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ABSTRACT

Characterizing the degradation process of lithium-ion (Li-
ion) batteries is still a matter of ongoing research due to the
diverse operating conditions at which they are submitted. For
example, different current discharge rates and asymmetrical
charge/discharge cycles are critical operating conditions that
affect both the performance and the lifespan. This article ex-
tends and improves a previously published methodology to
estimate the degradation process of Li-ion batteries with the
novelty of using the Kalman Filter to estimate one of the pa-
rameters of the proposed state-space model. Furthermore,
the Kalman Filter is then combined with a Similarity-Based-
Modeling framework, which integrates information of the
State of Charge and different discharge currents in each op-
erating cycle to estimate the degradation process. The results
are obtained using information provided by the manufacturer
and also with measured data. Finally, the proposed method-
ology is applied to a random usage profile of an Electric-
Vehicle to characterize the degradation process of the batter-
ies under more realistic usage conditions.

1. INTRODUCTION

Typically the information related to the degradation process
found on Li-ion battery datasheets explains this phenomena
just under specific conditions. In a more realistic approach,
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a single battery can be used under different conditions during
its lifetime. For instance, the initial and final values of the
State of Charge (SOC), the discharge current rate, or temper-
ature, are some of the operating conditions that affect the per-
formance in the short and in the long term. For this reason,
understanding that the degradation process of Li-ion batter-
ies depends on how the battery was used, becomes relevant.
Since the possible combinations of operating conditions can
be infinite, proposing a model that uses the available infor-
mation to extrapolate the degradation process when different
conditions are present becomes of utmost importance.

In a previous work (Perez, Quintero, et al., 2018), the au-
thors proposed a Li-ion battery degradation model, which in-
corporates the impact of arbitrary discharge currents. This
model was represented by a state-space structure, and fitted
using data from a Sony battery (Sony US18650 1.4 Ah Li-ion
battery (Ning & Popov, 2004)). Even though the proposed
model was initially fitted for a specific data set, it was sub-
sequently extended to other brands of Li-ion batteries. The
original results showed that the state-space model was able to
characterize the degradation process properly when the dis-
charge current was equal to its nominal value (1C). However,
when the discharge current was doubled (2C), the proposed
model was not able to follow the experimental degradation re-
sults, although it did have a biased trend. One of the findings
demonstrated that if one of the coefficients of the previously
proposed model was fitted freely, the bias was eliminated.

To improve the previous results, this article proposes the use
of the same structure of the original model combined with
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a Kalman Filter (KF) based approach to resolve the bias to
characterize the degradation of Li-ion batteries. This way,
the model described in this article can be extended to other
Li-ion batteries where only the information provided by the
datasheet regarding the discharge behavior at nominal current
is available. Moreover, the obtained proposed model in ad-
dition to a Similarity-Based-Modeling (SBM) framework is
used to characterize the degradation process when the Li-ion
battery is operated at different values of SOC, instead of the
typical fully charged to fully discharged operating conditions.
This combined approach is then tested on an Electric-Vehicle
(EV) usage profile, where multiple SOC and C-Rate states
can be present. This allows to understand in a better man-
ner the possible degradation trends of Li-ion batteries when
multiple operating conditions can be present.

2. THEORETICAL FRAMEWORK

The battery lifetime is affected by the degradation process
suffered by the battery. Currently, several techniques are
proposed to estimate this process like fuzzy logic (Salkind,
Fennie, Singh, Atwater, & Reisner, 1999), neural networks
(Charkhgard & Farrokhi, 2010), KF (Bishop, Welch, et al.,
2001), Extended Kalman Filter (Bishop et al., 2001), and par-
ticle filter (Olivares, Munoz, Orchard, & Silva, 2013). These
techniques require a battery model that characterizes battery
behavior. Different models are proposed in the literature ac-
cording to the type of variables considered, as explained in
the next subsection.

2.1. Degradation in Li-ion Batteries

The State of Health (SOH) is a concept associated with the
percentage of degradation suffered by the battery in each cy-
cle of operation. The study of the SOH is related to the long-
term battery performance, hence the End-of-Life (EoL) of the
battery can be estimated through the SOH. This indicator al-
lows the decision making process of how to handle and use
the Li-ion battery. Furthremore, the degradation process is
caused by diverse factors such as temperature, cycling rate,
handling and storage, among others.

Various models have been proposed to characterize the degra-
dation process suffered by the battery. Depending on the
model characteristics, they can be classified into mathe-
matical, electrochemical, and electrical-circuit-based models.
Mathematical models use a set of equations to describe bat-
tery properties. The electrochemical models use equations
that describe the chemical behavior of the battery. Further-
more, electric-circuit-based models are those that use equa-
tions obtained from equivalent electrical circuits to describe
the behavior of the battery (Fotouhi, Auger, Propp, Longo,
& Wild, 2016). Some authors include a separate category of
empirical models when classifying the models that describe
the behavior of the battery, which is a type of mathemati-

cal model. Empirical models are more flexible and generally
much simpler when compared to other models (Pola et al.,
2015).

The models proposed consider different aspects to estimate
battery degradation. For example, some models are based on
measurable parameters of the battery such as changes in in-
ternal impedance, temperature, and discharge currents. This
situation is exemplified in the model proposed in (Guha &
Patra, 2018) where the authors fuse two concepts: the loss
of capacity that in this case is defined based on the current
drained to the battery and the increase in internal impedance.
Another example is presented in (Pérez et al., 2017), where
the author uses the concept of Coulomb efficiency to deter-
mine the degradation in the battery. Coulomb efficiency is a
concept that groups various effects that cause degradation in
the battery, simplifying its estimation.

Several degradation models combine the information regard-
ing the discharge current rates curves to characterize its be-
havior. For example, in (Yang, Wang, Xing, & Tsui, 2017)
the authors present a model that characterizes the capacity
degradation using two terms based on a natural logarithm
function. Another example is the empirical model presented
in (Perez, Quintero, et al., 2018) where the model describes
the process of battery degradation considering different dis-
charge C-rates. The model consists of a discrete state-space
model that takes as references the discharge curves. Other
types of model describe the battery degradation considering
the charging process, such as the case presented in (Ning &
Popov, 2004).

2.2. Kalman Filter

The KF (Kalman, 1960) is an algorithm used for estimating
unknown (or not directly measurable) states by fusing cur-
rent noisy measurements with the most recent estimated state
(Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2007). The KF
assumes that the probability density function (PDF) of the es-
timated state is Gaussian and, hence, it can be parameterized
by a mean and a covariance (Arulampalam, Maskell, Gordon,
& Clapp, 2002). For linear systems with Gaussian noises, the
KF is optimal in terms of minimizing the estimation-error co-
variance, which is obtained by the optimal computation of the
so-called Kalman gain.

The linear discrete-time system can be described by a recur-
sive difference equation with the state vector x ∈ <n and the
sensor measurements vector y ∈ <m (Eq. 1)

x(k) = A(k)x(k − 1) +Bu(k − 1) + w(k − 1)

y(k) = C(k)x(k) + v(k)
(1)

where A(k) is the the status transition matrix, and C(k) is
the observation matrix. u(k) and B(k) are the control input
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and the input control matrix. w(k) and v(k) are the process
noise the measurement noise, which are assumed as Gaussian
distributions with covariance matrices Rww and Ree, respec-
tively.

Defining x̂(k) as the state estimation, P̂ (k) the covariance for
the state estimation error, ŷ(k) the measurement estimation,
and y(k) an on-line measurement. The KF can be computed
through a two step prediction-update algorithm (see Algo-
rithm 1 (Candy, 2016)). On the one hand, the prediction step
computes a prediction of the current estimated state ahead in
time. On the other hand, the update step updates/corrects this
predicted state using an on-line measurement of the observed
process.

Algorithm 1 Kalman Filter Algorithm

Initial Conditions
1: x̂(0|0) and P̂ (0|0)

Loop:
Prediction Step:
State prediction

2: x̂(k|k−1) = A(k−1)x̂(k−1|k−1)+B(k−1)u(k−1)

Covariance prediction
3: P̂ (k|k − 1) = A(k − 1)P̂ (k − 1|k − 1)AT (k − 1) +
Rww(k − 1)

Update Step:
Innovation

4: e(k) = y(k)− ŷ(k|k − 1) = y(k)− C(k)x̂(k|k − 1)

Covariance Innovation
5: Ree(k) = C(k)P̂ (k|k − 1)CT (k) +Rvv(k)

Kalman Gain
6: K(k) = P̂ (k|k − 1)CT (k)R−1

ee (k)

State Update
7: x̂(k|k) = x̂(k|k − 1) +K(k)e(k)

Covariance Update
8: P̂ (k|k) = [I −K(k)C(k)]P̂ (k|k − 1)

2.3. Similarity Based Modeling

SBM is a non-parametric technique that estimates the output
of a system through historical data and compares it with the
actual and measured output (Perez, Jaramillo, Quintero, &
Orchard, 2018). It is frequently used in the detection of faults
of various systems (Marins, Ribeiro, Netto, & da Silva, 2018).
A system is described using Eq. 2, where x is the input of
the system, y is the output, and f(·) represents an unknown
function.

y = f(x), x ∈ Rm, y ∈ Rp (2)

The input and output values, obtained from the database, are
separated in two different matrices. Equation (3a) represents
all the known inputs and Eq. (3b) is the corresponding output.

Di = [x1 x2 ... xn] ∈ Rm×n (3a)

Do = [y1 y2 ... yn] ∈ Rp×n (3b)

According to (Perez, Jaramillo, et al., 2018), in SBM, for any
given set of inputs x∗, the output y∗ can be estimated through
a linear combination of matrix Do and a weighing vector de-
noted w. In other words, the estimated output ŷ∗ is equal to
the product between Do and w, hence ŷ∗ = Dow. Equations
(4) and (5) show how to calculate w. The similarity operator
is defined as ∆.

ŵ = (DT
i ∆Di)

−1(DT
i ∆x∗). (4)

w =
ŵ

1T · ŵ
. (5)

3. CHARACTERIZATION OF THE DEGRADATION PRO-
CESS OF LI-ION BATTERIES

According to (Perez, Quintero, et al., 2018), the SOH degra-
dation process of a certain battery can be described in state-
space model as follows:

Transition equation:

x1(k + 1) = ebx1(k) (6)

x2(k + 1) = edx2(k) (7)

Observation equation:

y(k) = ax1(k) + cx2(k) (8)

where, a, b, c and d are parameters which are estimated us-
ing empirical data (for a more detailed description/analysis
of each parameter, please see (Perez, Quintero, et al., 2018)).
Note that this space state model is discretized in terms of the
cycle number; in other words, when we say x1(k) that means
the value of variable x1 at cycle k.

As we review in section 2.1, the battery degradation pro-
cess depends on several factor, such as operation tempera-
ture, depth of discharge, current of discharge, among oth-
ers. Therefore, the parameters a, b, c, and d of the presented
degradation model will vary depending on the operation con-
ditions. In particular, in (Perez, Quintero, et al., 2018), this
degradation model is studied considering the discharge cur-
rent dependency. The authors estimated these parameters us-
ing the information of three degradation processes (1C, 2C,
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Table 1. Mean value and confidence bounds of the model coefficients.

Coefficient Parameter 1-C 2-C 3-C
a Mean Value 0.06108 0.07653 0.06763

Confidence bounds (0.06084, 0.06132) (0.07371, 0.07965) (0.06588, 0.06937)
b Mean Value -0.02905 -0.02896 -0.02093

Confidence bounds (-0.02931, -0.02879) (-0.03165, -0.02627) (-0.02203, -0.01984)
c Mean Value 0.946 0.932 0.9376

Confidence bounds (0.9457, 0.9462) (0.9292, 0.9349) give (0.9357, 0.9395)
d Mean Value -0.0001406 -0.0002115 -0.0003943

Confidence bounds (-0.0001416, -0.0001395) (-0.000225, -0.000198) (-0.0004026, -0.000386)

and 3C), and curve fitting tools. The resultant parameters are
depicted in Table 1. Afterwards, they evaluated the proposed
model with the estimated parameters for other degradation
data sets with the aim of assessing its capability of generaliza-
tion. Their results showed that using this degradation model
with the parameters of Table 1 it is possible to characterize
other degradation processes that are cycled at 1C, 2C or 3C.
Nevertheless, to accomplish more accurate characterizations,
it is necessary to estimate the parameters c for each particu-
lar degradation process. Otherwise, the degradation process
is estimated with a bias, this fact will be illustrated in the fol-
lowing paragraph.

The procedure presented in (Perez, Quintero, et al., 2018) is
applied in order to obtain the degradation model of a battery
whose discharge current is 2C. The results is shown in Figure
1. Despite the fact, that the fitted curve has the same trend
of the experimental data, there exists an evident bias that can
be fixed by changing the value of the parameter c of Eq. (8)
(Perez, Quintero, et al., 2018). Therefore, to compute a better
estimation, it is mandatory to estimate the parameter c for the
particular degradation process. In the following section, we
will present a sequential procedure to learn the best value for
c.

Figure 1. Fitted curve by using the model proposed in (Perez,
Quintero, et al., 2018).

3.1. Estimating the Parameter c for a Degradation Pro-
cess with a Fixed C-Rate

In this case, it is assumed that the battery is cycled with a fixed
C-Rate (although this information can be found in available
datasheets); consequently, we have to estimate c for a sole
degradation process.

Firstly, note that the degradation process described in Eq. (6),
(7) and (8) can be rewritten as:

y(k) = aebkx1(0) + cedkx2(0) (9)

Then, we can introduce a modified observation equation:

ỹ(k) = y(k)− aebkx1(0) (10)

= cedkx2(0) (11)

Defining α(k) = edkx2(0), it is possible to propose the fol-
lowing space state model:

Transition equation:

c(k + 1) = c(k) + ω (12)

Observation equation:

ỹ(k) = α(k)c(k) + ε (13)

where c(k) is the variable of interest and ỹ can be measured.
While ω ∼ N(0, σ2

ω) and ε ∼ N(0, σ2
ε ) are the process

noise and the observation noise, respectively. These noises
are added in the model to formulate a linear Gaussian system,
which allows the application of KF to sequentially estimate
the parameters c. KF is employed because -given this esti-
mation framework- it offers an estimation with minimum ex-
pected square error. The estimation algorithm is summarized
in Algorithm 2. It works as follows. Firstly, the parame-
ters a, b, c0, d are initialized with the mean values of Table 1
(Line 1). Afterwards, it is assumed a normal distribution for
c(0) (Line 2). Then, the loop starts (Line3), where for each
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new cycle ỹ(k) is computed and KF is calculate the estimated
state c(k) ( Line 4 and 5).

Algorithm 2 Computing Sequential Estimations for C

Initialization:
1: a, b, c0, d ∼ Table 1
2: c(0) ∼ N (c0, σ

2
c0) . Initial distribution

Loop:
3: for each new cycle ỹ(k) do
4: K(k)← Kalman Filter Gain
5: c(k) = c(k|k − 1) +K(k) · [ỹ(k)− ỹ(k|k − 1)]

3.1.1. Example Estimation with Fixed Discharge Current

The sequential estimation is applied for the experimental data
of Figure 1. The results for different cycles are shown in Fig-
ure 2; it depicts that the estimation of the degradation process
improved as you have information about more cycles. Even
more, this fact is validated in Figure 3, where the mean square
error (MSE) of the estimation is calculated considering infor-
mation of different number of cycles. We can see that the
MSE quickly decreases as a function of the number of cycles.
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Figure 2. Fitted curves using the estimate of parametersC for
different cycles.

3.2. Estimating the Parameters cs for a Degradation Pro-
cess with Different C-Rates

In this case, it is assumed that the battery is cycled with dif-
ferent C-Rates; consequently, we have to estimate Ci for dif-
ferent degradation processes i = 1, ..., n. For instance, if the
battery is cycled at 1C, 2C and 3C, we have to estimateC1, C2

and C3. The main assumption is that each cycle is performed
at a fixed discharge current, but this current can be distinct
for different cycles. The proposed estimation scheme for this
framework is presented in Algorithm 3. It works using the
previously introduced Algorithm 2. The idea is to execute 2
in parallel for n different degradation models, where n de-
pends on the number of different discharge currents.
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Figure 3. Variation of Mean Square Error as function of the
number of cycles.

Algorithm 3 Computing Sequential Estimations for Cs with
Different C-Rates

Initialization:
1: for i = 1, .., n do
2: ai, bi, ci0, di ∼ Table 1
3: ci(0) ∼ N (ci0, σ

2
ci0) . Initial distribution

Loop:
4: for each new cycle performed at current I(k) do
5: for i = 1, .., n do
6: if i = I(k) then
7: K(k)← Kalman Filter Gain
8: else
9: K(k) = 0

10: c(k) = c(k|k − 1) +K(k) · [ỹ(k)− ỹ(k|k − 1)]

Algorithm 3 is initialized identically than Algorithm 2, that is
parameters a, b, c0 and d are fixed according to Table 1 (Line
2) and a initial normal distribution for ci(0) is assumed (Line
3). Then, the loop starts (Line 4), where for each new cy-
cle performed at certain current I(k), is possible to calcu-
late ỹ(k) and to apply KF in order to compute the estimated
state ci(k) (Line 10). This procedure is executed for each
discharge current model (i = 1, ..., n). Nevertheless, in this
algorithm the Kalman gain is fixed equal to zero when the
current C-Rate is not equal to the corresponding model (Line
9). In other words, the algorithm only correct ci(k) when the
cycled has been performed at current i.

3.2.1. Example Estimation with Different Discharge Cur-
rents

A degradation process at different discharge currents is simu-
lated in order to test the estimation capability of Algorithm 3.
This simulation model was built as follows. Firstly, a Markov
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Chain was created so as to generate a series of discharge cur-
rents that could be 1C, 2C or 3C, see Figure 4.
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Figure 4. Discharge Currents

Secondly, for each discharge current there was one known
degradation model defined according to Eq. (14). Therefore,
this model can be employed as ground truth.

yi(k) = ai · ebik + ci · edik i = 1, 2, 3 (14)

The simulated degradation process is depicted in Figure 5.
We assume that it is not possible to measure the real delivered
capacity due to noise measurements. Thus, instead of the real
delivered capacity, we measure a delivered capacity corrupted
by noise. This fact is illustrated in Figure 5, where the blue
line is the truth value and the red line is the measured value.
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Figure 5. Delivered capacity

Having simulated the complete degradation process, Algo-
rithm 3 is tested with this synthetic data. The results of esti-
mating c1, c2 and c3 are shown in Figure 6. We can see that
even though our estimation algorithm starts with wrong ini-
tial conditions, these parameters are learned as soon as new

cycles are available. Even more, at cycle 80, the algorithm
has already converged to the real values.
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Figure 6. Results of sequential estimation of cs for each
degradation model.

4. CASE STUDY

4.1. Generating a Battery Degradation Model from a
Datasheet

As mentioned previously, the degradation process of batter-
ies is highly complex to model due to the huge number of
operating variables involved in the process; as a consequence
proposing a simulation engine to recreate a degradation pro-
cess is not a straightforward task. In this section a model to
simulate a degradation process is presented.

Overall, battery manufacturers only provide the information
of the degradation processes for a determined and fixed C-
Rate. Nevertheless, in practical applications, batteries are dis-
charged at different currents. Taking into account the above,
in this section we will introduce a battery degradation process
simulation model that considers different discharge currents.
This model is based on the information provided by the bat-
tery’s manufacturer. It works as follows.

1. The degradation curve provided by the manufacturer is
used to fit the degradation model presented in Eq. (6)-
(8). From this, we obtain a, b, c, and d as output of this
step.

2. Given that only one degradation curve is provided by
the manufacturer, the degradation curves at different dis-
charge currents are obtained by scaling the parameters

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

obtained in the previous step (a, b, c and d) with the pa-
rameters of Table 1.

For a better understanding of the proposed procedure, the
next lines illustrate an example. First, we select a battery
whose manufacturer provides the degradation curve at 2C, as
shown in Figure 7. Then, we fit the degradation model pre-
sented in Eq. (6)-(8) to calculate the corresponding param-
eters a2C , b2C , c2C and d2C . The obtained model after the
fitting process is also depicted in Figure 7.

0 20 40 60 80 100 120 140
Number cycle

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 c
ap

ac
ity

Data
Fit

Figure 7. Fitting the degradation model to the degradation
information provided by the manufacturer

Afterwards, we calculate the parameters of the degradation
model for 1C and 3C using as a reference a scaling-based
method using the values of Table 1. For instance, in the case
of 1C:

a1C
aTable1C

=
a2C
aTable2C

(15)

where aTablenC is the parameter a at nC of Table 1. Note that
a2C is known.This procedure is repeated for the other param-
eters at different currents. The underlying assumption of this
scaling method is that the degradation parameters of the bat-
tery under study are related by a direct proportion with the
degradation parameters of the battery of Table 1. Finally, the
resulting degradation processes for different discharge cur-
rents for the battery under study are shown in Figure 8.

4.2. Application of the Proposed Model to an EV Driving
Profile

To understand how the degradation process of a Li-ion battery
varies when diverse operation conditions are present, the in-
formation obtained from a simulated driving profile of an EV
is used. From this profile, information such as the discharge
currents (in terms of C-Rate), along with the corresponding
SOC values, an SBM framework approach is used. The ba-
sis of this approach is presented in (Perez, Jaramillo, et al.,
2018). For this approach the three curves of the different dis-
charge processes are required (in case an user has more infor-
mation, the additional information can be included). Once the
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Figure 8. Results of sequential estimation of cs for each
degradation model.

three curves obtained in Figure 8 are available, the next step
is to calculate the Coulombic efficiency for each case. Figure
9 illustrates the equivalent Coulombic efficiency for each C-
rate. These values are going to be used as the Do vector of
the SBM methodology.
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Figure 9. Evolution of the Coulombic efficiency for different
C-rates.

In this approach, SBM extrapolates an equivalent degrada-
tion factor using the available information when similar con-
ditions are present. Figure 10 shows the delivered normalized
capacity for three realizations when random C-Rates, with
values between 1 and 3, and variable SOC values are present
in each cycle.
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Figure 10. Evolution of the delivered capacity for three real-
izations.
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From Figure 10 it can be noted how the delivered capacity
of each realization is bounded between two dominant trends.
This becomes of great importance for instance when an user
wants to change the application of the battery to other types
of application where less current is required for example,
namely second life application for batteries.

To understand the result of the simulation in a clearer man-
ner, Figure 11 illustrates one realization and less cycles. In
this figure it can be easily appreciated the degradation process
trends and the normalized value of the delivered capacities for
each of the cycles. As expected, for the initial cycles there is
almost no variance of the delivered values, but as the battery
becomes more degraded the variation is more notorious.
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Figure 11. Evolution of the delivered capacity for one real-
ization.

It is important to always keep in mind that the degradation
process of a Li-ion is only one, although sometimes it can be
confused with the delivered capacity due to their similarity.
For example, in a given cycle a battery is discharged at a con-
stant 2C rate, it is possible that the delivered capacity is less
than at 1C conditions, due to the internal chemical reactions
that cause the voltage to cut-off the discharge, or even due
to the increase of the internal temperature of the battery. But
in the immediate next cycle, if the discharge conditions are
modified to a fraction of the current of the previous cycle it
would appear that the battery regenerated, however that is a
completely different phenomena.

5. CONCLUSIONS

In this article, a simulation engine that characterizes the
degradation process of Li-ion batteries was proposed. The
previously proposed model combined with KF can use the
information provided by the manufacturer’s datasheet regard-
ing the degradation process at nominal and controlled condi-
tions, with the purpose of creating expected degradation con-
ditions based on the performance of other Li-ion batteries. In
particular, this model learns its parameters as new cycles are
performed using KF to accomplish this goal. Furthermore, an
SBM scheme was included to perform the analysis of hetero-
geneous operating conditions, specifically C-Rates and vari-

ant SOC. This type of analysis enables the creation of a sim-
ulation engine for the degradation process or deliverable ca-
pacity of Li-ion battery. Consequently, one application of this
simulation engine is to assist the evaluation of the lifetime of
batteries under diverse operating conditions. Moreover, this
simulation engine can assist the decision making process for
second life applications of batteries. The application of the
simulation engine was illustrated with the driving profile of
an EV. These results illustrate the delivered capacity along
the degradation trend. Moreover, given a profile of future
operating loads, this model might be used for EoL prognos-
tic purposes; nevertheless, this idea will be studied in future
work.
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sidad Tecnológica de Panamá and IFARHU (Grant for Doc-
toral Studies), CONICYT-PCHA/Doctorado Nacional/2016-
21161427 and SNI-SENACYT.

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp,
T. (2002). A tutorial on particle filters for on-
line nonlinear/non-Gaussian Bayesian tracking. IEEE
Transactions on Signal Processing, 50(2), 174–188.
doi: 10.1109/78.978374

Bishop, G., Welch, G., et al. (2001). An introduction to the
kalman filter. Proc of SIGGRAPH, Course, 8(27599-
3175), 59.

Candy, J. V. (2016). Bayesian Signal Processing: Classical,
Modern, and Particle Filtering Methods. Wiley. doi:
10.1002/9781119125495

Charkhgard, M., & Farrokhi, M. (2010). State-of-charge esti-
mation for lithium-ion batteries using neural networks
and ekf. IEEE transactions on industrial electronics,
57(12), 4178–4187.

Fotouhi, A., Auger, D. J., Propp, K., Longo, S., & Wild, M.
(2016). A review on electric vehicle battery modelling:
From lithium-ion toward lithium–sulphur. Renewable
and Sustainable Energy Reviews, 56, 1008–1021.

Guha, A., & Patra, A. (2018). State of health estimation
of lithium-ion batteries using capacity fade and inter-

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

nal resistance growth models. IEEE Transactions on
Transportation Electrification, 4(1), 135–146.

Kalman, R. E. (1960). A new approach to linear filtering and
prediction problems. Journal of Fluids Engineering,
82(1), 35–45.

Marins, M. A., Ribeiro, F. M., Netto, S. L., & da Silva, E. A.
(2018). Improved similarity-based modeling for the
classification of rotating-machine failures. Journal of
the Franklin Institute, 355(4), 1913–1930.

Ning, G., & Popov, B. N. (2004). Cycle life modeling of
lithium-ion batteries. Journal of The Electrochemical
Society, 151(10), A1584–A1591.

Olivares, B. E., Munoz, M. A. C., Orchard, M. E., & Silva,
J. F. (2013). Particle-filtering-based prognosis frame-
work for energy storage devices with a statistical char-
acterization of state-of-health regeneration phenomena.
IEEE Transactions on Instrumentation and Measure-
ment, 62(2), 364–376.

Perez, A., Jaramillo, F., Quintero, V., & Orchard, M. (2018).
Characterizing the degradation process of lithium-ion
batteries using a similarity-based-modeling approach.
In Phm society european conference (Vol. 4).

Perez, A., Quintero, V., Jaramillo, F., Rozas, H., Jimenez, D.,
Orchard, M., & Moreno, R. (2018). Characterization of
the degradation process of lithium-ion batteries when
discharged at different current rates. Proceedings of the
Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, 232(8), 1075–1089.
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