

1

Process Control Decision Inference, Monitoring, and Execution
Robert Matania1, Jean-Marie Forêt2, Vicente Camarillo3, and Mark Walker4

1,2,3,4D2K Technologies LLC, Oceanside, CA, 92056, USA

robert.matania@d2ktech.com

jeanmarie.foret@d2ktech.com

vicente.camarillo@d2ktech.com

mark.walker@d2ktech.com

ABSTRACT

Approaches for inferring process control system decision

trees from plant data have been heavily researched and

demonstrated, but the utility of applying such decision tree

inferences for autonomously monitoring, guiding, and

executing control philosophies has been lacking. The authors

have implemented an architecture leveraging model-based

reasoning and graphical programming that investigates the

utility of using control decision tree inferencing for

validating, monitoring, and executing control strategies for

both simple and complex process control problems. The

techniques are potentially useful for assessing process control

health, as well as extracting process control knowledge that

may exist in daily operations but not recognized or well

understood by analysts and management. Plant operators and

managers can readily employ such insights for improving,

augmenting, and extending process control system behavior,

but can also potentially employ the refined and validated

decision trees as a supervisory control layer on top of their

existing control systems.

1. INTRODUCTION

Decision trees are a simple but powerful machine learning

technique used for classification and regression based on a

supervised learning algorithm (Quinlan, 1986). They predict

values of a single target variable by applying decision rules

to a set of input variables that influence the prediction. Like

many other machine learning approaches, decision trees are

reasonably good at reliably inferring decision boundaries

from properly labeled data. Unlike other machine learning

techniques such as artificial neural networks, decision trees

capture and present the inferred decision logic in a form that

is understandable by humans.

Once a decision tree has been formulated (e.g. inferred from

data), the same decision tree can be used operationally to

identify undesirable control decisions and/or, as the authors

have been researching, automate validated control system

actions based on monitored plant parameters and states. This

makes decision trees an interesting and promising machine

learning tool for applied Prognostics and Health Management

(PHM) research.

As the name implies, a decision tree is a tree-like structure

that displays the decision algorithm by showing the

relationships between the target variable and the input

variables.

Decision trees require a set of data examples in order to create

the algorithm in a similar way to other machine learning

techniques such as artificial neural networks, but they are

easier to understand. A major advantage of decision trees

over other machine learning techniques is the ability for a

domain expert to view the relationships. It is also possible to

generate executable code representing the decision tree. Due

to their simplicity, decision trees are used in many different

industries such as finance, e-commerce, law, insurance,

manufacturing, batch processing, petroleum, chemical and

pharmaceutical (Patel and Rana, 2014). In general, decision

trees are used statically to predict an outcome based on a set

of input values.

This paper introduces the basic principles of decision trees

and describes the implementation of a decision tree algorithm

within in a real-time simulation application for determining

the appropriate actions to be taken to control the temperature

of a room.

2. DECISION TREE PRINCIPLES

The following section outlines some basic decision tree

principles and provides a background for the application of

decision tree inferencing in industry.

2.1. Structure

Graphically, a decision tree is typically drawn upside down,

consisting of a series of nodes starting from a single root node

representing the initial decision to be taken as shown in

Figure 1.

Robert Matania et al. This is an open-access article distributed under the

terms of the Creative Commons Attribution 3.0 United States License,

which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

mailto:robert.matania@d2ktech.com
mailto:jeanmarie.foret@d2ktech.com
mailto:vicente.camarillo@d2ktech.com
mailto:mark.walker@d2ktech.com

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

2

Figure 1. General Decision Tree Structure.

Branches downwards from the root node represent possible

decisions. These branches are known as feature splits. The

tree continues splitting on decisions until it ends with a

terminal or leaf node where no more choices can be made.

The leaf node represents the final decision or proposed

action.

2.2. Decision Tree Types

Depending on the algorithm used to construct the decision

tree, one or both of the types of data shown in Figure 2 can

be handled:

• Categorical Data: Example: hot, cold, high, low...

• Continuous Data: parametrical or numerical values such

as a temperature, cost…

a)

b)

Figure 2. Decision Tree Types.

Different decision tree algorithms have been developed in the

past 35 years with improvements in performance and in the

types of data that can be handled. Several of these are listed

in Table 1 (Ezzikouri and Fakir, 2010). The first is the ID.3

(Interactive Dichotomizer 3) algorithm. Also heavily

researched are the CART (Classification and Regression

Tree) and C4.5/5.0 algorithms (extensions of the ID.3

algorithm). Differences in performance have been studied

and documented (Mohan, 2013 and Cinaroglu, 2016), with

additional distinctions associated with the support of both

two-way and multi-way splitting, the ability to create general

tress vs. binary-only trees, the ability to infer over symbolic

(categorical) attributes, and the optimization or splitting

function used to determine how to select optimal split points.

Table 1. Common Decision Tree Algorithms.

Algorithm Attributes Splitting Splitting

formula

ID3 Categorical Multi-way Gini

CART Categorical and

Continuous

2-way Entropy

C4.5/C5.0 Categorical and

Continuous

Multi-way Entropy

 The CART algorithm is based on the Random Forest

approach, which generates multiple decision trees and selects

the optimal tree based on majority vote. As in all search

algorithms, finding an optimal solution can be time

consuming – with limited certainty as to the goodness of any

solution – and different algorithmic parameterizations and

approaches can produce differences in the required

processing time. The C4.5/5.0 algorithm has been chosen for

by the authors for this published work due to its demonstrated

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

3

performance, ability to work well with many types of

problems, handle both numeric and symbolic data data types,

and take advantage of multi-way splitting (Yobero, 2018).

2.3. Decision Tree Creation

Building a decision tree requires a set of training data

containing groups of input variables (features) and

corresponding target variables. The use of symbolic

categories/values for each input variable helps reduce the size

of the tree and helps extend human understanding, but

continuously valued numerical inputs are also possible. The

approach is to use the values of the features to recursively

split the data set into smaller and smaller subsets (Rokach and

Maimon, 2010).

The decision tree algorithm starts with the entire training set

and must determine which feature to initially split on. Each

feature is tested to determine which one has the greatest effect

on the target variable. The feature with the greatest effect is

chosen for the initial split.

The data set is divided into subsets based on the chosen split.

In the case of categorical data, a single subset would contain

the same value for the feature. For example, if the first split

is on the feature “comfort level”, then there might be one

subset with comfort level = ‘too hot’, one subset with comfort

level = ‘too cold’ and a third subset with comfort level = ‘ok’.

In the case of continuous data, the algorithm would determine

the best ranges for that feature. For example, if the split is on

the feature “pressure”, the subsets could be with pressure

‘<50’ and pressure ‘>=50’.

The next level spits are determined using each of the subsets

and are tested in the same way as the entire dataset. The

algorithm then continues to split the data into smaller and

smaller subsets, choosing the best candidate each time until

either of the following:

• All features give the same target value.

• There are no more features to split among

3. C5.0 ALGORITHM

The C5.0 algorithm uses the concepts of entropy and

information gain to determine how to split the data. For a

target variable with n decision classification categories, the

entropy is calculated using Eq. (1).

 Entropy = S = ∑ −𝑝𝑖
𝑛
𝑖=1 𝑙𝑜𝑔𝑛(𝑝𝑖) (1)

where 𝑝𝑖 represents the probability that an input pattern fits

into to the ith split.

Entropy indicates the level of impurity of a set of data (a

measure of difficulty in separating the classes). The higher

the entropy, the higher the impurity. This is represented

graphically in Figure 3.

Figure 3. Decision Tree Data Impurity.

For example, in the context of control decisions, suppose we

are given a target (control) variable ‘heater’ which can have

symbolic values “turn on”, turn off” or “do nothing”. A

subset of data which has 1000 rows with 200 corresponding

to “turn on”, 300 rows corresponding to “turn off”, and 500

rows corresponding to “do nothing” would therefore possess

entropy as in Eq. (2):

S = - 0.2*𝑙𝑜𝑔2(0.2) -

0.3*𝑙𝑜𝑔2(0.3) - 0.5*𝑙𝑜𝑔2(0.5)

= 1.4854753

(2)

The decision tree algorithm must still calculate which input

variable (feature) to split on. To do this, the entropy formula

is used again to calculate the information gain (IG) for each

feature available for further splitting. Each feature’s IG

indicates how well the feature will create a pure group of

values after a split on that input variable (IG = the expected

reduction in entropy created by the split). The IG is calculated

by the difference between the entropy of the parent node

(S(Y)) and the conditional entropy based on the children

produced by the split (S(Y|X)). This is captured in Eq. (3)

 IG = [S (Y) – S (Y|X)]

(3)

where the conditional entropy S(Y|X) is determined from Eq.

(4).

S(Y|X) = −∑ ∑ 𝑝(𝑦𝑖𝑥𝑗)
𝑛
j=1

𝑚
𝑖=1 𝑙𝑜𝑔2(

𝑝(𝑦𝑖𝑥𝑗)

𝑝(𝑥𝑗)
) (4)

Here, the subscripts are based on m branches from the parent

node (initial feature) with n branches to consider for its

children (subsequent feature). Suppose, for the above

example of 1000 rows of data in the subset the subsequent

feature ‘window position’ has values: 550 = “open” and 450

= “closed”, as indicated in Table 2.

Table 2. Example Dataset Summary.

Given the entropy calculated in Eq. 2, the information gain

can be calculated for a possible split on ‘Window Position’

according to Eq. (5-8):

Window

position

 Turn

Heater on

Turn Heater

off

Do

nothing

Open 150 200 200

Closed 50 100 300

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

4

S(‘open’) =

 -150/550*𝑙𝑜𝑔2(150/550) -

200/550*𝑙𝑜𝑔2(200/550) -

200/550*𝑙𝑜𝑔2 (200/550)

 = 1.5726

(5)

S(‘closed’) = - 50/450*𝑙𝑜𝑔2(50/450)

- 100/450*𝑙𝑜𝑔2 (100/450) -

300/450*𝑙𝑜𝑔2 (300/450)

 = 1.2244

(6)

 S(Y|X) = (1.5726*550/1000) +

(1.2244*450/1000) = 1.4159
(7)

IG(window position) = 1.48547 –

1.4159 = 0.06955
(8)

The algorithm repeats the same calculations for each feature.

The decision node will split on the feature that gives the

highest gain. The subsets obtained from the split will then be

used to determine the subsequent splits and the process

continues until one of the two criteria mentioned above are

reached.

4. DECISION TREE INFERENCE – EXAMPLE APPLICATION

The authors are currently investigating a real-world

operational application using decision trees to infer process

control decisions being made by operators that may or may

not be optimal for managing the process. Results from this

applied research are briefly provided in section 5 but are

restricted due to proprietary implications of the data. The

algorithmic implementation associated with this application

have been applied here as an academic example. Issues with

using decision trees with real world plant data are numerous,

but many can be investigated effectively through

sophisticated simulations.

, issues are discussed to aid in both the understanding and

validation of implemented algorithms, a simple (but well

understood) hypothetical control system was modelled in

software. The chosen application implements the decision

logic necessary to monitor, control and manage the inside

temperature of a greenhouse by controlling a heating/cooling

unit and the position of a window (open/closed). A simple

first principles physics model was implemented in order to

simulate the thermal behavior of the room. The simulator and

the decision tree logic that control the model have been built

separately in order to allow for replacement of the simulation

model by a data interface that receives data and commands

from an external system.

A software object model has been created to simulate the

heating and cooling behavior of a simple greenhouse, as

depicted in Figure 4.

The simulation includes:

• A rectangular greenhouse structure. The walls are

assumed to have a thermal conductance that determines

the heat transfer between the external and internal

temperatures.

• A window that, when open, modifies the heat transfer

rate between the interior and the exterior.

• A reversible air conditioning unit that can either heat or

cool the inside of the room. In this simulation, the A/C

unit can be in one of three states: OFF, HEATING, or

COOLING. With the current implementation, it is not

possible to vary the degree of heating or cooling.

4.1. Simulation Model

Figure 4. Temperature Control Simulation Model.

The simulator varies the outside temperature cyclically

between 16°C and 24°C to simulate day and night as shown

by the blue (trapezoidal) graph in Figure 5.

Figure 5. Simulator Temperature Cycles.

The inside temperature (shown by the red or sinusoidal

graph) varies as the outside temperature changes because of

heat transfer between the room interior and the exterior. The

way the interior temperature varies will depend on several

factors:

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

5

• The difference between the internal and external

temperatures,

• Heat transfer through the thermal wall of the room,

• The position of the window (open or closed),

• The state of the A/C unit (off, heating, or cooling)

The model allows the value of a “Comfort Temperature” to

be adjusted manually to set the desired inside temperature of

the room. The goal of the example application is to infer/use

a decision tree to help maintain the actual inside temperature

of the room as close as possible to the desired comfort

temperature by acting upon the window position and the A/C

unit control. The “Comfort Level” value indicates whether

the occupant of the room is Too Hot, Too Cold or

Comfortable. If the inside temperature is within 0.5°C of the

comfort temperature, the comfort level is “Comfortable”,

otherwise it is “Too Hot” or “Too Cold” depending whether

the inside temperature is above or below the comfort

temperature. This is summarized by Eq. (8).

-Too Hot = TInside >= (TComfort + 0.5)

-Too Cold = TInside <= (TComfort - 0.5)

Comfortable = (TComfort – 0.5) <= TInside

<= (TComfort + 0.5)

(8)

4.2. Model Control

The simulation model can be controlled in one of four ways:

• Manually: The window is opened or closed, and the

state of the A/C unit is set to {‘heating’, ‘cooling’, or

‘off’}

• By State Diagrams: State diagrams control the position

of the window and the state of the A/C unit to maintain

the inside temperature close to the comfort level. The

state diagrams are described in more detail in section

4.2.1 and are used to produce optimum control of the

room temperature based on state equations.

• By Decision Tree (as an advisor): A decision tree will

advise the user what action to take in order to maintain

the inside temperature close to the comfort level.

• By Decision Tree (as a controller): A decision tree will

control the position of the window and the state of the

A/C unit to maintain the inside temperature close to the

comfort level.

The control of the model by the state diagrams and decision

trees, as opposed to the simulation part of the application, is

built using an intelligent process software utility developed

by the authors as part of a G2© based platform for building

intelligent monitoring and control applications for process

industries (Walker, 2010). Its principal component is a set of

graphical programming (GP) blocks that can be created and

configured to perform complex calculations and control

functions on process data, leveraging an underlying

comprehensive library of coded functions and algorithms.

The GP blocks provided by the utility each implement a

specific functionality. Decision trees and state diagrams

each have a specific set of such GP blocks. The blocks are

associated with an Execution Controller that will decide how

and when to execute the blocks.

4.2.1. State Diagram Control

A specific set of generic GP blocks enables the creation of

state diagrams while another is dedicated to the creation of

decision trees. While the focus of this paper is on decision

tree creation, utility, and validation, a discussion of the state

diagram functionality is also included since it provides the

example application with optimal and verifiable control

based on equations. In this case, the state diagrams have also

been used to generate the training data set for the decision

tree inference and allow the predictions of the tree to be

compared with the logic of the optimal state diagram control.

In a real-life situation, decision tree intelligence could be

leveraged without the need for such mathematical models

since the decision tree could be inferred directly from a set of

historical data.

In our example, two distinct state diagrams have been

implemented. One diagram controls the position of the

window and the other controls the state of the A/C unit. Note:

based on our implementation, the model cannot be controlled

simultaneously by both the state diagram and decision tree.

The state diagram for the window defines two states: Open

and Closed, as well as the transitions for moving from one

state to the other. This graphically implemented state diagram

is depicted in Figure 6, and is summarized below:

• When the window is closed, it will be opened only when

the A/C unit is off and if opening the window will have

a positive impact on the temperature inside, i.e. “if it is

too warm inside, then open the window only if the

outside temperature is colder”, and “if it’s too cold

inside, then open the window only if the outside

temperature is warmer”.

• When the window is open, it will be closed when one of

these conditions is true:

o A/C is on (cooling or heating)

o The output temperature has a negative

impact on the temperature inside

Figure 6. State Diagram Control for Window.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

6

The state diagram for window position control is based on the

state of the A/C unit, the selected comfort level, and the

difference between the inside and outside temperatures. The

expressions determine the new state and the action to be

performed.

The state diagram for controlling the A/C unit defines 3

states: AC-Off, Cooling and Heating, as well as the

transitions for moving from one state to the other (with the

restriction that we do not allow the A/C to go directly from

Cooling to Heating or conversely from Heating to Cooling).

This graphically implemented state diagram is depicted in

Figure 7, and is summarized below:

• When the A/C unit is off, it can be turned on either for

cooling or heating, but in both cases it will check that the

window is closed before doing so. To start cooling it will

check that it is too warm inside and warmer outside, and

to start heating it will conversely check that it is too cold

inside and even cooler outside. This approach guarantees

that the A/C unit will not be used in cases where opening

or closing the window could help solve the temperature

issue inside the room.

• When the A/C unit is cooling, it will be turned off it it is

too cold inside or if the temperature inside is comfortable

and the outside temperature is colder (i.e. it makes sense

to open the window instead of using the A/C unit).

• When the A/C unit is heating, it will be turned off it is

too hot inside or if the temperature inside is comfortable

and the outside temperature is warmer (i.e. it makes

sense to open the window instead of using the A/C unit).

Figure 7. State Diagram Control for A/C.

With no control decisions (window closed, A/C unit off), the

external and internal temperature cycles are plotted vs. time

to produce the graph repeated in Figure 8.

Figure 8. Temperature Cycles with No Control.

To reflect the behavior (and benefits) of automated control

using the State Diagram option, another graph showing the

external and internal temperature cycles that result from state

diagram control is depicted in Figure 9.

Figure 9. Temperature Cycles with State Diagram Control.

In this case, the comfort temperature was set to 20º C. As

before, the trapezoidal graph shows the simulated external

temperature, while the smaller graph shows the resulting

internal temperature. The rectangles below the chart provide

an indication of window position, A/C cooling, and A/C

heating cycles that result from the state diagram control.

From this comparison it can be seen how the state diagrams

attempt to maintain the inside temperature of the room at the

comfort level. As mentioned previously, a deviation of +/-

0.5°C is allowed.

4.3. Decision Tree Inference

A decision tree was built (inferred) automatically using a set

of historical data generated by the state diagrams. Historical

data was simulated using the simulation model described in

section 4.1 and was collected over an extended period. For

the sake of this example, it is assumed that this data contains

sufficient information for generating a complete decision tree

(e.g. it contains sufficient behaviors to capture relevant

control decisions).

The software utility has been implemented to include a set of

generic GP blocks that aid in the configuration, training,

execution, and validation of the decision tree inferencing.

The approach is as follows:

1. Reading the historical data from a comma separated file.

2. Pre-processing the data for input to a decision tree

creation block.

3. Executing the decision tree creation block.

A screenshot of the resulting graphical program is shown in

Figure 10. The diagram shows both the data pre-processing

block and the decision tree creation block, as well as the

directed link that controls the processing flow.

Table 2 shows an example of the historical data produced

from the state diagram control system. This data is considered

raw data, archived according to timestamps and containing

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

 7

Table 2. Example Historical Data.

Log_Time T_Ext T_Int T_Comfort Window AC Action

11/03/2019 11:04 16.065 19.501 20 CLOSED AC-OFF DO-NOTHING

11/03/2019 11:05 15.875 19.464 20 CLOSED AC-OFF START-HEATING

11/03/2019 11:06 15.955 19.579 20 CLOSED HEATING DO-NOTHING

control signals that have been formatted with mnemonic

labels.

Figure 10. Graphical Program for Decision Tree Creation.

4.3.1. Data Pre-Processing

The raw simulation data as it exists is not well suited for

training or creating a decision tree due to its temporal

characteristics and missing symbolic information. These are

issues that are further exacerbated in real-world plant data.

To aid in the creation of decision branches that are

understandable from a human decision perspective it is

appropriate to pre-process the raw data and generate new

columns and/or updated labels. Ideally, this process can be

automated. In our example, the following pre-processing

approach is applied to the temperature control raw data:

• The Log Time (timestamp) column is not actually

required.

• The actual values of T_Ext and T_Int must be mapped to

a new value that indicates whether it is hotter or colder

outside:

(if T_INT < T_EXT

then 'HOTTER-OUTSIDE'

else 'COLDER-OUTSIDE')

• T_Comfort must be mapped to a ‘Comfort Level’ based

on the difference between the current inside temperature

and the comfort level:

IF T_INT>T_COMFORT + 0.5 then 'TOO-HOT'

else if T_INT< T_COMFORT - 0.5 then 'TOO-

COLD' else 'COMFORTABLE'

The resulting dataset after pre-processing is shown in Table

3. Notice the transformation of the data into a more symbolic

representation, which will significantly aid in understanding

and validating the inferred decision tree.

4.3.2. Decision Tree Creation

After the software utility has successfully pre-processed the

data, the transformed data set is fed into a Decision Tree

creation block that builds the decision tree using the C5

algorithm described in the section 3.

The graphical decision tree creation block creates:

• A graphical representation of the decision tree.

• A procedural representation of the decision tree in the

form of a series of nested IF THEN statements.

For purposes of completeness, an example of the resulting

decision tree generated from several days of temperature

control system data is provided in Figure 11.

Note to the reader: due to font size limitations of this paper,

the rendered decision tree is not legible in its complete form.

It is presented to give the reader a feel for the number of

decision branches that have been inferred from the control

system logic described in section 4.1 and 4.2. Specific subsets

of the graphical decision tree will be shared and discussed in

the following sections.

Table 3. Pre-Processed Historical Data

T_Int T_Comfort Window AC Action

COLDER OUTSIDE COMFORTABLE CLOSED AC-OFF DO-NOTHING

COLDER OUTSIDE TOO COLD CLOSED AC-OFF START-HEATING

COLDER OUTSIDE TOO HOT CLOSED HEATING TURN-AC-OFF

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

8

Figure 11. Complete Graphical Decision Tree from Pre-Processed Temperature Control Data.

Examining the leaf nodes of an inferred graphical decision

tree reveals the final prediction or action recommendation for

a particular decision path. In some cases, a leaf node might

in fact result in multiple possible actions. Figure 12 shows an

example of one of the leaf nodes that has multiple possible

actions.

Figure 12. Example Leaf Node with Multiple Actions

The value at the lower left-hand corner of the node shown in

Figure 12 indicates that 1610 data samples were in the data

subset for that termination, however, the resulting action is

DO-NOTHING or TURN-AC-OFF. The fact the TURN-

AC-OFF equals 0%, indicates that less than 1% of the 1610

samples for this branch have this result. In fact, the actual

split is 1608 DO-NOTHING and 2 TURN-AC-OFF

4.3.3. Decision Tree Procedural Representation

Another advantage of decision trees over other machine

learning techniques is that they represent a simple series of

tests and decisions. The result indicated by a leaf node can be

represented by an equation. The equation for the decision

path highlighted in Figure 13 is the equation of the action

DO-NOTHING :

IF Comfort_Level = “COMFORTABLE”

AND AC =”AC-OFF”

AND T_Int = “COLDER-OUTSIDE”

AND Window = “OPEN”

THEN Action = “DO-NOTHING”

It is therefore relatively simple to generate a procedure

representing the complete decision tree. In this way, it is

possible to execute the decision tree procedure with a set of

input values and obtain a result. This technique was used by

the authors in the example temperature control application to

either advise a user on the best action to take, or to control

the elements of the room automatically by periodically

executing the decision tree procedure with the current

temperatures and states.

Figure 13. Example Graph-to-Procedure.

4.4. Decision Tree Driven Control

The two control modes “By Decision Tree as an Advisor”

and “By Decision Tree as a Controller” described in section

4.2 allow the decision tree procedure to be executed on

incoming previously unseen data. In both cases, the latest

decision path determined by the decision tree when the

procedure was executed can also be shown using a similar

graphical representation. Figure 14 shows an example of an

animated path and action determined by the decision tree

procedure. The path and nodes can be animated each time the

decision tree procedure is executed.

The charts in Figure 15 compare the results between the

control performance of the example room temperature by

state diagrams and decision tree. As one would expect, the

decision tree performs as well as the state diagram since it

was built from data produced by the state diagram and

contains all possible situations. Real world operations

involve control strategies that are not as well behaved as our

example. As a result, a decision tree might be inferred from

historical data that does not always result in a directly usable

tree. This is dealt with in more detail in the following

sections.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

 9

Figure 14. Graphical Representation of Decision Tree Execution.

Figure 15. Control Performance Comparison Between State Diagram and Inferred Decision Tree.

4.5. Overfitting

When a decision tree is built from a training data set, it will

continue splitting the data until no further split is possible.

With a large dataset obtained from a process history log the

data may contain “noisy” effects. “Noise” in the context of

decision tree inferencing refers to situations which result in

increased entropy of the dataset and therefore difficulty in

resolving decision boundaries. Basically, these effects can

greatly impact the accuracy of the generated decision tree.

Examples of entropy increasing effects include the following

situations:

• Effects caused by several examples of data having the

same input variable values but different actions (see

Figure 16).

• Effects caused by data that is incorrect because of

inappropriate and/or conflicting decisions were actually

made.

• Effects caused by data acquisition issues or sampling

noise.

• Effects caused by features (input variables) that are not

relevant to the decision process.

Since a decision tree will try to perfectly model the data, it

will also model the data resulting from these effects. This

could impact the ability of the tree to determine the correct

result on data that it has not seen before. This is referred to

as “Overfitting” and is the main disadvantage with using

inferred decision trees for executing control. Overfitting can

cause the tree to be over complex or difficult to read and

reduces its capacity to “generalize”. Note that too little

training data will also cause the effect of overfitting.

There are several techniques to avoid overfitting such as

defining some criteria to stop growing the tree, removing

irrelevant attributes, or “pruning” the fully-grown tree

(Johnson, 2014). In the software utility described in this

work, the authors used a post-pruning method to remove

unnecessary parts of the tree after creation. Post pruning can

be done automatically or manually.

4.6. Pruning

Pruning a decision tree consists of replacing insignificant

sub-trees with leaf nodes. A decision node that only has leaf

nodes as children can effectively be pruned. An example is

shown graphically in Figure 16.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

 10

Figure 16. Pruning as a Decision Tree Optimization Technique.

Such groups of nodes (decision parents with only leaves as

children) are known as “twigs”. Pruning a twig is done by

replacing the nodes with a single leaf node whose action is

the majority action among the twig’s leaves.

• A twig should only be pruned if the result does not

increase the error-rate of the decision tree.

The software utility created by the authors (similar to that

described in Walker, Figueroa, and Toro-Medina, 2017) also

allows the error-rate of the decision tree to be determined

programmatically by executing the tree with a test consisting

of a separate set of data from the training set. The tree is

executed for each row of the test data and the result provided

by the tree is compared against the result in the test data. The

error rate is calculated as the ratio of the number of wrong

results for the complete test data set.

Automatic pruning uses a test data set. It executes the tree on

the test data set and verifies whether the error rate increases

after each twig is pruned. If the error does not increase after

pruning a twig, the twig is replaced. The automatic pruning

will then repeat the operation with a different twig. This

continues until no more pruning is possible without

increasing the error rate.

Pruning is an iterative process that can often be recursive. As

twigs are pruned, new twigs are often created. This is

summarized graphically in Figure 17 for the temperature

control example. In this case, an entire branch

(“Comfort_Level” = “COMFORTABLE”) renders a pruned

result of “DO-NOTHING”. This has simplified the tree and

enabled it to better generalize on new data. An expanded view

of the before and after graphical decision trees is provided in

the Appendix.

In this way it is possible to significantly reduce unwanted

complexity from a decision tree inferred from data associated

with an actual industrial process. The pruning process does

come with some caution, however, as decision tree

complexity can sometimes indicate other problems that need

attention and should not be “filtered”.

5. INDUSTRIAL DECISION TREE APPLICATIONS

The simple temperature control example presented in this

paper for decision tree inference and execution has been

implemented and studied in order to aid in understanding,

qualifying, and validating the approach prior to (and in

conjunction with) the application to decision tree inferencing

in a real-world continuous process plant. Algorithm

execution, decision tree creation, and pruning have been

successfully validated using actual plant data for a number of

control system decision cases and the underlying architecture

is being applied to several real-world process applications

(see Figueroa, Underwood, and Walker, 2019). Studied

applications include those from batch processing, continuous

processing, petroleum processing, chemical processing,

pharmaceutical manufacturing, discrete manufacturing, and

energy production (Walker, 2007). In these applications,

there have been several significant successes and obstacles.

Some of the obstacles are summarized in Table 4.

Table 4. Real-world Obstacles for Decision Trees

Issue Discussion

Feature extraction

and symbolic

categorization of data

Plant data is typically parametric

and continuously valued.

Improved performance from

decision tree inference follows

from categorization of data

channels using symbolic

labelling. It is not always obvious

what these should be. The authors

continue to explore better

approaches for feature extraction

and data labelling but have

achieved success in

demonstrating its utility.

Time lags and delays,

lack of time

synchronization in

data

Control decisions are generally

made following awareness of

trends, conditions, anomalies, or

faults. Sometimes the decision is

deferred (due to shift changes,

delayed awareness, or even

indifference). In order to capture

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

11

correlations between trends and

actions, the decision tree

algorithm needs to support time

windows. The authors are

continuing to research effective

mechanisms to augment historical

data with such temporal

implications.

Datasets with high

entropy

Real world data is noisy (process

noise, sampling noise) and messy

making classification difficult due

to high degrees of impurity. The

authors have built utilities that

help the practitioners see the

correlations in data, check the

spread of data, and identify

approaches that help to lower the

entropy. A screenshot of this

utility is provided in Figure 17.

Conflict in decision

data

In real world systems the data

often includes cases where

different decisions were made

under similar or identical

conditions. These cases create

decision trees which cannot

resolve the classification without

error. Again, tools added to the

decision tree algorithm can help

identify and resolve these

situations.

Required a priori

knowledge

The presumption with using

decision trees is that no

knowledge about the process or

decision logic is necessary in

order to derive the decision tree.

This is not always the case –

especially when the data contains

bad decisions. The authors are

working with process engineers to

help identify the appropriate

amount of domain knowledge that

should be applied during the

decision tree inferencing.

Notwithstanding, the authors have successfully deployed

decision tree inferencing, monitoring, and control for real

world process plants where good correlations exist in the

input dataset. The authors have also derived tools for aiding

in the validation process – tools that provide metrics and

information regarding the performance of the algorithms

when subjected to validation data. An example dialog from

the validation utilities is provided in Figure 18.

Figure 17. Correlation Utilities to aid in preprocessing.

Figure 18. Validation Utilities.

With the aid of these correlation and validation utilities, the

authors have been able to successfully infer decision trees

that perform well on previously unseen data. Furthermore,

when applying these validated trees for autonomous control

operations, the decision trees demonstrate similar control

performance to the original control strategy. However, this is

clearly a work-in-progress. The authors will continue to apply

and research decision tree techniques for deriving awareness

regarding process health, product quality, and predicting

future failures. The authors will also continue to advance the

state of the art with regards to validating decision trees for

supervisory control. The following list summarizes some of

the successes, benefits, and suggestions for future research

and desired objectives from the application of decision trees

for monitoring and control:

• Improved understanding of underlying decision

processes associated with operational control system

logic.

• Identification of operational expertise not fully

understood or assimilated within existing corporate

policy.

• Identification of anomalous or erroneous control system

logic and/or human expertise.

• Implementation of decision support and control system

decision monitoring according to published concept of

operations.

• Improved situational awareness

• Process health determination and reporting

• Abnormal Situation Management

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

12

• Process optimization

• Automated policy-driven process control and

supervision

• Autonomous process operations

6. CONCLUSION

Decision trees are a popular machine learning tool and some

of the principal reasons are as follows:

• Easy to understand and use

• Relatively easy to implement

• Efficient and fast to execute computationally

• Can operate on different types of data including mixture

of continuous and categorical variables

• Data normalization is not necessary

• Can cover both regression and classification

A disadvantage is that they are prone to overfitting as

described earlier.

The author’s implementation of decision trees has proven to

be very easy to pre-process data and generate decision trees.

The resulting decision trees can either be exploited manually

by using the graphical representation or automatically by

feeding offline or online data to infer or execute decision tree

logic in real-time. This approach has shown that decision

trees can be created, tested, validated, and optimized using

test data sets and automatic pruning.

The approach has demonstrated its utility for gaining multiple

potential benefits for industrial applications, and further work

is planned for the near future.

REFERENCES

Cinaroglu, S., (2016). Comparison of Performance of

Decision Tre Algorithms and Random Forest: An

Application on OECD Countries Health Expenditures.

Intl. J. of Computer Applications. Vol. 138 – No. 1.

March 2016, pp. 37-41.

Ezzikouri, H., & Fakir, M. (2010). Algorithmes de

classification: ID3 & C4.5. Universite Sultan Moulay

Slimane, Beni-Mellal, Maroc.

https://www.academia.edu/33701469/Algorithmes_de_

classification_ID3_and_C4.5.

Figueroa, F., Underwood, L., Walker, M., (2019). NASA

Platform for Autonomous Systems (NPAS). Proceedings

of the AIAA Scitech 2019 Forum. January 7-11, San

Diego, CA.

Johnson, R., (2014). Data Mining. CSE 40647 lectures.

https://www3.nd.edu/~rjons15/cse40647.sp14/www/co

ntent/lectures/24 - Decision Trees 3.pdf.

Mohan, V., (2013). Decision Trees: A comparison of various

algorithms for building Decision Trees.

https://pdfs.semanticscholar.org/3399/c175beca3ab484

3d67f91bb28f564099d0bb.pdf.

Patel, B. R., & Rana, K. K., (2014). A Survey on Decision

Tree Algorithm for Classification. International Journal

of Engineering Development and Research, vol. 2, issue

1, pp. 1-5.

Quinlan, J. R., (1986). Induction of Decision Trees –

Machine Learning (Theory). Boston: Kluwer Academic

Publishers.

Rokach, L., & Maimon, O., (2010). Decision Trees. In

Rokach, L., & Maimon, O. (Eds). Data Mining and

Knowledge Discovery Handbook (pp. 165 – 192). New

York: Springer Publishing.

Walker, M., (2007). Model-based Reasoning Applications

for Remote Intelligent Systems Health Management.

Proceedings of ASNE Intelligent Ships Symposium. May

9-10, Philadelphia, PA.

Walker, M., (2010). Next Generation Prognostics and Health

Management for Unmanned Vehicles. Proceedings of

the IEEE Aerospace Conference. March 6-11, Big Sky,

MO.

Walker, M., Figueroa, F., Toro-Medina, J. (2017). PHM

Enabled Autonomous Propellant Loading Operations.

Proceedings of the Aerospace Conference, March 3-11,

Big Sky MO.

Yobero, C., (2018). Determining Creditworthiness for Loan

Applications Using C5.0 Decision Trees. RPubs. July 9,

https://rpubs.com/cyobero/C50.

BIOGRAPHIES

Robert Matania is a computer and

electronics engineer with over 30 years of

experience in industrial computing and expert

systems. He obtained his BS (Hons) degree in

electronic engineering at Brighton

Polytechnic in 1978. After working as a

software engineer for the mainframe computer manufacturer

ICL in Great Britain, he moved to France in 1981 where he

began work designing and developing SCADA software. He

spent 5 years with the Compagne Generale des Eaux (Veolia)

as a project manager, senior software designer and product

manager. He spent 15 years working for expert system

manufacturer Gensym Corporation as a pre-sales engineer

and then as a senior consultant specializing in artificial

intelligence and expert systems. He also worked as a senior

consultant for UReason applying advanced alarm

management techniques to industrial processes. He is

currently living in France and working as an independent

consultant with D2K Technologies.

https://www.academia.edu/33701469/Algorithmes_de_classification_ID3_and_C4.5
https://www.academia.edu/33701469/Algorithmes_de_classification_ID3_and_C4.5
https://www3.nd.edu/~rjons15/cse40647.sp14/www/content/lectures/24%20-%20Decision%20Trees%203.pdf
https://www3.nd.edu/~rjons15/cse40647.sp14/www/content/lectures/24%20-%20Decision%20Trees%203.pdf
https://pdfs.semanticscholar.org/3399/c175beca3ab4843d67f91bb28f564099d0bb.pdf
https://pdfs.semanticscholar.org/3399/c175beca3ab4843d67f91bb28f564099d0bb.pdf
https://rpubs.com/cyobero/C50

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

13

Jean-Marie Forêt is an experienced

architect, designer, and developer of

intelligent and distributed applications with

more than 30 years of practical experience in

industry. He received his Civil Engineer in

IT degree at the Université Catholique de

Louvain-la-Neuve in Belgium (1983). His

experience in artificial intelligence began in 1983 when he

implemented AI-based applications in VLSI design for

Alcatel Bell, after which he founded AI Systems (1986-

1991). He developed expert systems solutions for EASE

Software Engineering (1991-1994) and was a Senior

Consultant for expert system manufacturer Gensym

Corporation (1995-2001). He also worked as a Senior

Consultant and Knowledge Engineer for UReason B.V.

(2005-2018). He has been working as a senior consultant for

D2K Technologies since 8/2018, focusing on platform

development and machine learning applications. He resides

with his family in Brussels, Belgium.

Vicente Camarillo received his BSEE

from the Instituto Tecnológico de la Laguna

(1992) and his MSCS from the Instituto

Tecnológico y de Estudios Superiores de

Monterrey (2001), with a specialty in

Artificial Intelligence. He has over 20 years

of experience in expert systems development and

deployment, mainly in the mining and metallurgical industry.

His work experience includes time as Controls Engineer for

Servicios Industriales Peñoles (1994-1995) and Met-Mex

Peñoles (1995-2005), as Analyst for Peñoles Center for

Energy Administration (2002-2006), a Senior Solutions

Engineer for SGS de México (20016-2013) and Ignite

Technologies (2013-2016). He has been working as a Senior

Consulting Engineer for D2K Technologies since 12/2016.

He resides with his family in Cd. Lerdo, Mexico.

Mark G. Walker received his BSEE from

Cal Poly University, Pomona (1990), and his

MSCompEng from the University of

Southern California, Los Angeles, CA

(1994), where he specialized in machine

intelligence. From 1976-1983 he served in

the U.S. Navy as a Nuclear Reactor Operator onboard the

U.S.S. Long Beach CGN9. His experience in artificial

intelligence began in 1989 as a DOE undergraduate fellow at

the Center for Engineering and Science Advanced Research

Lab at Oak Ridge National Laboratory where he developed

image processing and perception software for autonomous

robots. His work with HUMS and PHM began with

BFGoodrich Aerospace, Vergennes, VT in 1996, and has co-

authored four patents in the field. He also spent 6 years as

Senior Consulting Engineer for expert system manufacturer

Gensym Corporation and 10 years as Lead Engineer,

Intelligent Systems for General Atomics, where he led GA in

the development of reusable PHM systems applied to various

industries. He founded D2K Technologies in 2014, a

solution provider of intelligent model-based reasoning

solutions for mission critical systems. He also serves as a

PHM and Autonomous Operations SME for NASA, with

active projects at SSC and JSC. He resides with his family in

Oceanside, California.

APPENDIX

Pruning Example:

The iterative pruning process described in Section 4.6

continues searching upwards in the tree to find additional

“twigs” that have been created by earlier pruning. This

process allows for potentially complex but unnecessary

branches to be reduced - thereby improving understandability

and assessment of results.

In the simple temperature control example presented in

Section 4.0, the first pass of pruning produces the elimination

of one of the twigs associated with the Comfort_Level =

“COMFORTABLE”. This is shown graphically in Figure A

as a result from the diagram shown in Figure 15 (reproduced

here).

In summary, when the simulated historical data from the

simple temperature control example is presented to the

Decision Tree utility, the software transforms the decision

tree from its initial state to its final state as shown in Figure

B.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

 14

Figure A. Iterative Pruning Example from Temperature Control Application.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

15

Figure B. Initial and Final Decision Tree (after pruning) from Temperature Control Application

