., 2019). Based on sensor information from
the vehicle, DR performs fault detection, and if an anomaly
is found, it will perform fault isolation to identify the current
failure mode(s). If it is not possible to isolate the fault to a sin-
gle failure mode, the diagnosis result contains an ambiguity
group of several potential failure modes. Analog sensor data
received from AOS are preprocessed and checked against
given value ranges and thresholds by the Limit Checker (LC),
a built-in component of the cFS system. For diagnosis, DR
uses a dependency matrix (D-matrix) approach (Luo, Tu, Pat-
tipati, Qiao, & Chigusa, 2005) to determine the state of a sys-
tem component as “GOOD”, “BAD”, “SUSPECT”, or “UN-
KNOWN”: based upon the results of tests, e.g., Ubatt > 16V ,
the algorithm consults the D-matrix to determine, which com-
ponents are might be affected by these test results. Tests re-
sults are defines as discrete values “PASS”, “FAIL”, or “UN-
KNOWN”, if no data are available. Even for large D-matrices
relating hundreds of tests to thousands of failure modes, the
algorithm (described in (Schumann et al., 2019)) is efficient
enough to enable real-time diagnosis. The binary D-matrix,
which relates the diagnostic tests for a component to the fail-
ure modes of that component is generated automatically from
our system and failure models as described in Section 4.

2.4. Online Monitoring System (R2U2)

R2U2 (Realizable, Responsive, Unobtrusive Unit) is a frame-
work and tool for the continuous monitoring of safety-critical
and embedded cyber-physical systems (Reinbacher, Rozier,
& Schumann, 2014; Rozier & Schumann, 2017). R2U2 com-
bines past-time and future-time Metric Temporal Logic, prob-
abilistic reasoning with Bayesian networks, and model-based
prognostics. Like the other components of AOS, R2U2 is im-
plemented as a cFS application and activated at a regular rate
of 1Hz. The preprocessing unit of R2U2 “PRE” reads sensor
and status values from the cFS message bus and, using a set
of customizable filters, operators, and discretizers, produces
Boolean values, which are then processed by the R2U2 tem-
poral engine (Geist, Rozier, & Schumann, 2014; Schumann,
Roychoudhury, & Kulkarni, 2015). In a similar way, prog-
nostics results “PRGN” are calculated and fed into the R2U2
engine (Kulkarni, Roychoudhury, & Schumann, 2018; Schu-
mann et al., 2015).

The R2U2 engine is a software implementation of a proces-
sor, which provides efficient monitors for past-time logic as
well as synchronous and asynchronous observers for future-
time Metric Temporal Logic. The underlying algorithms are
described in (Reinbacher et al., 2014; Rozier & Schumann,
2017). Safety and liveness properties are specified as tempo-
ral logic formulas and their results are used by DM for plan-
ning and decision.

For example, after a change of the target heading of the UAS,
we expect that the UAS heading becomes aligned within 5
seconds. Short glitches should be ignored. This property only
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needs to hold while the UAS is in the “auto mode” and thus
following a flight-plan:

mode auto→ ♦[2s]hdg achieved ∨ ♦[3s]hdg changed

The implication ensures that the property is only checked
when the vehicle is in auto mode. Then, a mis-alignment of
the heading is ignored if it lasts less than 2 seconds, unless
we encountered a change in direction hdg changed within
the last 3 seconds, requiring that the new heading has been
achieved no later than 5 seconds after the change.

The properties used in this paper have been specified in past-
time logic. More properties and examples are discussed in
(Rozier & Schumann, 2017). R2U2 can also perform real-
time Bayesian reasoning (Geist et al., 2014), using the re-
sults of temporal formals as inputs to support probabilistic
root cause analysis by, for example, estimating the likelihood
of a specific sensor failure. That information is also be passed
to the DM.

3. MODEL-BASED ARCHITECTURE FOR ACTIVE DIAG-
NOSIS CONTINGENCY PLANNING

AOS is separating the capability of health and contingency
management into two modules: diagnosis/prognostics and
decision-making. In the case of an adverse event or failure,
diagnosis is performed first, to determine what failure has oc-
curred. Decision-making is done next, to improve the reso-
lution of the fault diagnosis and to determine the impact of
the failure followed by what actions might need to be done
to recover from the failure and fly the aircraft to safety. The
selected contingency plan is then executed by the on-board
PLEXIL engine.

Figure 2 shows the flow of information. Sensor and status
data S from the UAS are transmitted by the ArduCopter flight
software into the AOS system. These data are used to per-
form diagnosis and to monitor the UAS system (subsystems
grouped by a dashed line). The model-based diagnosis apps
DR and the LC (Section 2.3) perform fault detection and iso-
lation; R2U2 dynamically monitors sensors and software and
performs prognostics (Section 2.4). The current health sta-
tus of the UAS, which is updated at 0.5Hz is then handed
over to the DM (Decision Maker, Section 5 below) compo-
nent. Based upon the system health status and the current
flight plan, the DM performs logic-based search to find (a)
active diagnostic procedures to improve the diagnostic reso-
lution (if necessary) and (b) flight plans, which can be safely
executed under the current circumstances. If necessary, such
contingency plans might contain emergency actions like, for
example, cutting short the flight, diversion to a nearby airport
for emergency landing, or an immediate ditch by activating
an on-board parachute. The DM can additionally obtain in-
formation provided by the on-board data base (DB) and mes-
sages sent from the ground station. The generated active diag-

AOS

S = 〈s1, . . . , sn〉 U = 〈u1, . . . , um〉

C

PLEXIL

LC

PRGN

PRE

DR

DM

Arducopter

Autopilot

DB & COMMS

R2U2
Engine

Figure 2. High-level architecture of our model-based health
management and contingency planning system. Diagnos-
tics (DR) and monitoring (R2U2) components with their data
preprocessing (PRE and LC) and prognostics (PRGN) are
marked by a dashed line.

nosis or contingency plan is sent to the plan execution module
PLEXIL, which is in charge of commanding or navigating the
UAS and interacting with Air Traffic Control. This compo-
nent emits the sequence of commands U and waypoints that
the UAS will follow. All components of the health manage-
ment and contingency planning system are model-based.

4. SYSTEM MODELING AND D-MATRIX GENERATION

The models corresponding to the AOS components for the
UAS under study are created in a domain specific modeling
language (DSML) – the Fault Modeling Language (FML).

The DSML and the associated model instances were created
in Web-GME (Maroti et al., 2014), an Open-source meta-
programmable platform. Web-GME provides a graphical
platform to define the rules of the DSML in a meta-model.
Thereafter, it allows users to create model instances that cor-
respond to the defined meta-model. It has extensive API
support for writing custom plugins to generate artifacts from
the models. It provides a web-based collaborative platform
where multiple users can view and edit the models simulta-
neously. It has a built in version tracking system that allows
the users to create tags, branch, fork and merge during the
model development process.
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Figure 3. S1000: System model with fault propagation

Our DSML, the Fault Modeling Language allows the users to
describe the

(a) system architectures,

(b) functional decomposition,

(c) fault propagation model,

(d) fault impact,

(e) diagnosis refinement procedures, and

(f) fault masking and/ or recovery plans.

4.1. System Architecture and Fault Propagation Model

FML uses the SysML (Friedenthal, Moore, & Steiner, 2008)
style Block Diagram models to capture the components
(blocks), their interfaces (ports), and their interaction (wiring
between the ports). The SysML internal block diagram mod-
els are extended to capture the fault model within the compo-
nent and its propagation across the system. The fault model

captures the fault sources (Faults), deviations from nomi-
nal or expected behavior (Anomalies), observable anomalies
(Tests), and functionality degradation (Effects). The edges
represent cause-effect relationship and the fault propagation.
Labeled edges from and to the ports capture fault propagation
across component boundaries. The fault model uses the con-
cepts defined in Timed Failure Propagation Graphs (TFPG)
(Abdelwahed, Karsai, & Biswas, 2005; Abdelwahed, Karsai,
Mahadevan, & Ofsthun, 2009).

Figure 3 shows the system model for the DJI S1000+ octo-
copter. The blocks represent components and/or subsystems
of the S1000+. The top level shows the wiring diagram for
signal and power flow between the components. Each com-
ponent contains the faults associated with that component.
The fault propagation model for each component accounts
for the anomalies and the functional degradation that result
from the faults originating in the component as well as failure
effects that propagate from other components. The failure ef-
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fect propagation from other components is represented by la-
beled edges (failures) connected to the input and output ports.
Figure 3 shows a portion of the fault model in the auto pilot
subsystem associated with the navigational sensors—in par-
ticular, the barometric altitude sensor and the LIDAR-based
precision altitude measurement sensor. The Test block in this
figure is not associated with a real component in the system,
but is a logical model that groups all the alarms/tests associ-
ated with the system. The fault propagation model captures
the triggering criteria for these alarms/tests in terms of the
failure effects that flow into these tests. Figure 3 shows the
possible tests that could trigger if there is a problem associ-
ated with one of the altitude measurement sensors.

4.2. Functional Decomposition Model

Systems are designed to satisfy specific functional require-
ments. FML allows the user to capture these functions and or-
der them hierarchically to create a functional decomposition
model. The models include high-level functions which are
related to lower level functions through AND and OR nodes.
The AND nodes imply that all the lower level functions are
required to provide the higher level function. The OR node
corresponds to the case where the higher level function can be
satisfied by any one of the lower level functions. The lowest
level functions in this hierarchy are referred to as primitive
functions and these are related to one or more components or
subsystems in the system architecture model that implement
the primitive function.

Figure 4. S1000: Functional Decomposition Model

Figure 4 captures the functional decomposition model for our
UAS. The components are associated with functions they im-
plement. When the AND/OR nodes are missing, the default
relationship corresponds to an AND node. In this case, there
is only one OR node (marked with a “V”) to indicate that the

power regulation function can be handled by either one of the
regulators.

4.3. Fault Impact Models

The impact of the fault on the system functions are captured
in multiple FML models. The fault propagation model in
FML allows the user to capture the degradation or loss of
a function in terms of an Effect node (Figure 5A). The Ef-
fect node, represented by an “E” in the fault model, cross-
references a specific function in the functional decomposition
model. The idea is to indicate that specific set of fault con-
ditions can lead to the function loss or degradation effect. In
this case, the model needs to be compiled to understand the
different fault scenarios that can produce this detrimental ef-
fect.

A more explicit model is the Fault Impact model that relates
Fault Ambiguity Groups (sets of one or more faults) to one
or more functions that are impacted. The model also cap-
ture any changes to the safe/permissible operation in terms
of modifications to system variable ranges and system mode.
The Fault Impact Model in Figure 5A captures the impact of
Error in Precision Altitude sensing on the navigation func-
tion and the associated restriction on the minimum altitude
(buffer) required to be safe in the presence of such a fault.
While this example captures a single fault, it is quite normal
for multiple faults in the ambiguity set to have similar impacts
on the functions and the operational variables (Schumann et
al., 2019).

4.4. Diagnostic Refinement Model

The diagnostic refinement model captures the fault ambi-
guity set and the corresponding active diagnosis procedures
(and the impacted tests) that could help in isolating the fault
source. The fault ambiguity set references the faults in the
system model that could not be disambiguated based on the
operational tests. Each active diagnosis procedure cross-
references the tests in the system model that would be acti-
vated by the procedure. The tests marked with an “AD” prefix
in the Test sub-block in Figure 3 are examples of tests whose
status could be assessed when a specific active diagnosis pro-
cedure is executed. When one of the associated “AD” tests
fails, it helps to isolate the fault candidate or at least prune
the fault ambiguity set. Additionally, if a test passes, it in-
dicates that the associated faults are not present and hence
should be dropped from the ambiguity set.

Figure 5B lays out prescriptive active diagnosis procedures
for mismatch in altitude measurement among the associated
sensors. The “Altitude Check” active diagnosis procedure in-
dicates those tests whose status could be evaluated to prune
the fault set. While the model does not include the procedu-
ral code for executing the active diagnosis procedure, it cap-
tures the operational constraints under which the procedures
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A

B

Figure 5. A: S1000: Fault Impact Model. B: S1000: Diagnostic Refinement Model.

may be executed such as system mode, minimum altitude,
ground speed, environmental conditions, etc. (Schumann et
al., 2019).

4.5. Recovery Models

Recovery models map the diagnosed faults (triggering faults)
to the recovery plans that may be executed. Furthermore, they
list the requirement to execute the recovery plan in terms of
mode and system operational variables. They also capture the
resulting system mode once the recovery procedure has been
completed and any resulting operational constraints due to
the recovery procedure. For example, a recovery plan might
call out to switch to the backup battery. Since, however, that
battery has a lower capacity, strong climbs should be avoided
after the switch. In contrast to contingency plans, recovery
plans concern system reconfiguration (e.g., use a different
sensor) and operational changes to subsystems of the UAS.

4.6. Cross links between models

FML allows cross-links or cross-references across the differ-
ent model types to provide context to each model. For in-
stance, the lowest level functions in the functional decompo-
sition model are related to blocks/components in the system
model, which implement the associated function(s). Like-
wise, the fault propagation model references functions in the
“Effect” nodes to capture functional degradation due to the
presence and propagation of one or more faults. The fault
ambiguity groups in the fault impact model and refinement
model include one or more faults cross-referenced from the
fault propagation model. The active diagnosis procedures in

the refinement model cross reference any Tests in the system
model that can be assessed when the active diagnosis proce-
dure is executed. System variables are cross-referenced in
the fault impact, refinement and recovery models to capture
changes to operational range or operating constraints to exe-
cute the procedures.

4.7. Compiling FML models

FML provides plugins to compile the models into artifacts
that can be used in the deployed AOS system. FML gen-
erates a D-matrix based on the fault propagation model for
each operational mode of the system, which is a matrix that
relates tests to failure modes. The D-matrix generated from
this system is shown below (Figure 6A).

Apart from the D-matrix, the FML generates Prolog code to
set up the interface between DR and DM (Figure 6B). It gen-
erates Prolog rules that aid DM to understand the DR out-
put (the diagnostic hypothesis for the current set of faults).
Furthermore, FML generates Prolog code to capture model
information that allows DM to set up the functions and vari-
ables impacted, the possible active diagnosis procedures that
could be executed to refine the diagnosis output, possible lo-
cal recovery actions to arrest or mitigate a fault and resulting
impact on the system performance. DM uses these rules at ev-
ery stage to plan the next course of action, an active diagnosis
procedure, a recovery procedure, or updates to the mission.

7



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

A

B

Figure 6. FML output artifacts: generated D-matrix (A) and
Prolog files (B)

5. LOGIC-BASED DECISION-MAKING FOR CONTIN-
GENCY MANAGEMENT

During flight, the contingency management system DM has
to continuously solve the following problem: can the UAS
continue to execute its mission, given the current state of the
aircraft and current failure modes? If a safe execution of the
mission should not be possible, the DM has to find a suitable
contingency plan, which can comprise an alternative ending
of the mission, like landing at an emergency airport, pulling
the parachute, or another emergency action. During this ac-
tivity, the DM also needs to trigger active diagnosis proce-
dures if necessary to pinpoint the exact cause of the failure.
The DM will always attempt to device a contingency plan that
(a) obeys all safety requirements, (b) can be executed safely,
given the current and predicted state and capabilities of the
UAS, and (c) is least intrusive with respect to the original
mission goals.

The main input of the DM is comprised of the cur-
rent flight plan (i.e., mission) as list of way-points
G = 〈w1, . . . , wn〉, which the UAS is supposed to visit
one after the other. Each waypoint is defined as a quadruple
wi = [lati, loni, alti, spdi] with latitude lati, longitude loni,
altitude alti, and target airspeed spdi. Alternatively, way-
points can be addressed by name as published in the flight
charts. The on-board data base can automatically perform the
conversion.

In addition, the DM receives input about the current failure
state of the aircraft F . This information is provided by DR
and R2U2 and contain zero or more individual failure modes
and potentially one or more ambiguity groups. Static infor-

mation about the aircraft performance, waypoints, airports
and emergency landing spots, as well as volumes reserved by
UAS Traffic Management (UTM) is provided by the on-board
data base and via connection to the ground station. With these
inputs, the DM (Decision Maker) performs two tasks: failure
disambiguation and contingency planning. The DM is imple-
mented in SWI Prolog,4 which provides powerful automated
reasoning, backtracking search and constraint-logic program-
ming. It scheduled by the cFS to be executed every 2 seconds.

5.1. Failure Disambiguation

Whenever the failure modes F contain a failure mode ambi-
guity group A, there is not enough initial diagnostic informa-
tion to isolate the failure to a single component or subsystem.
For example, an “inconsistent altitude reading” corresponds
to an ambiguity group with three elements, because the baro-
metric altimeter, the GPS, or the on-board LIDAR system
might be the cause for the inconsistency. In many cases, a
proper contingency management requires that the actual root
cause is determined, as it can pose severe restrictions on the
UAS capabilities. Therefore, DM attempts to perform fail-
ure mode disambiguation by triggering the execution of an
active diagnosis procedure. When the active diagnosis pro-
cedure is run, additional sensor readings allow the diagno-
sis system to uniquely identify the failure. In our example,
an active diagnosis procedure would command the UAS to
climb for a short amount of time. During this commanded
climb, all measurements concerning the on-board altimeters
(Baro, GPS, LIDAR) are carefully monitored and discrepan-
cies are used to determine the root cause. If, for example, the
LIDAR reading remains constant whereas barometric altitude
and GPS altitude increase during the climb, it can be reasoned
that the LIDAR altimeter is faulty.

DM considers the active diagnosis procedures in the same
way as contingency plans. However, they have a different
goal (disambiguate the failure rather than safely end the mis-
sion) and different conditions under which they can be carried
out.

5.2. Planning for Contingencies

For the task of constructing a contingency plan, the DM em-
ploys a recursive schema-based planning algorithm, which
uses backtracking search, constraint logic, and logic-based
programming.

For each possible contingency action A (e.g., divert to emer-
gency airport, pull parachute) we define a schema, which is
a recursive piece of code. A schema represents a piece of
a contingency plan with “holes”, which need to be filled by
calculations, constraint reasoning, or recursive invocation of
other schemas. (Figure 1). The goal of the UAS mission is to
fully execute the full remaining flight plan G = 〈wi, ...w⊥〉,
4swiprolog.org
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Algorithm 1 Listing of schema for contingency action A
1: [G’, F’, C’, P’ ] = schema A(G, X, F, C, P) . G = current flight plan, X = state of UAS, F = failure modes
2: . C = capabilities and constraints, P = plan so far
3: C’ = get ac capabilities(X, F, C) . what are the current capabilities of the aircraft?
4: if is applicable(A, X, C’) then
5: [Y, G1] = outcome(A, X, G) . what is the outcome of A if it would be executed?
6: . new AC location would be Y with new flight plan G1
7: [X’, F’] = predict forward(X, F, Y) . predict state of UAS flying from X to point Y
8: if is safe(X’, C’) then . A is safe to be executed
9: [G’, P’] = schemas(G1, X’, F’, C’, P.append(A)) . now check the rest of the new flight plan G1

10: end if
11: end if

where w⊥ is the final destination of the mission. Each leg of
the flight plan wi → wi+1 will be flown in sequence given
the current state of the aircraft X and failures F . The DM
is then recursively attempting to execute the current flight leg
in simulation. If this is possible safely, then the next leg will
be processed. If not, other schemas will be tried. The other
schemas might require specific actions to be performed (e.g.,
active diagnosis, reconfiguration, or launching the parachute)
or might change the future flight plan, in case, an emergency
airport needs to be reached. The search procedure stops if
the original goal has been reached, an alternative safe land-
ing place can be reached, or if all possibilities are exhausted.
In that case, the DM triggers the ultimate plan, parachute-
assisted crash landing.

Listing 1 shows an abstracted, high-level description of a
schema for contingency actionA. The schema is called given
the current flight plan G, aircraft state X , failure modes F ,
external constraints and capabilities C, and an empty partial
contingency plan P = []. In a first step, the current aircraft
capabilities are calculated based upon the current state, fail-
ure modes, and given constraints. After consultation of the
aircraft failure model and failure impact model, a new set of
constraints is calculated, reflecting the effects of failure on
the aircraft behavior. For example, a faulty LIDAR could re-
sult in a constraint altAGL > 30ft requiring that the UAS
needs to stay at least 30ft above the ground, because baro-
metric and GPS altimeter have larger error margins. Another
typical constraint concerns strong climbs, which need to be
restricted when engine or elevator failures occur or the bat-
tery is weak.

If the considered contingency action A is applicable in the
current state under the current constraints, it is provisionally
selected. Then, the implications of A on the aircraft state Y
and the future flight-plan G1 are calculated by the function
outcome. Depending on the contingency action that might
be G1 = G.rest() if we can fly to the next way-point, or G1

might be set to the route to a suitable emergency airport. The
code for outcome can include queries to aircraft and failure
models, queries to the operational database (e.g., to obtain a
route to an emergency landing spot), as well as calls to other
schemas.

If the contingency action A is to be carried out successfully,
the aircraft must be able to safely transition from the current
state X to Y , e.g., be able fly to the first waypoint of the emer-
gency route. This is checked by a simple forward prediction
of the system state of the aircraft. This task involves both
checking of constraints as well a state updates. Typical con-
straints concern limitations of altitude or speed, violations of
reserved areas of the airspace, or limitations on maneuvers.
State updates usually concern consumables. For example, the
battery state of charge (SoC) is updated using a simple, de-
terministic model to reflect the drain of the battery while ex-
ecuting the flight from X to Y . Forward prediction can even
change the failure modes if, for example, A is a failure miti-
gation action.

If the outcome of the forward prediction is deemed to be safe,
action A is incorporated into the plan. The DM then needs
to recursively needs to plan for the remaining parts of G′ un-
der the updated aircraft state X ′, failure modes F ′, and con-
straints C ′.

In case any of the checks fail, the contingency action A can-
not be considered at this point. Our logic-based search al-
gorithm therefore performs a backtracking step and tries the
next available schema. The backtracking search guarantees
that all possible alternatives can be tried. The schemas are
ordered in such a way that the least mission-intrusive con-
tingency actions are tried first. Table 1 lists a selection of
relevant schemas.

With this search-based contingency planning algorithm, the
DM will always come up with a contingency plan that

• tries to perform the original mission as long as it is pos-
sible in a safe manner,

• tries to execute mitigation actions that change the config-
uration of the UAS, e.g., to switch to a backup battery or
to turn of unnecessary subsystems to save battery power,

• tries to select contingency actions that are as little disrup-
tive to the mission as possible. This includes

– a shortened flight plan that sacrifices not so impor-
tant goals, for example, a package delivery,
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Table 1. Schemas for on-board contingency planning. G = 〈wi, ...w⊥〉

Action A Severity Contingency plan Description
[] empty 0 [] mission concluded, no action to be taken
FP flight-plan 0 〈wi, ...w⊥〉 follow flight plan to next waypoint wi

AD active diagnosis 0–2 〈wk, Da, ...〉 perform active diagnosis Da at waypoint wk

R reconfig 1 〈wi, wi+1, ...〉 reconfigure aircraft (e.g., alternate battery or sensors)
S shortcut 1 〈wi−1, wi+1, ...〉 skip waypoint wi. Fly directly to wi+1

DA deviate-airport 2 〈w′1, w′2, . . . , w′⊥〉 deviate to emergency airport at waypoint w′⊥ using emergency
flight plan 〈w′1, w′2, . . . , w′⊥〉. Original mission G is terminated

LI land-immediate 3 〈w′〉 land at nearest safe waypoint w′. G is terminated
P parachute 4 [] pull parachute at current location. G is terminated

– diverting the UAS to a suitable and safe emergency
airport, and

– pulling the parachute as a last resort to minimize
crash impact.

Figure 7 visualizes the search for a contingency plan. The
aircraft is currently at 〈w1, w2〉 and DM determined that it
can fly safely to w3, where it will perform an active diagno-
sis procedure. In the worst-case outcome, the original flight-
plan cannot be followed anymore, neither can the aircraft
be reconfigured or a shortcut taken (unsuccessful alternatives
marked in red). The currently active schema diverts the air-
craft to an emergency airport, which can be reached via way-
points 〈w′1, w′⊥〉. That new flight-plan is being checked by
DM for feasibility and safety. Reaching a safe landing spot
w⊥ concludes the search and results in the contingency plan
〈w1, w2, ad, w

′
1, w

′
⊥,⊥〉. Options that still could be explored

by DM are shown in blue. Note that the Prolog system does
not keep the entire search tree in memory, but just the active
path (shown in black). Therefore, DM has a small memory
footprint.

Numerous additional constraints must be obeyed during the
search for a suitable contingency plan. For example, certain
contingency actions must not be repeated (e.g., switching of
batteries), others might be re-tried in certain intervals. Our
reasoning-based framework furthermore allows us to use con-
straint satisfaction techniques to calculate important parame-
ters of the contingency procedures. For example, a safe all-
engines-out glide into an emergency airport requires a min-
imal altitude at the preceding waypoints. This minimal al-
titude is automatically propagated backwards to the current
aircraft position and will cause a backtracking step if the air-
craft is not high enough for the glide.

6. CASE STUDY

The DM has been test-flown successfully as the contingency
manager component of AOS. In this paper, we describe the
setup and execution of a test-flight, which was carried out

with a NASA DJI S1000+ octocopter at the NASA Ames re-
search center (Figure 8). Although this case study does not
exercise most of the advanced features and capabilities of
AOS and DM, our successful test flight shows the basic prin-
ciples of on-board diagnosis and decision-making with DM.

This UAS is controlled by a PixHawk flight computer, run-
ning a customized version of ArduCopter. The on-board
AOS system is running under Linux on a small NUC com-
puter, which also establishes a WiFi connection to the demon-
stration ground station. The goal of this test-flight was to
demonstrate our on-board diagnosis and prognosis capabil-
ities working together with the DM. The overall flight sce-
nario, which we do not describe in detail here involved three
UASs, which controlled and coordinated by the NASA UTM
system.5

The task of our UAS was to make a survey and perform mea-
surements while flying a meandering trajectory. Figure 8A
shows the designated trajectory as a green dashed line. UTM
has assigned the blue volume of the airspace, a space in which
the UAS can move freely. The other two UASs in this sce-
nario have been assigned the yellow and orange regions. Ob-
viously, a UAS is not allowed to leave its own volume with-
out an emergency and trespass into volumes reserved by other
UASs. There are three helipads, marked “H” on which a UAS
can land.

For carrying out the survey, precise altitude readings are re-
quired. To this end, the UAS is equipped with a simulated LI-
DAR. When this test-flight starts, the UAS is provided with
the sequence of waypoints (green dashed lines), the overall
geometry, as well as a current snapshot of the UTM volumes.
After take-off6 the UAS flies along the trajectory at an alti-
tude of about 4m AGL. Figure 9A,B show the actual flown

5https://utm.arc.nasa.gov/index.shtml
6Due to safety reasons, AOS does not control takeoff or landing. Rather
takeoff and landing is performed by the safety pilot, who then hands over
control to the AOS, once the UAS is stable in the air and its flight control
has been checked out.
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Figure 7. Search tree of DM for current situation 〈w1, w2〉. Current path (black), unsuccessfully explored (red), potentially
explorable (blue).
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Figure 8. A: Image of the test field with UTM reserved volumes; the intended flight plan G for our UAS is shown as green
dashed lines. B: Situation after the active diagnostic procedure (climb) has been performed and and revealed a LIDAR failure.
Since mission and safety constraints forbid the continuation of the mission, a flight to an emergency heliport (H) is considered.
Solid lines mark potential flight routes that had been considered by the DM. Red lines correspond to rejected contingency
plans; the flight plan shown as green solid lines is selected by DM and sent to AOS and PLEXIL for execution. Satellite image
c©Google.

vertical and horizontal profile as measured by the on-board
sensors.

At about 120 seconds into the flight, the LIDAR altimeter
fails through fault injection by the ground station. The di-
agnostic reasoner and R2U2 report discrepancies in altitude
readings. Since the cause cannot be determined (the fault
could lie with the LIDAR, the barometric altimeter, or the
GPS), the DR reports an ambiguity group to the DM. The red
line and dot in Figure 9 indicates when this happens. Since
this fault signature might be safety-relevant, the DM consults
the on-board fault model and is provided with the informa-
tion that there is an active diagnosis procedure, which could
disambiguate the faults. This active diagnosis procedure is
defined as a climb by 4m, during which all values of all al-
timeters are being monitored. During that climb, all sensors
should report an increasing altitude. Our “broken” LIDAR
returns constant values, so the diagnoser is able to resolve the
ambiguity toward “LIDAR failure”. In our model, the active
diagnosis procedure is specified that it can only be carried

out at specific locations (waypoints). For example, perform-
ing this diagnostic climb while flying under a bridge would
be prohibited. The purple lines in Figure 9 show when the
active diagnosis takes place. The immediate climb is evident.

With this diagnosis, the DM now starts the search for a suit-
able contingency plan. Based upon the mission profile, a
working LIDAR is required to perform the rest of the sur-
vey. So, a “proceed as planned” is not possible. There is no
second LIDAR on board, so the reconfiguration schema fails.
Similarly, the pre-defined profile does not allow to take any
short-cuts. Next on the list of available schemas (Table 1) is
the deviation to an emergency airport. A look-up in the on-
board data base reveals that there are three possible landing
spots. DM now tries to plan trajectories to the emergency air-
ports, given the current state of the UAS. The landing spot to
the south fails, because it is behind the fence; flying over the
fence would require LIDAR precision navigation. The sec-
ond airport to the North-west is the next candidate. While
planning that trajectory, the DM detects that all available tra-
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jectories would lead through UTM volumes, which have been
reserved by other UASs. Therefore, that route is not safe.
The third airport requires a more complicated approach route
(green line in Figures 8B and 9B). However, no constraints
fail, and this route is selected as the contingency plan. This
plan is then executed by the PLEXIL planner, which brings
the UAS safely to the landing spot (green dot). The vertical
green line in Figure 9 shows, when the demonstration sce-
nario ends successfully and the safety pilot takes over to man-
ually land the vehicle.

Since a contingency plan was found, more severe actions like
“land immediately” or popping the parachute did not need to
be considered. Note, that the DM remains active even during
execution of a contingency plan. That makes it possible to
safely react to additional failures that might show up while
flying to the emergency airport.
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Figure 9. Horizontal (A) and vertical (B) flight profile for the
test flight as recorded by the on-board sensors. Time points
for fault injection (red), active diagnosis (magenta), and exe-
cution of contingency plan (green) are marked in the panels.

7. RELATED WORK

Due to restricted on-board computing capabilities, contin-
gency management for autonomous spacecraft have been kept
very simple: typically, when a failure occurs during a mis-
sion, the vehicle enters a defined “safe” mode and waits for
commands from the ground station. Popular UAS autopilot
systems, like ArduPilot7 or PX4 (Meier, Honegger, & Polle-
feys, 2015) provide a simple method for contingency man-
agement in the form of “fail-safe” actions: if a failure or a
specific predefined condition occurs, then immediately a spe-
cific emergency action is triggered. Typical actions include:
return to home plate, loiter at the current location, or land
immediately.

Approaches to more complex contingency planning for UASs
have been developed for the planning and pre-flight assess-
ment (DiFelici & Wargo, 2016) or concern a “holistic” multi-
level contingency management system that spans UAS, com-
munications, weather, and battle teams (Franke, Hughes, &
Jameson, 2006). The actual planning uses the Lockheed Mar-
tin tool TeamWorks (Franke et al., 2006) and only has lim-
ited control or monitoring capabilities on-board. On-board
7http://ardupilot.org/ardupilot/

path planning by dynamic probabilistic reconfiguration is de-
scribed in (Wzorek & Doherty, 2006), but does not incorpo-
rate diagnosis or failure-based contingency management.

Prognostics-based decision making in the Aerospace domain
has been addressed, for example in (Balaban & Alonso,
2012). Here, techniques from optimization and game the-
ory have been used for Dynamic Constraint Redesign (DCR),
which enables decision making in a continuous space and
deals with mission reconfiguration. The underlying numer-
ical algorithms, based, for example on Particle Filters (Sweet
et al., 2014) have been employed for different autonomous
vehicles. This formulation can deal with complex and con-
tinuous mission reconfigurations but is mathematically more
challenging and has a substantial computational footprint.

In the past, the Timed Failure Propagation Graph (TFPG)
models and the diagnosis and anomaly detection algorithms
in the associated tool set (Fault Adaptive Control Technol-
ogy or FACT) have been used for real-time diagnosis, re-
configuration, and fault management of a generic aircraft
fuel management system (Abdelwahed et al., 2009; Karsai,
Biswas, Abdelwahed, Mahadevan, & Manders, 2006), actu-
ator faults in manned and unmanned rotocraft (Karsai et al.,
2006; Drozeski, 2005), and real-time software health man-
agement (Dubey, Karsai, & Mahadevan, 2011). In these cases
the focus was on real-time diagnosis. A prescribed reconfig-
uration was followed in most cases. A model based diagnosis
and deliberative reasoning scheme (Mahadevan, Dubey, Bal-
asubramanian, & Karsai, 2013), wherein the reconfiguration
decision was based on the solution of a Boolean satisfiability
problem, was demonstrated for reliable software health man-
agement.

Our current work is different in that it uses and extends the
TFPG models to capture the impact of faults on system per-
formance and expected functionality. Furthermore, our ap-
proach models the performance impact of possible solutions
for refining the diagnosis results and reconfiguring the sys-
tem. The decision maker explores viable alternatives pre-
sented in the model taking into account current mission con-
ditions and additional constraints imposed by the faults and
the associated reconfiguration.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we we have described the Decision Maker DM,
a model-based software component for autonomous contin-
gency planning. System health and failure models are cap-
tured in our Fault Modeling Language FML and provide the
necessary information to perform the logic-based reasoning.

DM closes the gap between the increasingly powerful on-
board prognostics and health management systems and the
control of the aircraft. On a manned aircraft, the pilot re-
lies on knowledge and experience to detect when something
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is wrong, performs the necessary active diagnosis procedures
to pinpoint the failure, and comes up with a safe and suit-
able emergency and contingency plan. On an autonomous
system, an automated component—our DM—has to perform
this role. The model-based, schema-driven planning method
uses discrete search to come up with a contingency plan that
can be executed safely and that impacts the mission goals as
little as possible.

As the DM closes the loop between perception/diagno-
sis/prognostics and control of the UAS, it must be considered
as safety critical. Future work focuses on verification and
validation (V&V) of such a system and its potential for certi-
fication. The foundation of DM on formal logic might make
it possible to provide strong guarantees about the operations
of DM.
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NOMENCLATURE

AGL Above Ground Level
AOS Autonomous Operating System
cFS/cFE NASA Core Flight System/Executive
DM Decision Maker
DR Diagnostic Reasoner
DSML Domain Specific Modeling Language
FML Fault Modeling Language
GPS Global Position System
LC Limit checker
PLEXIL Plan Execution Interchange Language
PRGN Prognostics unit
R2U2 Realizable, Responsive, Unobtrusive Unit
TFPG Timed Failure Propagation Graph
UAS Unmanned Aerial System
UTM UAS Traffic Management
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