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ABSTRACT 

Approaches for inferring process control system decision 

trees from plant data have been heavily researched and 

demonstrated, but the utility of applying such decision tree 

inferences for autonomously monitoring, guiding, and 

executing control philosophies has been lacking. The authors 

have implemented an architecture leveraging model-based 

reasoning and graphical programming that investigates the 

utility of using control decision tree inferencing for 

validating, monitoring, and executing control strategies for 

both simple and complex process control problems. The 

techniques are potentially useful for assessing process control 

health, as well as extracting process control knowledge that 

may exist in daily operations but not recognized or well 

understood by analysts and management. Plant operators and 

managers can readily employ such insights for improving, 

augmenting, and extending process control system behavior, 

but can also potentially employ the refined and validated 

decision trees as a supervisory control layer on top of their 

existing control systems. 

1. INTRODUCTION 

Decision trees are a simple but powerful machine learning 

technique used for classification and regression based on a 

supervised learning algorithm (Quinlan, 1986). They predict 

values of a single target variable by applying decision rules 

to a set of input variables that influence the prediction. Like 

many other machine learning approaches, decision trees are 

reasonably good at reliably inferring decision boundaries 

from properly labeled data. Unlike other machine learning 

techniques such as artificial neural networks, decision trees 

capture and present the inferred decision logic in a form that 

is understandable by humans.  

Once a decision tree has been formulated (e.g. inferred from 

data), the same decision tree can be used operationally to 

identify undesirable control decisions and/or, as the authors 

have been researching, automate validated control system 

actions based on monitored plant parameters and states. This 

makes decision trees an interesting and promising machine 

learning tool for applied Prognostics and Health Management 

(PHM) research. 

As the name implies, a decision tree is a tree-like structure 

that displays the decision algorithm by showing the 

relationships between the target variable and the input 

variables.  

Decision trees require a set of data examples in order to create 

the algorithm in a similar way to other machine learning 

techniques such as artificial neural networks, but they are 

easier to understand. A major advantage of decision trees 

over other machine learning techniques is the ability for a 

domain expert to view the relationships. It is also possible to 

generate executable code representing the decision tree.  Due 

to their simplicity, decision trees are used in many different 

industries such as finance, e-commerce, law, insurance, 

manufacturing, batch processing, petroleum, chemical and 

pharmaceutical (Patel and Rana, 2014). In general, decision 

trees are used statically to predict an outcome based on a set 

of input values.  

This paper introduces the basic principles of decision trees 

and describes the implementation of a decision tree algorithm 

within in a real-time simulation application for determining 

the appropriate actions to be taken to control the temperature 

of a room.  

2. DECISION TREE PRINCIPLES 

The following section outlines some basic decision tree 

principles and provides a background for the application of 

decision tree inferencing in industry. 

2.1. Structure 

Graphically, a decision tree is typically drawn upside down, 

consisting of a series of nodes starting from a single root node 

representing the initial decision to be taken as shown in 

Figure 1. 
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Figure 1. General Decision Tree Structure. 

 

Branches downwards from the root node represent possible 

decisions. These branches are known as feature splits. The 

tree continues splitting on decisions until it ends with a 

terminal or leaf node where no more choices can be made. 

The leaf node represents the final decision or proposed 

action. 

2.2. Decision Tree Types 

Depending on the algorithm used to construct the decision 

tree, one or both of the types of data shown in Figure 2 can 

be handled: 

• Categorical Data: Example: hot, cold, high, low... 

• Continuous Data: parametrical or numerical values such 

as a temperature, cost… 

 

a)  

 

b) 

Figure 2. Decision Tree Types. 

Different decision tree algorithms have been developed in the 

past 35 years with improvements in performance and in the 

types of data that can be handled. Several of these are listed 

in Table 1 (Ezzikouri and Fakir, 2010). The first is the ID.3 

(Interactive Dichotomizer 3) algorithm. Also heavily 

researched are the CART (Classification and Regression 

Tree) and C4.5/5.0 algorithms (extensions of the ID.3 

algorithm). Differences in performance have been studied 

and documented (Mohan, 2013 and Cinaroglu, 2016), with 

additional distinctions associated with the support of both 

two-way and multi-way splitting, the ability to create general 

tress vs. binary-only trees, the ability to infer over symbolic 

(categorical) attributes, and the optimization or splitting 

function used to determine how to select optimal split points. 

Table 1. Common Decision Tree Algorithms. 

 

Algorithm Attributes Splitting Splitting 

formula 

ID3 Categorical Multi-way Gini 

CART Categorical and 

Continuous 

2-way Entropy 

C4.5/C5.0 Categorical and 

Continuous 

Multi-way Entropy 

 

 The CART algorithm is based on the Random Forest 

approach, which generates multiple decision trees and selects 

the optimal tree based on majority vote. As in all search 

algorithms, finding an optimal solution can be time 

consuming – with limited certainty as to the goodness of any 

solution – and different algorithmic parameterizations and 

approaches can produce differences in the required 

processing time. The C4.5/5.0 algorithm has been chosen for 

by the authors for this published work due to its demonstrated 
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performance, ability to work well with many types of 

problems, handle both numeric and symbolic data data types, 

and take advantage of multi-way splitting (Yobero, 2018). 

2.3. Decision Tree Creation 

Building a decision tree requires a set of training data 

containing groups of input variables (features) and 

corresponding target variables. The use of symbolic 

categories/values for each input variable helps reduce the size 

of the tree and helps extend human understanding, but 

continuously valued numerical inputs are also possible. The 

approach is to use the values of the features to recursively 

split the data set into smaller and smaller subsets (Rokach and 

Maimon, 2010). 

The decision tree algorithm starts with the entire training set 

and must determine which feature to initially split on.  Each 

feature is tested to determine which one has the greatest effect 

on the target variable. The feature with the greatest effect is 

chosen for the initial split. 

The data set is divided into subsets based on the chosen split. 

In the case of categorical data, a single subset would contain 

the same value for the feature.  For example, if the first split 

is on the feature “comfort level”, then there might be one 

subset with comfort level = ‘too hot’, one subset with comfort 

level = ‘too cold’ and a third subset with comfort level = ‘ok’. 

In the case of continuous data, the algorithm would determine 

the best ranges for that feature. For example, if the split is on 

the feature “pressure”, the subsets could be with pressure  

‘<50’ and pressure ‘>=50’. 

The next level spits are determined using each of the subsets 

and are tested in the same way as the entire dataset. The 

algorithm then continues to split the data into smaller and 

smaller subsets, choosing the best candidate each time until 

either of the following: 

• All features give the same target value. 

• There are no more features to split among 

3. C5.0 ALGORITHM 

The C5.0 algorithm uses the concepts of entropy and 

information gain to determine how to split the data. For a 

target variable with n decision classification categories, the 

entropy is calculated using Eq. (1). 

 Entropy =  S  = ∑ −𝑝𝑖
𝑛
𝑖=1 𝑙𝑜𝑔𝑛(𝑝𝑖) (1) 

where 𝑝𝑖  represents the probability that an input pattern fits 

into to the ith split.  

Entropy indicates the level of impurity of a set of data (a 

measure of difficulty in separating the classes). The higher 

the entropy, the higher the impurity. This is represented 

graphically in Figure 3. 

 

Figure 3. Decision Tree Data Impurity. 

For example, in the context of control decisions, suppose we 

are given a target (control) variable ‘heater’ which can have 

symbolic values “turn on”, turn off” or “do nothing”. A 

subset of data which has 1000 rows with 200 corresponding 

to “turn on”, 300 rows corresponding to “turn off”, and 500 

rows corresponding to “do nothing” would therefore possess 

entropy as in Eq. (2): 

 

S = - 0.2*𝑙𝑜𝑔2(0.2) - 

0.3*𝑙𝑜𝑔2(0.3) - 0.5*𝑙𝑜𝑔2(0.5) 

= 1.4854753 

 

(2) 

The decision tree algorithm must still calculate which input 

variable (feature) to split on.  To do this, the entropy formula 

is used again to calculate the information gain (IG) for each 

feature available for further splitting. Each feature’s IG 

indicates how well the feature will create a pure group of 

values after a split on that input variable (IG = the expected 

reduction in entropy created by the split). The IG is calculated 

by the difference between the entropy of the parent node 

(S(Y)) and the conditional entropy based on the children 

produced by the split (S(Y|X)). This is captured in Eq. (3) 

 IG = [S (Y) – S (Y|X)] 

 
(3) 

where the conditional entropy S(Y|X) is determined from Eq. 

(4). 

S(Y|X)  = −∑ ∑ 𝑝(𝑦𝑖𝑥𝑗)
𝑛
j=1

𝑚
𝑖=1 𝑙𝑜𝑔2(

𝑝(𝑦𝑖𝑥𝑗)

𝑝(𝑥𝑗)
) (4) 

Here, the subscripts are based on m branches from the parent 

node (initial feature) with n branches to consider for its 

children (subsequent feature). Suppose, for the above 

example of 1000 rows of data in the subset the subsequent 

feature ‘window position’ has values:  550 = “open” and 450 

= “closed”, as indicated in Table 2. 

Table 2. Example Dataset Summary. 

 

Given the entropy calculated in Eq. 2, the information gain 

can be calculated for a possible split on ‘Window Position’ 

according to Eq. (5-8): 

 

Window 

position 

 Turn 

Heater on 

Turn Heater 

off 

Do 

nothing 

Open 150 200 200 

Closed 50 100 300 
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S(‘open’) =  

 -150/550*𝑙𝑜𝑔2(150/550) - 

200/550*𝑙𝑜𝑔2(200/550) - 

200/550*𝑙𝑜𝑔2 (200/550) 

        =  1.5726 

 

(5) 

 

S(‘closed’) = - 50/450*𝑙𝑜𝑔2(50/450) 

- 100/450*𝑙𝑜𝑔2 (100/450) - 

300/450*𝑙𝑜𝑔2 (300/450) 

        =  1.2244 

 

(6) 

 
 S(Y|X) = (1.5726*550/1000) + 

(1.2244*450/1000) =  1.4159 
(7) 

 
IG(window position) = 1.48547 – 

1.4159 = 0.06955 
(8) 

The algorithm repeats the same calculations for each feature.  

The decision node will split on the feature that gives the 

highest gain.  The subsets obtained from the split will then be 

used to determine the subsequent splits and the process 

continues until one of the two criteria mentioned above are 

reached. 

4. DECISION TREE INFERENCE – EXAMPLE APPLICATION 

The authors are currently investigating a real-world 

operational application using decision trees to infer process 

control decisions being made by operators that may or may 

not be optimal for managing the process. Results from this 

applied research are briefly provided in section 5 but are 

restricted due to proprietary implications of the data. The 

algorithmic implementation associated with this application 

have been applied here as an academic example. Issues with 

using decision trees with real world plant data are numerous, 

but many can be investigated effectively through 

sophisticated simulations. 

, issues are discussed to aid in both the understanding and 

validation of implemented algorithms, a simple (but well 

understood) hypothetical control system was modelled in 

software. The chosen application implements the decision 

logic necessary to monitor, control and manage the inside 

temperature of a greenhouse by controlling a heating/cooling 

unit and the position of a window (open/closed). A simple 

first principles physics model was implemented in order to 

simulate the thermal behavior of the room. The simulator and 

the decision tree logic that control the model have been built 

separately in order to allow for replacement of the simulation 

model by a data interface that receives data and commands 

from an external system. 

A software object model has been created to simulate the 

heating and cooling behavior of a simple greenhouse, as 

depicted in Figure 4. 

The simulation includes: 

• A rectangular greenhouse structure. The walls are 

assumed to have a thermal conductance that determines 

the heat transfer between the external and internal 

temperatures. 

• A window that, when open, modifies the heat transfer 

rate between the interior and the exterior. 

• A reversible air conditioning unit that can either heat or 

cool the inside of the room. In this simulation, the A/C 

unit can be in one of three states: OFF, HEATING, or 

COOLING. With the current implementation, it is not 

possible to vary the degree of heating or cooling. 

4.1. Simulation Model 

 

Figure 4. Temperature Control Simulation Model. 

The simulator varies the outside temperature cyclically 

between 16°C and 24°C to simulate day and night as shown 

by the blue (trapezoidal) graph in Figure 5.  

 

Figure 5. Simulator Temperature Cycles. 

The inside temperature (shown by the red or sinusoidal 

graph) varies as the outside temperature changes because of 

heat transfer between the room interior and the exterior. The 

way the interior temperature varies will depend on several 

factors: 
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• The difference between the internal and external 

temperatures, 

• Heat transfer through the thermal wall of the room, 

• The position of the window (open or closed), 

• The state of the A/C unit (off, heating, or cooling) 

The model allows the value of a “Comfort Temperature” to 

be adjusted manually to set the desired inside temperature of 

the room. The goal of the example application is to infer/use 

a decision tree to help maintain the actual inside temperature 

of the room as close as possible to the desired comfort 

temperature by acting upon the window position and the A/C 

unit control. The “Comfort Level” value indicates whether 

the occupant of the room is Too Hot, Too Cold or 

Comfortable.  If the inside temperature is within 0.5°C of the 

comfort temperature, the comfort level is “Comfortable”, 

otherwise it is “Too Hot” or “Too Cold” depending whether 

the inside temperature is above or below the comfort 

temperature. This is summarized by Eq. (8). 

 

-Too Hot = TInside >= (TComfort + 0.5) 

-Too Cold =  TInside <= (TComfort - 0.5) 

Comfortable = (TComfort – 0.5) <= TInside  

<= (TComfort + 0.5) 

(8) 

4.2. Model Control 

The simulation model can be controlled in one of four ways: 

• Manually: The window is opened or closed, and the 

state of the A/C unit is set to {‘heating’, ‘cooling’, or 

‘off’} 

• By State Diagrams: State diagrams control the position 

of the window and the state of the A/C unit to maintain 

the inside temperature close to the comfort level. The 

state diagrams are described in more detail in section 

4.2.1 and are used to produce optimum control of the 

room temperature based on state equations. 

• By Decision Tree (as an advisor): A decision tree will 

advise the user what action to take in order to maintain 

the inside temperature close to the comfort level. 

• By Decision Tree (as a controller): A decision tree will 

control the position of the window and the state of the 

A/C unit to maintain the inside temperature close to the 

comfort level. 

The control of the model by the state diagrams and decision 

trees, as opposed to the simulation part of the application, is 

built using an intelligent process software utility developed 

by the authors as part of a G2© based platform for building 

intelligent monitoring and control applications for process 

industries (Walker, 2010). Its principal component is a set of 

graphical programming (GP) blocks that can be created and 

configured to perform complex calculations and control 

functions on process data, leveraging an underlying 

comprehensive library of coded functions and algorithms. 

The GP blocks provided by the utility each implement a 

specific functionality.   Decision trees and state diagrams 

each have a specific set of such GP blocks. The blocks are 

associated with an Execution Controller that will decide how 

and when to execute the blocks. 

4.2.1. State Diagram Control 

A specific set of generic GP blocks enables the creation of 

state diagrams while another is dedicated to the creation of 

decision trees. While the focus of this paper is on decision 

tree creation, utility, and validation, a discussion of the state 

diagram functionality is also included since it provides the 

example application with optimal and verifiable control 

based on equations. In this case, the state diagrams have also 

been used to generate the training data set for the decision 

tree inference and allow the predictions of the tree to be 

compared with the logic of the optimal state diagram control.  

In a real-life situation, decision tree intelligence could be 

leveraged without the need for such mathematical models 

since the decision tree could be inferred directly from a set of 

historical data. 

In our example, two distinct state diagrams have been 

implemented. One diagram controls the position of the 

window and the other controls the state of the A/C unit. Note: 

based on our implementation, the model cannot be controlled 

simultaneously by both the state diagram and decision tree.  

The state diagram for the window defines two states: Open 

and Closed, as well as the transitions for moving from one 

state to the other. This graphically implemented state diagram 

is depicted in Figure 6, and is summarized below: 

• When the window is closed, it will be opened only when 

the A/C unit is off and if opening the window will have 

a positive impact on the temperature inside, i.e. “if it is 

too warm inside, then open the window only if the 

outside temperature is colder”, and “if it’s too cold 

inside, then open the window only if the outside 

temperature is warmer”. 

• When the window is open, it will be closed when one of 

these conditions is true: 

o A/C is on (cooling or heating) 

o The output temperature has a negative 

impact on the temperature inside 

 

Figure 6. State Diagram Control for Window. 
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The state diagram for window position control is based on the 

state of the A/C unit, the selected comfort level, and the 

difference between the inside and outside temperatures. The 

expressions determine the new state and the action to be 

performed. 

The state diagram for controlling the A/C unit defines 3 

states: AC-Off, Cooling and Heating, as well as the 

transitions for moving from one state to the other (with the 

restriction that we do not allow the A/C to go directly from 

Cooling to Heating or conversely from Heating to Cooling). 

This graphically implemented state diagram is depicted in 

Figure 7, and is summarized below: 

• When the A/C unit is off, it can be turned on either for 

cooling or heating, but in both cases it will check that the 

window is closed before doing so. To start cooling it will 

check that it is too warm inside and warmer outside, and 

to start heating it will conversely check that it is too cold 

inside and even cooler outside. This approach guarantees 

that the A/C unit will not be used in cases where opening 

or closing the window could help solve the temperature 

issue inside the room. 

• When the A/C unit is cooling, it will be turned off it it is 

too cold inside or if the temperature inside is comfortable 

and the outside temperature is colder (i.e. it makes sense 

to open the window instead of using the A/C unit). 

• When the A/C unit is heating, it will be turned off it is 

too hot inside or if the temperature inside is comfortable 

and the outside temperature is warmer (i.e. it makes 

sense to open the window instead of using the A/C unit). 

 

Figure 7. State Diagram Control for A/C. 

With no control decisions (window closed, A/C unit off), the 

external and internal temperature cycles are plotted vs. time 

to produce the graph repeated in Figure 8.  

 

Figure 8. Temperature Cycles with No Control. 

To reflect the behavior (and benefits) of automated control 

using the State Diagram option, another graph showing the 

external and internal temperature cycles that result from state 

diagram control is depicted in Figure 9.  

 

Figure 9. Temperature Cycles with State Diagram Control. 

In this case, the comfort temperature was set to 20º C. As 

before, the trapezoidal graph shows the simulated external 

temperature, while the smaller graph shows the resulting 

internal temperature. The rectangles below the chart provide 

an indication of window position, A/C cooling, and A/C 

heating cycles that result from the state diagram control. 

From this comparison it can be seen how the state diagrams 

attempt to maintain the inside temperature of the room at the 

comfort level. As mentioned previously, a deviation of +/- 

0.5°C is allowed. 

4.3. Decision Tree Inference 

A decision tree was built (inferred) automatically using a set 

of historical data generated by the state diagrams.  Historical 

data was simulated using the simulation model described in 

section 4.1 and was collected over an extended period. For 

the sake of this example, it is assumed that this data contains 

sufficient information for generating a complete decision tree 

(e.g. it contains sufficient behaviors to capture relevant 

control decisions). 

The software utility has been implemented to include a set of 

generic GP blocks that aid in the configuration, training, 

execution, and validation of the decision tree inferencing. 

The approach is as follows: 

1. Reading the historical data from a comma separated file. 

2. Pre-processing the data for input to a decision tree 

creation block. 

3. Executing the decision tree creation block. 

A screenshot of the resulting graphical program is shown in 

Figure 10. The diagram shows both the data pre-processing 

block and the decision tree creation block, as well as the 

directed link that controls the processing flow. 

Table 2 shows an example of the historical data produced 

from the state diagram control system. This data is considered 

raw data, archived according to timestamps and containing 
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Table 2. Example Historical Data. 

Log_Time T_Ext T_Int T_Comfort Window AC Action 

11/03/2019 11:04 16.065 19.501 20 CLOSED AC-OFF DO-NOTHING 

11/03/2019 11:05 15.875 19.464 20 CLOSED AC-OFF START-HEATING 

11/03/2019 11:06 15.955 19.579 20 CLOSED HEATING DO-NOTHING 

control signals that have been formatted with mnemonic 

labels. 

 

Figure 10. Graphical Program for Decision Tree Creation. 

4.3.1. Data Pre-Processing 

The raw simulation data as it exists is not well suited for 

training or creating a decision tree due to its temporal 

characteristics and missing symbolic information. These are 

issues that are further exacerbated in real-world plant data. 

To aid in the creation of decision branches that are 

understandable from a human decision perspective it is 

appropriate to pre-process the raw data and generate new 

columns and/or updated labels. Ideally, this process can be 

automated. In our example, the following pre-processing 

approach is applied to the temperature control raw data: 

• The Log Time (timestamp) column is not actually 

required. 

• The actual values of T_Ext and T_Int must be mapped to 

a new value that indicates whether it is hotter or colder 

outside: 

(if T_INT < T_EXT 

then 'HOTTER-OUTSIDE' 

else 'COLDER-OUTSIDE') 

 

• T_Comfort must be mapped to a ‘Comfort Level’ based 

on the difference between the current inside temperature 

and the comfort level: 

IF T_INT>T_COMFORT + 0.5 then 'TOO-HOT' 

else if T_INT< T_COMFORT - 0.5 then 'TOO-

COLD' else 'COMFORTABLE' 

The resulting dataset after pre-processing is shown in Table 

3. Notice the transformation of the data into a more symbolic 

representation, which will significantly aid in understanding 

and validating the inferred decision tree. 

4.3.2. Decision Tree Creation 

After the software utility has successfully pre-processed the 

data, the transformed data set is fed into a Decision Tree 

creation block that builds the decision tree using the C5 

algorithm described in the section 3. 

The graphical decision tree creation block creates: 

• A graphical representation of the decision tree. 

• A procedural representation of the decision tree in the 

form of a series of nested IF THEN statements. 

For purposes of completeness, an example of the resulting 

decision tree generated from several days of temperature 

control system data is provided in Figure 11.  

Note to the reader: due to font size limitations of this paper, 

the rendered decision tree is not legible in its complete form. 

It is presented to give the reader a feel for the number of 

decision branches that have been inferred from the control 

system logic described in section 4.1 and 4.2. Specific subsets 

of the graphical decision tree will be shared and discussed in 

the following sections.

Table 3. Pre-Processed Historical Data 

T_Int T_Comfort Window AC Action 

COLDER OUTSIDE COMFORTABLE CLOSED AC-OFF DO-NOTHING 

COLDER OUTSIDE TOO COLD CLOSED AC-OFF START-HEATING 

COLDER OUTSIDE TOO HOT CLOSED HEATING TURN-AC-OFF 
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Figure 11. Complete Graphical Decision Tree from Pre-Processed Temperature Control Data. 

 

Examining the leaf nodes of an inferred graphical decision 

tree reveals the final prediction or action recommendation for 

a particular decision path.  In some cases, a leaf node might 

in fact result in multiple possible actions. Figure 12 shows an 

example of one of the leaf nodes that has multiple possible 

actions. 

 

Figure 12. Example Leaf Node with Multiple Actions 

The value at the lower left-hand corner of the node shown in 

Figure 12 indicates that 1610 data samples were in the data 

subset for that termination, however, the resulting action is 

DO-NOTHING or TURN-AC-OFF.  The fact the TURN-

AC-OFF equals 0%, indicates that less than 1% of the 1610 

samples for this branch have this result. In fact, the actual 

split is 1608 DO-NOTHING and 2 TURN-AC-OFF 

4.3.3. Decision Tree Procedural Representation 

Another advantage of decision trees over other machine 

learning techniques is that they represent a simple series of 

tests and decisions. The result indicated by a leaf node can be 

represented by an equation.  The equation for the decision 

path highlighted in Figure 13 is the equation of the action 

DO-NOTHING : 

IF Comfort_Level = “COMFORTABLE” 

AND AC =”AC-OFF” 

AND T_Int = “COLDER-OUTSIDE” 

AND Window = “OPEN” 

THEN Action = “DO-NOTHING” 

 

It is therefore relatively simple to generate a procedure 

representing the complete decision tree. In this way, it is 

possible to execute the decision tree procedure with a set of 

input values and obtain a result. This technique was used by 

the authors in the example temperature control application to 

either advise a user on the best action to take, or to control 

the elements of the room automatically by periodically 

executing the decision tree procedure with the current 

temperatures and states. 

 

Figure 13. Example Graph-to-Procedure. 

4.4. Decision Tree Driven Control 

The two control modes “By Decision Tree as an Advisor” 

and “By Decision Tree as a Controller” described in section 

4.2 allow the decision tree procedure to be executed on 

incoming previously unseen data.  In both cases, the latest 

decision path determined by the decision tree when the 

procedure was executed can also be shown using a similar 

graphical representation. Figure 14 shows an example of an 

animated path and action determined by the decision tree 

procedure. The path and nodes can be animated each time the 

decision tree procedure is executed. 

The charts in Figure 15 compare the results between the 

control performance of the example room temperature by 

state diagrams and decision tree. As one would expect, the 

decision tree performs as well as the state diagram since it 

was built from data produced by the state diagram and 

contains all possible situations.  Real world operations 

involve control strategies that are not as well behaved as our 

example. As a result, a decision tree might be inferred from 

historical data that does not always result in a directly usable 

tree. This is dealt with in more detail in the following 

sections.
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Figure 14. Graphical Representation of Decision Tree Execution. 

 

Figure 15. Control Performance Comparison Between State Diagram and Inferred Decision Tree. 

4.5. Overfitting 

When a decision tree is built from a training data set, it will 

continue splitting the data until no further split is possible.  

With a large dataset obtained from a process history log the 

data may contain “noisy” effects. “Noise” in the context of 

decision tree inferencing refers to situations which result in 

increased entropy of the dataset and therefore difficulty in 

resolving decision boundaries. Basically, these effects can 

greatly impact the accuracy of the generated decision tree. 

Examples of entropy increasing effects include the following 

situations: 

• Effects caused by several examples of data having the 

same input variable values but different actions (see 

Figure 16). 

• Effects caused by data that is incorrect because of 

inappropriate and/or conflicting decisions were actually 

made. 

• Effects caused by data acquisition issues or sampling 

noise. 

• Effects caused by features (input variables) that are not 

relevant to the decision process. 

Since a decision tree will try to perfectly model the data, it 

will also model the data resulting from these effects. This 

could impact the ability of the tree to determine the correct 

result on data that it has not seen before.  This is referred to 

as “Overfitting” and is the main disadvantage with using 

inferred decision trees for executing control. Overfitting can 

cause the tree to be over complex or difficult to read and 

reduces its capacity to “generalize”. Note that too little 

training data will also cause the effect of overfitting. 

There are several techniques to avoid overfitting such as 

defining some criteria to stop growing the tree, removing 

irrelevant attributes, or “pruning” the fully-grown tree 

(Johnson, 2014). In the software utility described in this 

work, the authors used a post-pruning method to remove 

unnecessary parts of the tree after creation. Post pruning can 

be done automatically or manually. 

4.6. Pruning 

Pruning a decision tree consists of replacing insignificant 

sub-trees with leaf nodes. A decision node that only has leaf 

nodes as children can effectively be pruned. An example is 

shown graphically in Figure 16. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

 

 10 

 

Figure 16. Pruning as a Decision Tree Optimization Technique. 

Such groups of nodes (decision parents with only leaves as 

children) are known as “twigs”. Pruning a twig is done by 

replacing the nodes with a single leaf node whose action is 

the majority action among the twig’s leaves. 

• A twig should only be pruned if the result does not 

increase the error-rate of the decision tree. 

The software utility created by the authors (similar to that 

described in Walker, Figueroa, and Toro-Medina, 2017) also 

allows the error-rate of the decision tree to be determined 

programmatically by executing the tree with a test consisting 

of a separate set of data from the training set. The tree is 

executed for each row of the test data and the result provided 

by the tree is compared against the result in the test data. The 

error rate is calculated as the ratio of the number of wrong 

results for the complete test data set. 

Automatic pruning uses a test data set. It executes the tree on 

the test data set and verifies whether the error rate increases 

after each twig is pruned. If the error does not increase after 

pruning a twig, the twig is replaced. The automatic pruning 

will then repeat the operation with a different twig. This 

continues until no more pruning is possible without 

increasing the error rate. 

Pruning is an iterative process that can often be recursive. As 

twigs are pruned, new twigs are often created. This is 

summarized graphically in Figure 17 for the temperature 

control example. In this case, an entire branch 

(“Comfort_Level” = “COMFORTABLE”) renders a pruned 

result of “DO-NOTHING”. This has simplified the tree and 

enabled it to better generalize on new data. An expanded view 

of the before and after graphical decision trees is provided in 

the Appendix. 

In this way it is possible to significantly reduce unwanted 

complexity from a decision tree inferred from data associated 

with an actual industrial process. The pruning process does 

come with some caution, however, as decision tree 

complexity can sometimes indicate other problems that need 

attention and should not be “filtered”. 

5. INDUSTRIAL DECISION TREE APPLICATIONS 

The simple temperature control example presented in this 

paper for decision tree inference and execution has been 

implemented and studied in order to aid in understanding, 

qualifying, and validating the approach prior to (and in 

conjunction with) the application to decision tree inferencing 

in a real-world continuous process plant. Algorithm 

execution, decision tree creation, and pruning have been 

successfully validated using actual plant data for a number of 

control system decision cases and the underlying architecture 

is being applied to several real-world process applications 

(see Figueroa, Underwood, and Walker, 2019). Studied 

applications include those from batch processing, continuous 

processing, petroleum processing, chemical processing, 

pharmaceutical manufacturing, discrete manufacturing, and 

energy production (Walker, 2007). In these applications, 

there have been several significant successes and obstacles. 

Some of the obstacles are summarized in Table 4. 

Table 4. Real-world Obstacles for Decision Trees 

Issue Discussion 

Feature extraction 

and symbolic 

categorization of data 

Plant data is typically parametric 

and continuously valued. 

Improved performance from 

decision tree inference follows 

from categorization of data 

channels using symbolic 

labelling. It is not always obvious 

what these should be. The authors 

continue to explore better 

approaches for feature extraction 

and data labelling but have 

achieved success in 

demonstrating its utility. 

Time lags and delays, 

lack of time 

synchronization in 

data 

Control decisions are generally 

made following awareness of 

trends, conditions, anomalies, or 

faults. Sometimes the decision is 

deferred (due to shift changes, 

delayed awareness, or even 

indifference). In order to capture 
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correlations between trends and 

actions, the decision tree 

algorithm needs to support time 

windows. The authors are 

continuing to research effective 

mechanisms to augment historical 

data with such temporal 

implications. 

Datasets with high 

entropy 

Real world data is noisy (process 

noise, sampling noise) and messy 

making classification difficult due 

to high degrees of impurity. The 

authors have built utilities that 

help the practitioners see the 

correlations in data, check the 

spread of data, and identify 

approaches that help to lower the 

entropy. A screenshot of this 

utility is provided in Figure 17. 

Conflict in decision 

data 

In real world systems the data 

often includes cases where 

different decisions were made 

under similar or identical 

conditions. These cases create 

decision trees which cannot 

resolve the classification without 

error. Again, tools added to the 

decision tree algorithm can help 

identify and resolve these 

situations. 

Required a priori 

knowledge 

The presumption with using 

decision trees is that no 

knowledge about the process or 

decision logic is necessary in 

order to derive the decision tree. 

This is not always the case – 

especially when the data contains 

bad decisions. The authors are 

working with process engineers to 

help identify the appropriate 

amount of domain knowledge that 

should be applied during the 

decision tree inferencing. 

 

Notwithstanding, the authors have successfully deployed 

decision tree inferencing, monitoring, and control for real 

world process plants where good correlations exist in the 

input dataset. The authors have also derived tools for aiding 

in the validation process – tools that provide metrics and 

information regarding the performance of the algorithms 

when subjected to validation data. An example dialog from 

the validation utilities is provided in Figure 18. 

  

Figure 17. Correlation Utilities to aid in preprocessing. 

 

Figure 18. Validation Utilities. 

With the aid of these correlation and validation utilities, the 

authors have been able to successfully infer decision trees 

that perform well on previously unseen data. Furthermore, 

when applying these validated trees for autonomous control 

operations, the decision trees demonstrate similar control 

performance to the original control strategy. However, this is 

clearly a work-in-progress. The authors will continue to apply 

and research decision tree techniques for deriving awareness 

regarding process health, product quality, and predicting 

future failures. The authors will also continue to advance the 

state of the art with regards to validating decision trees for 

supervisory control. The following list summarizes some of 

the successes, benefits, and suggestions for future research 

and desired objectives from the application of decision trees 

for monitoring and control: 

• Improved understanding of underlying decision 

processes associated with operational control system 

logic. 

• Identification of operational expertise not fully 

understood or assimilated within existing corporate 

policy. 

• Identification of anomalous or erroneous control system 

logic and/or human expertise. 

• Implementation of decision support and control system 

decision monitoring according to published concept of 

operations. 

• Improved situational awareness 

• Process health determination and reporting 

• Abnormal Situation Management 
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• Process optimization 

• Automated policy-driven process control and 

supervision 

• Autonomous process operations 

6. CONCLUSION 

Decision trees are a popular machine learning tool and some 

of the principal reasons are as follows: 

• Easy to understand and use 

• Relatively easy to implement 

• Efficient and fast to execute computationally 

• Can operate on different types of data including mixture 

of continuous and categorical variables 

• Data normalization is not necessary 

• Can cover both regression and classification 

A disadvantage is that they are prone to overfitting as 

described earlier. 

The author’s implementation of decision trees has proven to 

be very easy to pre-process data and generate decision trees. 

The resulting decision trees can either be exploited manually 

by using the graphical representation or automatically by 

feeding offline or online data to infer or execute decision tree 

logic in real-time. This approach has shown that decision 

trees can be created, tested, validated, and optimized using 

test data sets and automatic pruning. 

The approach has demonstrated its utility for gaining multiple 

potential benefits for industrial applications, and further work 

is planned for the near future. 
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APPENDIX  

Pruning Example: 

The iterative pruning process described in Section 4.6 

continues searching upwards in the tree to find additional 

“twigs” that have been created by earlier pruning. This 

process allows for potentially complex but unnecessary 

branches to be reduced - thereby improving understandability 

and assessment of results. 

In the simple temperature control example presented in 

Section 4.0, the first pass of pruning produces the elimination 

of one of the twigs associated with the Comfort_Level = 

“COMFORTABLE”. This is shown graphically in Figure A 

as a result from the diagram shown in Figure 15 (reproduced 

here). 

In summary, when the simulated historical data from the 

simple temperature control example is presented to the 

Decision Tree utility, the software transforms the decision 

tree from its initial state to its final state as shown in Figure 

B. 
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Figure A. Iterative Pruning Example from Temperature Control Application. 
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Figure B. Initial and Final Decision Tree (after pruning) from Temperature Control Application 


