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ABSTRACT

Remaining Useful Life (RUL) estimation is critical in many
engineering systems where proper predictive maintenance is
needed to increase a unit’s effectiveness and reduce time and
cost of repairing. Typically for such systems, multiple sen-
sors are normally used to monitor performance, which cre-
ate difficulties for system state identification. In this paper,
we propose a semi-supervised left-to-right constrained Hid-
den Markov Model (HMM) model, which is the first in the
literature to simultaneously address the challenges of semi-
supervised setting, left-to-right constraint, and monotonic-
ity constraint in a multiple-sensor setting. This proposed
method is also effective in estimating the RUL while captur-
ing the jumps among states in condition dynamics. In addi-
tion, based on the HMM model learned from multiple sen-
sors, we build a Partial Observable Markov Decision Process
(POMDP) to demonstrate how such RUL estimation can be
effectively used for optimal preventative maintenance deci-
sion making. We apply this technique to the NASA Engine
degradation data and demonstrate the effectiveness of the pro-
posed method.

1. INTRODUCTION

Machine and equipment monitoring data is increasingly col-
lected and widely used for reliability assessment, lifetime pre-
diction, and operational decision making. Through gather-
ing and utilizing these information, i.e., the degradation sig-
nals from multiple sensors, the essential goal of such stud-
ies is to estimate the health status and make inference about
the remaining useful life (RUL) of a unit accurately (Nelson,
2009). With additional information on system operations,
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the conditional-based maintenance strategy (Mobley, 2002;
Kang & Ju, 2019) can be generated and applied, which can
effectively prevent unexpected failure, significantly improve
process safety and ultimately reduce the overall operation
cost (Caesarendra, Widodo, Thom, Yang, & Setiawan, 2011;
Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2012).

In literature, many research works have focused on degrada-
tion modeling based on the continuous system state, such as
state space model (Sun, Zuo, Wang, & Pecht, 2014), degra-
dation path model (Lu & Meeker, 1993), and health-index-
based approach (Yan, Liu, Zhang, & Shi, 2016). However, for
many degradation systems, the hidden dynamics is not con-
tinuous and present many jumps between states. Therefore,
in order to characterize the system dynamics of those sys-
tems more efficiently, the discrete system state representation
is normally used. Hidden Markov model (HMM) is a discrete
state transition model, which assumes that the transition fol-
lows the Markovian property. In literature, inspired from the
introductory work by (Rabiner, 1989), the research and appli-
cation of HMM on RUL estimation has received heavy atten-
tion in the area of machinery diagnostics and prognostics, i.e.,
predicting the fault time of machines, tools, rolling bearings,
etc (Soualhi, Clerc, Razik, Guillet, et al., 2016; Boutros &
Liang, 2011; T. Liu, Chen, & Dong, 2014). HMM models en-
able capturing the condition dynamics using a finite number
of the latent states, which are trained by the ordered and timed
observations, and show great explanation power onto the pro-
cesses with complicated state transitions. For many of the
HMM models, the structure is simple, typically with a single
layer (Athanasopoulou, Li, & Hadjicostis, 2010; Geramifard,
Xu, Zhou, & Li, 2014). Furthermore, to improve the flexi-
bility of HMM, improvements have also been proposed, such
as the two-layer model (Camci & Chinnam, 2010), factorial
hidden Markov model (Le, Chatelain, & Bérenguer, 2016),
hidden semi-Markov model (Q. Liu, Dong, Lv, Geng, & Li,
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2015), etc. The variety of the extensions enriches the appli-
cability and prediction accuracy in complicated scenarios.

Furthermore, to improve the system performance, meth-
ods to generate maintenance policies are discussed, focus-
ing on different benchmarks, such as average operating time
(Klutke & Yang, 2002), machine cycle time (Liao, Elsayed,
& Chan, 2006), operating costs (Liyanage & Kumar, 2003),
and energy consumption (Luo, Yan, Hu, Zhou, & Pang,
2015). Among the different maintenance practice, preven-
tative maintenance (PM) is commonly discussed, which aims
at retaining a system into certain conditions when it is still op-
erating (Alaswad & Xiang, 2017; F. Wang, Lu, & Ju, 2018).
Following earlier works such as (Barlow & Hunter, 1960),
many models are developed to supervise the decision-making
procedures, such as determining proper maintenance inter-
vals, optimizing consumption on the spare parts, and mini-
mizing related operating costs (W. Wang, 2012). For exam-
ple, paper (Douer & Yechiali, 1994) studies the PM actions
for a system with single machines. Paper (Keizer, Flapper,
& Teunter, 2017) focuses on the system with multiple ma-
chines and complex structures considering the machine con-
dition variations. Furthermore, paper (de Jonge, Teunter, &
Tinga, 2017) takes the survey and feedback from different in-
dustries on the benefit of conditional-based PM techniques
and applications. Extended reviews for the models generat-
ing replacement, repair, and inspection policies are discussed
in (Jardine, Lin, & Banjevic, 2006) and (H. Wang, 2002).

Despite these research efforts, there are still several chal-
lenges to be addressed. 1) Due to the vast advances in sens-
ing and computing technology, multiple sensors have been
widely used to simultaneously monitor the health status of
a unit. These sensors are typically strongly correlated and
each only contains partial information of the degrading unit.
2) The system state is generally not fully observable. Some
states such as the initial state and the failure state are typi-
cally observable but not some of the intermediate states. 3)
There are typically certain constraints in the system dynam-
ics, for example, the system degradation is one-directional
and the degradation signal is monotone without the mainte-
nance (e.g., see Fig. 5 for an example), which implies that
the system state transition is typically one-directional and fol-
lows a particular order. 4) There is no unified framework to
use the multi-sensor degradation signal directly with system
maintenance policy.

To address the aforementioned challenges, we propose a
semi-supervised left-to-right constrained HMM for RUL pre-
diction using multiple sensors. The use of semi-supervised
learning framework ensures that the proposed method can ef-
ficiently combine information from the observable and non-
observable states. Imposing both the left-to-right constraint
and monotonicity constraint is important to degradation sys-
tems and can also dramatically stabilize the training for multi-

sensor systems. Even though the left-to-right constraint has
been addressed in the literature, however, an HMM model
combining with the monotonicity constraint in a multiple
sensor setting has been not studied before. We also derive
the RUL distribution under the proposed framework. These
research efforts provide fundamental support to future ma-
chine performance improvement and operation control, such
as working mode control and preventative maintenance.

The rest of the paper is organized as follows: Section II re-
views the literature. Section III develops the proposed frame-
work and details the estimation and decision algorithms.
Section IV demonstrates the effectiveness of the proposed
methodology based on the degradation dataset for aircraft gas
turbine engines in (Saxena & Goebel, 2008) that contains 21
sensor signals. Finally, Section V provides a conclusion and
discussion of future directions.

2. PROBLEM FORMULATION

In this work, we propose a decision-analytic framework from
the degradation data. The proposed methodology contains
two steps: 1) we are able to learn the system dynamics and
then estimate the remaining useful life of the system based on
a semi-supervised constrained Hidden Markov Model. 2) The
learned system dynamics enable us to maintain the system
appropriately to increase the lifetime of the system based on
the estimated hidden states in the POMDP framework.

2.1. Hidden Markov Model

HMM is a probabilistic model which describes the transitions
of a finite number of states over time. These states charac-
terize two stochastic processes: the hidden state transition
in discrete time and an observed process. In addition, three
sets of probability distributions are utilized to characterize the
system dynamics: the initial probabilities for all the hidden
states; the transition probabilities between two hidden states
and the emission probabilities of an observation from a hid-
den state. The elements of an HMM are defined as follows:

• Let Q = {1, · · ·K} denote the set of hidden states, with
the total number of states to be K. We denote Si,t ∈ Q
as the system state at time t for unit i ∈ {1, · · · , n}. Fur-
thermore, we denote Ski,t as a binary variable according
to whether the system for unit i at state k in time t.

• A transition probability matrix is defined as A = {pkk′},
in which pkk′ is the transition probability that the sys-
tem state is changed from state k to state k′, k, k′ ∈
{1, . . . ,K} at time t,

pkk′ = P (Si,t+1 = k|Si,t = k′), 1 ≤ k, k′ ≤ K. (1)

• An emission probability is defined on multi-variate re-
sponse Oi,t by two sets of matrix B = {µk,Σk}, in
which µk is the mean of multiple sensors in state k,
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and Σk denote the covariance matrix of multiple sens-
ing measurement. In another word,

(Oi,t|Si,t = k) ∼N(µk,Σk),

i = 1, · · · , n, k = 1, · · · ,K. (2)

• An initial state vector Πi = {πi,k} is defined to express
the distribution of the system states for unit i at state k at
t = 1.

Latent S1 S2 S3 St

Observed
O1 O2 O3 Ot

. . .. . .

Figure 1. Illustrative picture of HMM

With the descriptions shown above, for the simplic-
ity and clarification, the full HMM model is given by
Λ = {Q,A,B,Π}. Figure 1 shows the logical dependencies
among different random variables of an HMM. Furthermore,
three major problems can be solved by the HMM (Rabiner,
1989):

• Evaluation problem- Given an HMM Λ and an observa-
tion sequence {Oi,t}Tt=1 = (Oi,1,Oi,2, . . . ,Oi,T ), find
the probability that the sequence {Oi,t}Tt=1 is accrued,
or P ({Oi,t}Tt=1|Λ), using the modeling. Such a prob-
lem is also called the evaluation problem. Specifically
in fault prognostic, this problem is considered as failure
detection.

• Decoding problem- Given an HMM Λ and an obser-
vation sequence {Oi,t}Tt=1, identify the system state at
each time t or estimate P (Si,t|{Oi,t}Tt=1).

• Learning problem- Find the parameters in the model
Λ (the A,B,Π) that maximize the probability
P ({Oi,t}Tt=1|A,B,Π).

2.2. Semi-supervised Left-to-right constrained Hidden
Markov Model for Prognostics modeling

1 2 3 K − 1 K. . .

Figure 2. One directional Semi-supervised State Transition,
Initial 1 and failure state K are typically observable

To model the system degradation, we assume that the system
can only degrade to worse state over time, which means that

the transition is only one-directional. Therefore, we assume
that the transition matrix is left-to-right only. Finally, we as-
sume that the failure state is the only absorbing state in the
system.

Commonly, EM algorithms are used for finding the maximum
likelihood estimate of the parameters of a hidden Markov
model given a set of observed feature vectors. However, the
traditional EM algorithm is not able to provide the transition
matrix with left-to-right constraint. Furthermore, the naive
implementation of constraint such as mask out the transition
matrix does not lead to robust estimation of the transition ma-
trix and emission parameters. Here we propose to modify the
EM algorithm of the HMM learning based on the left-to-right
constraint and the monotonicity constraint in the multiple-
sensor setting, which has not been addressed before. Due to
the fact that the signal is mostly monotone, in each iteration,
we rank the posterior mean µ1 < · · · < µk, where k is the
number of states.

2.3. Estimation of the constrained Hidden Markov Model

In this section, we will introduce the notation and framework
of the HMM. The random variable Oi,t denotes the ith signal
observation at time t and Si,t is the hidden state which denotes
the health condition for the systems under consideration. The
following is the joint likelihood of the problem.

P ({Oi,t}i,t) =

N∑
i=1

∑
s1,··· ,sT

P ({Oi,t}Tt=1, {Si,t}Tt=1)

=

N∑
i=1

∑
s1,··· ,sT

P (Si,1)

T∏
t=2

P (Si,t|Si,t−1)

T∏
t=1

P (Oi,t|Si,t)

(3)

However, the joint likelihood is not tractable. The inference
can be broken down into the forward-backward algorithm and
the Baum-Welch Algorithm.

The goal of the forward-backward algorithm is to decode the
system state given the degradation signals in (4). The step
of Forward-backward algorithm of the proposed method is
the same with ordinary HMM. For more details, please see
(Rabiner, 1989).

γkt = P (Skt = 1|{Ot}Tt=1) (4)

However, the original Baum-Welch algorithm cannot be used
for the semi-supervised setting with the monotonicity con-
straint. Therefore, we proposed to modify the Baum-Welch
algorithm to address the semi-supervised challenge, multiple
sensors challenge, and the monotonicity state constraint as
follows:
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1) Addressing the challenges of semi-supervised state and
multiple sensors The starting state and failure state are typi-
cally observable. For these states, we can directly estimate the
mean and covariance matrix from the multiple sensor mea-
surements. The mean µk and covariance matrix Σk of ob-
served state k can be estimated as:

µk =
1

Nk

n∑
i=1

T∑
t=1

Ski,tOi,t

Σk =
1

Nk

n∑
i=1

T∑
t=1

Ski,t(Oi,t − µk)(Oi,t − µk)T

where, Nk =

n∑
i=1

T∑
t=1

Ski,t.

(5)

For the unobserved system states, we first use the forward-
backward algorithm to estimate the posterior probability of
unit i in state k and time t as γi,k(t) = P (Ski,t = 1|{Ot}Tt=1).
The mean and covariance matrix for each state k can be esti-
mated as follows:

µk =
1

Nk

n∑
i=1

T∑
t=1

γi,k(t)Oi,t

Σk =
1

Nk

n∑
i=1

T∑
t=1

γi,k(t)(Oi,t − µk)(Oi,t − µk)T

where, Nk =

n∑
i=1

T∑
t=1

γi,k(t).

(6)

2) Addressing the challenges of left-to-right state transition
and monotone degradation signals We have the prior knowl-
edge that µk′j > µkj should be larger for system state k′ > k
for some sensor j, and µk′j < µkj should be smaller for sys-
tem state k′ > k for the other sensor j. We propose to sort the
(µ1, · · · ,µk) = sort(µ1, · · · ,µk) according to the majority
voting procedure.

Finally, the initial probability is πik = γik(1) and the state
transition matrix can be estimated in the following:

p̃kk′ =

∑T−1
t=1 ξkk′(t)∑T−1
t=1 γk(t)

where, ξkk′(t) = P (St−1 = k, St = k′|O; θ)

(7)

However, the estimated pkk′ are without any constraint. To
impose the left-to-right constraint, we propose to perform the

following update step.

pkk′ =

{
0 k < k′∑K
k=k′ p̃kk′ k ≥ k′ (8)

(µ1, · · · ,µk) = sort(µ1, · · · ,µk) (9)

Through our simulation study, the combined sorting (9) and
projection (8) to lower triangular matrix could dramatically
increase the robust of the training procedure than using the
projection (8) alone.

The overall algorithm is summarized as follows:

Algorithm 1: Constrained HMM Fitting
Input: Number of state K, Multi-sensor observation Oi,t
Output: Transition Pij , emission µk,Σk
initialization;
Forward-backward algorithm and update state posterior
distribution.

Estimate observed state emission using (5)
while Not converged do

Estimate unobserved state emission using (6)
Estimate transition (7)
Projection and state sorting (4)

end

2.4. Deriving the Remaining Useful Life Distribution

To estimate the RUL, we first need to find out the RUL for
each state k as Tk. To achieve that we propose to simulate the
Markov Chain starting from state k according to the estimated
transition matrix pij . Finally, based on the Monte Carlo sim-
ulation results, we are able to find the empirical distribution
for Tk. And then we can estimate the RUL with the posterior
distribution. More specifically, the RUL for unit i at time t
is denoted as RULi(t). To estimate the RUL, we first need
to estimate the posterior distribution of system state, denoted
as γi,k(t) from the forward-backward algorithm. Therefore,
the RUL is a mixture distribution of Tk given the system state
distribution as

RULi(t) =
∑

γi,k(t)Tk. (10)

3. PREVENTATIVE MAINTENANCE DECISION USING
POMDP

Given the RUL prediction, the next problem is to find the
optimal PM policies to maximize the long-term engine per-
formance, considering the dynamics of the engine condi-
tions. To solve the problem, we develop a Partial Observ-
able Markov Decision Process (POMDP) model based on the
learned HMM from the previous section. This section details
the model and the solution approach.

First of all, we make the following assumptions to describe
the maintenance and repair operations:
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• For any operating state, the engine can operate normally
in each cycle. The transition rules among the machine
states are as follows (shown in Figure 3). If no main-
tenance is performed (as the solid arrow shows), for a
machine working at state i, i = 1, 2, · · · ,K − 1, it can
remain at the same state i, transfer to the next worse state
i + 1 during the next cycle. The probabilities can be
found from the state transition probabilities obtained in
the HMM, from matrix A as introduced in Section 2.1.

1 2 3 K − 1 K

φ2 φ3 φK−1

. . .

. . .

Figure 3. Engine state transition diagram with PM actions

• When the engine fails from state K, the failure is con-
sidered critical and full maintenance (i.e., repair) should
be performed, the time of which follows a geometric dis-
tribution with mean µ−1. At this time, the machine will
be fully repaired and restored to the best operating state
(state 1, or the “brand new” state). We further expand the
matrix A to A∗ by adding the repairing process into the
matrix.

A∗(i, j) =


A(i, j) i, j ∈ {1, . . . ,K − 1},
1− µ i = j = K,

µ i = K, j = 1,

0, Otherwise.

(11)

• When the engine is in any imperfect operating state
(2, . . . ,K) at the beginning of a time slot, the decision
maker can choose whether to perform PM or not (as the
dashed lines suggest in Figure 3). We define φi to repre-
sent the PM states that the engine enters from imperfect
operating state i, i ∈ {2, . . . ,K}.

• If PM is performed, then imperfect PM is allowed to re-
cover the machine state to any better operating states.
The transition probabilities for PM are state-dependent,
and we further define the PM recovery matrix Ψ =
{Ψ(i, j)} to represent the probabilities that the engine
is recovered to state j when it is under PM state at state
φi.

A discrete-time Markov model can be built based on the
problem descriptions. The state space of the system con-
tains the operating states, the failure state, and the PM
states, and therefore can be expressed as S = {1, . . . ,K −
1,K, φ2, . . . , φK−1}.

The action space π is a collection of all possible PM actions
given the engine state S ∈ S . Let aij denote that PM ac-
tion is taken to recover the engine state from state i to j,
i ∈ {2, . . . ,K − 1}, j ∈ {1, . . . , i − 1}. Then the set can
be expressed as π = {aij} with finite elements to represent
the collections of all possible maintenance actions.

To determine the transition of the system state, the transi-
tion dynamics for both the robotic arm states and the prod-
uct quantities should be considered. Denote St = i and
St+1 = j ∈ S, given au,v ∈ π which represent the state
of the system at time t and t + 1, and the control policy re-
spectively. Let X = {X(St, at, St+1)} represent the state
transition probability matrix for the system, then the values
for the matrix can be obtained, using the state transition ma-
trix A∗ and the PM recovery matrix Ψ, with the equations
shown as follows:

X(i, au,v, j) =



A∗(i, j) i 6= u and i, j ∈ {1, . . . ,K},
1, i = u and j = φi,

Ψ(u, v) i = φu, and j = v,

1−Ψ(u, v) i = φu, and j = φu,

0, Otherwise.
(12)

The reward of the system is counted towards the total number
of cycle time under normal operations. Let r(S, a) denote
the reward of taking action a when the system is in state S,
then the system reward can be expressed using the equation
as follows:

r(S, a) =

{
1, if S ∈ {1, . . . ,K},
0, otherwise,

(13)

Therefore, when the engine is in an operating state, it accu-
mulates one cycle time. On the other hand, if the engine is
down or under maintenance, then no reward will be received.

Since all the latent states are non-observable, we use a belief
distribution over states, or the a belief state denoted as b =
b(S) ∈ B, to represent the likelihood that the system is in
latent state S under a set of belief B. First, define

Z(S, a,O) = Pr(Ot+1 = O|St+1 = S′, a) (14)

as the distribution that an observation will be captured when
the engine is in state S′ and action at was conducted. No-
tice that this is the decoding problem (as discussed in Section
2.1), which can be solved by the HMM using the historical
observations. Then the transformation of the belief state to
S′ given action a and observation O can be further expressed
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in the transition expression as follows:

bao(S′) =

Z(S′, a, O)
∑
S∈S

X(S, a, S′)b(S)∑
S′∈S

{
Z(S′, a, O)

∑
S∈S

X(S, a, S′)b(S)
} (15)

Let Jπ(b0) denote the expected total discounted cost given b0
under policy π ∈ π; that is

Minimize
π

Jπ(b) = E[

∞∑
t=1

ηtR(b, π)|b0], (16)

where
R(b, a) =

∑
S∈S

b(S)r(S, a),

0 < η < 1 is a discount factor and π includes all the decisions
to determine the PM policies.

Let Vt(b) denote the expected total achievable reward for the
period t to the infinite horizon given our belief at time t, with
V0(·) = 0, then

Vt(b) = min
a∈π

{
R(b, a) + η

∑
b′

Pr(O|a, b)Vt+1(bao)
}
, (17)

in which

Pr(O|a, b) =
∑
S′∈S

{
Z(S′, a, O)

∑
S∈S

X(S, a, S′)b(S)
}
.

On the right-hand side of Equation (17), it explicitly describes
the two components of the reward: the reward for the cur-
rent state at time t, and the discounted reward of reaching
all the possible system states starting from the next time pe-
riod. Then the optimal policies starting from time zero can be
calculated by using the value iteration approach (Puterman,
2005).

4. CASE STUDY

4.1. Introduction to NASA Engine dataset

In this case study, we use the degradation dataset the turbofan
engine provided in (Saxena & Goebel, 2008) to implement
and evaluate our proposed HMM approach. The dataset is
generated from Commercial Modular Aero-Propulsion Sys-
tem Simulation (C-MAPSS) and has been widely applied to
simulate the machine degradation process due to the reasons
such as engine wear and tear (Y. Liu, Frederick, DeCastro,
Litt, & Chan, 2012). Furthermore, the dataset considers the
usage pattern under various operational conditions obtained
from multiple sensors. The schematic diagram of the com-
mercial aircraft gas turbine engine is shown in Fig.4.

In the dataset, there are in total n = 100 units of run-to-failure
experimental data, with 20631 records of observations (i.e.,

Figure 4. Illustrative picture for the engine systems

∑n
i=1 Ti = 20631). For each record, there are in total 21 fea-

tures/ measurements collected by the sensors, which monitor
the operational conditions at different locations of the engine.
The feature information of all the sensors are summarized in
Table 1 and addition information can be found in research
by (Saxena, Goebel, Simon, & Eklund, 2008). Fig.5 repre-
sents one instance of the run-to-failure sensor data where x-
axis shows the time and y-axis represents the magnitude of
the sensor signal. And the illustration of each sensor can be
found in Table 1

Table 1. Feature descriptions of the dataset

Symbol Description Units
T2 Total temperature at fan inlet ◦R

T24 Total temperature at LPC outlet ◦R
T30 Total temperature at HPC outlet ◦R
T50 Total temperature at LPT outlet ◦R
P2 Pressure at fan inlet psia
P15 Total pressure in bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed r/min
Nc Physical core speed r/min
epr Engine pressure ratio (P50/P2) —

Ps30 Static pressure at HPC outlet psia
phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed r/min
NRc Corrected core speed r/min
BPR Bypass Ratio —
farB Burner fuel-air ratio —

htBleed Bleed Enthalpy —
Nf dmd Demanded fan speed r/min

PCNfR dmd Demanded corrected fan speed r/min
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s

To conduct the analysis, we divide the dataset, with 80% of
the units (i.e., 100 × 80% = 80) to be the training units and
the remaining 20% of the units (100 × 20% = 20) to be the
testing units. For the training units, the degrading conditions
of an engine are assumed to be available. All the observations
will be used to train the data fusion model using the proposed
method. For the testing units, the signals are assumed to be
non-observable until they reach some levels before the failure
of the engine is detected. Besides, since for all the testing

6



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

0 50 100 150 200

642

643

644

T24

0 50 100 150 200

1580

1590

1600

T30

0 50 100 150 200

1400

1420

T50

0 50 100 150 200

552

554

P30

0 50 100 150 200
0.0

0.1

0.2

0.3

+2.388×103 Nf

0 50 100 150 200

9040

9050

9060

Nc

0 50 100 150 200
47.0

47.5

48.0

Ps30

0 50 100 150 200

520

521

522

523
phi

0 50 100 150 200

0.0

0.2

+2.388×103 NRf

0 50 100 150 200
8110

8120

8130

8140

NRc

0 50 100 150 200

8.40

8.45

8.50

BPR

0 50 100 150 200
390.0

392.5

395.0

397.5

htBleed

0 50 100 150 200

38.50

38.75

39.00

W31

0 50 100 150 200

23.0

23.2

23.4

W32

Figure 5. Illustration of the run-to-failure sensor signal

units, the mechanism and model formulations of the simula-
tion model are not provided, it is not applicable to infer the
health conditions of the engine using analytical approach (i.e.,
through parameters such as initial wear of units, parameters
of the degradation model, and failure threshold). Therefore,
the study is conducted with the underlying premise that only
the available dataset provided as above is granted to the prac-
titioners for the health status inference and the remaining life-
time predictions for each testing unit.

(a) Ps30 with 6 levels (b) NRc with 6 levels

(c) Ps30 with 9 levels (d) NRc with 9 levels

Figure 6. Sensor Levels with 6 and 9 system states

4.2. Testing Results

4.2.1. System State Estimation and Decoding

We first show the estimated system state for different sensors.
Figure 6 shows the identified states for the selected sensors.
The X-axis is time and the Y-axis is the magnitude of the
signal. We present the results of 6 and 9 system states and
the horizontal line shows the mean value of each state. With
left-to-right constraint on the HMM, we force the state can
only move along one direction. Furthermore, the first and last
states will represent the initial condition and failure condition
of the system. And the estimated states within those two will
represent the health condition of the system. From Figure
6(a) we can see that, as signal decreasing over time, the mean
values of our states also decrease. Figure 6(d) shows that the
mean values of states increase as signal increase. This is due
to the degradation of the system states may demonstrate dif-
ferent trends for different sensors. We can conclude that the
proposed method is able to identify correctly the progression
of the system states and how it would affect the system dy-
namics. Furthermore, with more levels, the proposed method
is able to better discretize the levels with further details.

(a) State identification for sensor 11
and sensor 6

(b) State identification for sensor 1
and sensor 10

Figure 7. States visualization

Furthermore, we would like to show the posterior P (St =
k|{Ot}). Ideally, we should be able to see that the dynamics
of how the system is changing the state gradually.

Figure 8. Illustrative picture for the engine systems
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From Figure 8, we can conclude that clearly the system is
changing states gradually. We can also see that with only 6
states, the states 1-5 are pretty distinct. However, state 0 and
state 1 are pretty close to each other, which can also be seen
in Figure 6 (a) and (b). With 9 system states, the posterior
distribution of which the system is currently at is much noisy.
The reason is that the states become more and more similar to
each other. It is typically very hard to distinguish these states.
However, this would not affect the RUL estimation accuracy
since the similar states also share similar RUL, which can be
observed in the next subsection.

4.3. RUL Prediction

Figure 9 shows the actual residual life with the red line and
predicted residual life with the black line. From the result, we
can observe that, the prediction error is large at the beginning.
But when the system is close to the failure state, the error
becomes smaller. Furthermore, with more system states in
the system, the RUL follows the true RUL better.

(a) 6 system states (b) 9 system states

Figure 9. RUL predictions with 6 and 9 system states

4.3.1. Prediction Accuracy

For each validation unit, we calculate the relative percentage
error in predicting the actual failure time of the engine, with
the performance measurement expressed as follows:

ε =
(tob + tpred)− ttrue

ttrue
× 100%, (18)

which tob is the observed operating time, tpred is the pre-
dicted remaining life time using our model, and ttrue is the
total operating time of the engine. Note that each life per-
centile is equal to the current number of cycles observed up
to that life percentile plus the predicted number of cycles until
failure, which is estimated using our proposed model.

From Figure 10, we can conclude that when observing more
data, the prediction accuracy of both systems with 6 and 9
states would drop accordingly. Finally, with only 60% mea-
surement data, the accuracy of RUL prediction is dropped be-
low 0.1, which shows a great prediction power. Finally, the
results with 9 states perform a bit better than 6 states due to
better state identification. Furthermore, even with 9 states,
the proposed algorithm is able to learn each state accurately,

(a) 6 system states (b) 9 system states

Figure 10. Boxplot of prediction accuracy with 6 and 9 sys-
tem states when observing 10%-80% of data

which shows how the added constraint in the HMM help to
learn a better and more stable state representation.

4.4. Preventative Maintenance Policy

Based on the results of the HMM with six latent states, we can
generate the PM policies for the engine. The state transition
matrix can be expressed as follows:

A∗ =



1 2 3 4 5 6

1 0.094 0.838 0.048 0.018 0.004 0
2 0 0.957 0.040 0.003 0 0
3 0 0 0.980 0.020 0 0
4 0 0 0 0.974 0.012 0.014
5 0 0 0 0 0.958 0.042
6 0.025 0 0 0 0 0.975


For the transition from state 6 to state 1, we assume that the
time for the repairing process follows a geometric distribution
with parameter 0.025. The failure of the engine is treated as
a severe event, which usually takes long time to repair.

Furthermore, we assume that the PM recovery matrix has the
following format:

Ψ =



1 2 3 4 5

1 0 0 0 0 0
2 0.112 0 0 0 0
3 0.084 0.126 0 0 0
4 0.070 0.126 0.136 0 0
5 0.030 0.034 0.040 0.054 0


Note that the time and the conditions of the engines after
maintenance, in practice, is determined by the hours of labors
and the level of tooling under the specific applications (Ja,
Kulkarni, Mitra, & Patankar, 2001). For example, for the vi-
bration severity of the engines, the ISO IS2372 standard clas-
sifies different levels with different criteria and pratice guide-
lines (Kiangala & Wang, 2018).

Then we implement the proposed POMDP approach, with
η = 0.99, to derive the optimal control policy for the pro-
duction performance. The optimal policy indicates that when
the engine is in state 5 or 4, PM actions should be performed,
which will recover the engine state to state 3. For the other
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operating states, no PM will be scheduled. By conducting
such PM performance, simulation experiments can show that
the long-term engine efficiency, which has the format of:

Efficiency =
Total operating time

Total time including maintenance
, (19)

will raise from 0.746 to 0.874, which is an over 15% increase
on long term engine performance.

In practice, to apply the PM polices onto the engine, alarms
can be set up on the threshold values of different features un-
der the latent states in which PM are needed. For example, in
Figure 11, when the signal level of sensor 10 reaches above
47.75, or the value for sensor 1 is above 643, an alarm will
pop-up to schedule the PM. Then through continuous repair-
ing and testing, the signal level will be recovered to lower
levels, i.e., the value for sensor 10 will drop to 47.50 after
PM.

Figure 11. Maintenance strategy illustration using sensor 1
and 10

5. CONCLUSION

In this paper, we develop a semi-supervised left-to-right con-
strained HMM model to estimate the RUL of degrading unit
using multiple sensors. The information from multiple sen-
sors is utilized to identify the system state. Then the RUL is
estimated as the earliest time of reaching to the failure state
given a new observation. Furthermore, we propose a POMDP
method based on the developed HMM to determine the opti-
mal preventative maintenance strategy for the system under
consideration. In the case study, We utilize the NASA En-
gine data set to demonstrate the effectiveness of the proposed
method. The results show that the proposed method is ef-
fective in identifying the progression of the system states and
capture the system dynamics with details. The predicted RUL
is close to the ground truth values in the testing dataset. In
addition, the generated preventative maintenance policy is ef-
fective in optimizing engine performance in the long term.

In the future, this work can be extended to more complicated
systems with multiple degrading units, the behaviors of which

are tightly coupled. One typical example is a manufactur-
ing system with multiple machines where each machine ex-
hibits similar degrading dynamics. Analyzing such compli-
cated systems will expose great challenges on system mod-
eling and computational efficiency. Second, the structure of
the models can be further extended, i.e., the HMM model can
be extended to Hidden Semi-Markov Model (HSMM) with
multiple layers. Such an extension enables better estimation
on different time and observation frequency of the degrada-
tion process. Besides, new system improvement and control
methods will be needed to incorporate the additional com-
plexity these modeling extensions will bring.
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ing deterioration processes modeling and rul estima-
tion based on factorial hidden markov models. In 9th
ima international conference on modelling in industrial
maintenance and reliability (mimar) (pp. 108–113).

Liao, H., Elsayed, E. A., & Chan, L.-Y. (2006). Maintenance
of continuously monitored degrading systems. Euro-
pean Journal of Operational Research, 175(2), 821–
835.

Liu, Q., Dong, M., Lv, W., Geng, X., & Li, Y. (2015). A novel
method using adaptive hidden semi-markov model for
multi-sensor monitoring equipment health prognosis.
Mechanical Systems and Signal Processing, 64, 217–
232.

Liu, T., Chen, J., & Dong, G. (2014). Zero crossing and cou-
pled hidden markov model for a rolling bearing perfor-
mance degradation assessment. Journal of Vibration
and Control, 20(16), 2487–2500.

Liu, Y., Frederick, D. K., DeCastro, J. A., Litt, J. S., & Chan,
W. W. (2012). User’s guide for the commercial modu-
lar aero-propulsion system simulation (c-mapss): Ver-
sion 2.

Liyanage, J. P., & Kumar, U. (2003). Towards a value-based
view on operations and maintenance performance man-
agement. Journal of Quality in Maintenance Engineer-
ing, 9(4), 333–350.

Lu, C. J., & Meeker, W. O. (1993). Using degradation mea-
sures to estimate a time-to-failure distribution. Techno-
metrics, 35(2), 161–174.

Luo, M., Yan, H.-C., Hu, B., Zhou, J.-H., & Pang, C. K.
(2015). A data-driven two-stage maintenance frame-
work for degradation prediction in semiconductor man-
ufacturing industries. Computers & Industrial Engi-
neering, 85, 414–422.

Mobley, R. K. (2002). An introduction to predictive mainte-
nance. Elsevier.

Nelson, W. B. (2009). Accelerated testing: statistical models,
test plans, and data analysis.

Puterman, M. L. (2005). Markov decision processes: Dis-
crete stochastic dynamic programming (wiley series in
probability and statistics).

Rabiner, L. R. (1989). A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2), 257–286.

Saxena, A., & Goebel, K. (2008). Turbofan en-
gine degradation simulation data set. [NASA
Ames Prognostics Data Repository]. Retrieved
2019-05-30, from http://ti.arc.nasa.gov/
project/prognostic-data-repository.

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. In 2008 international conference
on prognostics and health management (pp. 1–9).

Soualhi, A., Clerc, G., Razik, H., Guillet, F., et al. (2016).
Hidden markov models for the prediction of impending
faults. IEEE Transactions on Industrial Electronics,
63(5), 3271–3281.

Sun, J., Zuo, H., Wang, W., & Pecht, M. G. (2014). Prog-
nostics uncertainty reduction by fusing on-line mon-
itoring data based on a state-space-based degradation
model. Mechanical Systems and Signal Processing,
45(2), 396–407.

Tobon-Mejia, D. A., Medjaher, K., Zerhouni, N., & Tripot,
G. (2012). A data-driven failure prognostics method
based on mixture of gaussians hidden markov models.
IEEE Transactions on Reliability, 61(2), 491–503.

Wang, F., Lu, Y., & Ju, F. (2018). Condition-based real-time
production control for smart manufacturing systems. In
Ieee 14th international conference on automation sci-
ence and engineering (pp. 1052–1057).

Wang, H. (2002). A survey of maintenance policies of de-
teriorating systems. European journal of operational
research, 139(3), 469–489.

Wang, W. (2012). An overview of the recent advances in
delay-time-based maintenance modelling. Reliability
Engineering & System Safety, 106, 165–178.

Yan, H., Liu, K., Zhang, X., & Shi, J. (2016). Multiple sensor
data fusion for degradation modeling and prognostics
under multiple operational conditions. IEEE Transac-
tions on Reliability, 65(3), 1416–1426.

BIOGRAPHIES

Xinyu Zhao received the B.S. degree from the Department
of Mechanical Engineering, the Jilin University, Jilin, China,
and the M.S. degree from the Department of Mechanical En-
gineering, University of Washington, Seattle, WA, USA, in
2016 and 2018 respectively. He is now working towards
the Ph.D. degree at the School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University,

10



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Tempe, AZ, USA. His research interests are in developing
scalable statistical learning algorithms for large-scale high-
dimensional data.

Yunyi Kang received the B.S. degree from the Department
of Industrial Systems and Engineering, the Hong Kong Poly-
technic University, Kowloon, Hong Kong, China, and the
M.S. degree from the Department of Industrial Systems and
Engineering, Rutgers University, New Brunswick, NJ, USA,
in 2013 and 2015 respectively. He is now working towards
the Ph.D. degree at the School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University,
Tempe, AZ, USA. He was a recipient of the best student paper
finalist in IEEE CASE. His research interests are in modeling,
analysis and real-time control of production systems.

Hao Yan received the B.S. degree in Physics from the Peking
University, Beijing, China, in 2011. He also received the
M.S. degree in Statistics, the M.S. degree in Computational
Science and Engineering, and the Ph.D. degree in Industrial
Engineering from Georgia Institute of Technology, Atlanta,
in 2015, 2016, 2017, respectively. Currently, he is an assis-
tant professor in the School of Computing, Informatics, &

Decision Systems Engineering at Arizona State University.
His research interests focus on developing scalable statisti-
cal learning algorithms for large-scale high-dimensional data
with complex heterogeneous structures to extract useful in-
formation for the purpose of system performance assessment,
anomaly detection, intelligent sampling and decision making.
He is a member of INFORMS and IISE.

Feng Ju received the B.S. degree from Shanghai Jiao Tong
University, Shanghai, China, in 2010, and the M.S. degree in
electrical and computer engineering and Ph.D. degree in in-
dustrial and systems engineering from the University of Wis-
consin, Madison, WI, USA, in 2011 and 2015, respectively.
He is an Assistant Professor with the School of Comput-
ing, Informatics & Decision Systems Engineering, Arizona
State University, Tempe, AZ, USA. His current research in-
terests include modeling, analysis, continuous improvement,
and optimization of manufacturing systems. He is a member
of IEEE, INFORMS, and IISE. He has received multiple pa-
per awards, including the best paper award in IFAC MIM and
best student paper finalist in IEEE CASE and IFAC INCOM.

11


