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ABSTRACT

Estimating accurate Time-of-Failure (ToF) of a system is key
in making the decisions that impact operational safety and
optimize cost. In this context, it is interesting to note that dif-
ferent approaches have been explored to tackle the problem
of estimating ToF. The difference is in part characterized by
different definitions of the hazard zones. The conventional
definition for the cumulative distribution function (CDF) cal-
culation is assumed to have well-defined hazard zones, that is,
hazard zones defined as a function of the system state trajec-
tory. An alternate method suggests the use of hazard zones
defined as a function of the system state at time k, instead
of hazard zones defined as a function of system state up to
and including time k (Acuña and Orchard 2018, 2017). This
paper explores these differences and their impact on ToF es-
timation. Results for the conventional CDF definition indi-
cated that, (i) the cumulative distribution function is always
an increasing function of time, even when realizations of the
degradation process are not monotonic, (ii) the sum of all
probabilities is always 1 and does not need to be normalized,
and (iii) all probabilities are positive and less than or equal
to 1. Similar results are not observed for CDF calculation
with hazard zones defined as a function only of the system
state at time k. Results for ToF estimation using Acuña’s def-
inition differ, suggesting that there is an underlying assump-
tion of independence in the hazard zone definition. There-
fore, we present an alternate definition of hazard zone which
guarantees the properties of a well-defined CDF with a more
straightforward ToF definition.

Gina Sierra et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

NOTATION

Xk random variable that describes a system state at
time. k

x
(i)
k realization of Xk, that is, realization of the system

state associated with the trajectory at time.
X vector of random variables where each random

variable describes the system state at every time
step, that is, the stochastic process that represents
the evolution in time of the system state.

x(i) vector of realizations of X, that is, realizations of
the system state trajectory associated with the ith

trajectory.
p(·) Probability density function.
P (·) Probability mass function.
h(·) Hazard zone function.
I(·) Hazard zone indicator function.

1. INTRODUCTION

The benefits of estimation of Time-of-Failure (ToF) of a sys-
tem include but are not limited to: undertake remedial actions
to prevent the failure, extend the time until it happens, sched-
ule maintenance at a convenient time, or prepare for the fail-
ure in a fashion that minimizes the negative effects (Goebel,
Daigle, Saxena, Roychoudhury, & Celaya, 2017). Thus,
proper characterization of the ToF is essential for decision-
making processes. In this regard, different definitions for
computation of the probability of failure have been explored
which differ on the definition of the hazard zone function.
Hazard zones are all possible system states under which the
system undergoes a catastrophic failure. Hazard zone func-
tions are functions of the system states which describe those
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regions in the state space that include all possible states under
which the system undergoes a failure.

With the purpose of estimating the ToF of a component
or system, sampling-based approaches have been widely
adopted. In these approaches a population of samples is ob-
tained from the state posterior PDF at the time when prog-
nosis is initiated. Then, each of the samples is used as an
initial condition for simulating state trajectories in “random
walk” fashion iterating the state transition equation with ran-
dom realizations of the process noise. At each iteration, the
hazard zone function is evaluated in order to identify if the
system states reached the hazard zone. This latter informa-
tion is used to compute the failure distribution as a cumulative
distribution function that describes the probability of failure
up to and including k time.

While the state transition equation assumes the system is
healthy, simulated state trajectories may migrate from a
healthy region to a failure region and then migrate from the
failure region to a healthy region. Due to the nature of the
random process, the trajectories do not exhibit strictly mono-
tonic behavior.

With the assumption that a system can actually only fail
once, hazard zone functions should identify a trajectory that
reached the hazard zone at the kth iteration or at previous
iterations. Namely, the hazard zone function needs to be a
trajectory-dependent function instead of state-dependent one.
However, previous works reported in the literature defines the
hazard zone function as a function of only the system state at
the kth iteration (Orchard and Vachtsevanos 2009; Pola et al.
2015), which leads to inaccurate estimations of the ToF.

In this work we present an alternate definition of hazard zone
as a function of system states up to and including time k,
which guarantees that for the estimated ToF: (i) the cumula-
tive distribution function is always an increasing function of
time, even when realizations of the degradation process are
not monotonic, (ii) the sum of all probabilities is always 1
and does not need to be normalized, and (iii) all probabilities
are positive and less than or equal to 1.

This paper is organized as follows. Section 2 presents a back-
ground on the definition of probability of failure in a more
general context. In Section 3, the probability of failure is
defined specifically for the prognostic context. Section 4 de-
scribes other definitions of probability of failure recently re-
ported in the literature for the prognostic context. Section 5
illustrates and discusses the impact on ToF estimation when
the probability of failure is calculated with a well-defined
hazard zone, that is, a hazard zone defined as a function of
the system state trajectory, and calculated with an ill-defined
hazard zone, that is, a hazard zone defined as a function of
the system state at time k, instead of hazard zones defined
as a function of system state up to and including time k. Sec-

tion 6 compares the cumulative distribution function obtained
through the conventional definition of probability of failure
and through the Acuña’s definition for dependent and inde-
pendent variables. Finally, Section 7 ends with conclusions.

2. BACKGROUND

Let A be the input and B be the output of the model, B =
g(A), that characterizes the performance of a system. Since
there are uncertainties associated with the model inputs, A =
(A1, A2, . . . , An) represent the input random variables with
PDF fAi

(ai) and joint PDF fA1,A2,...,an(a1, a2, ..., an).

If a failure is defined by the event g(A) ≤ b, that is, the event
when the performance function, B = g(A), reaches a certain
threshold, the probability of failure is then defined as the CDF
of B, pf = P (g(A) ≤ b), and is calculated by (Probabilistic
Engineering Design, Accessed April 16, 2019):

pf =

∫
. . .

∫
g(a)≤b

fA1,A2,...,An
(a1, a2, . . . , an)da1da2 . . . dan

=

∫
g(a)≤b

fA(a)da

(1)

If all the random variables are independent,

pf =

∫
. . .

∫
g(a)≤b

n∏
i=1

fAi
(ai)da1da2 . . . dan (2)

There are a number of complexities in the evaluation of the
integration in Eq. (1): (i) the function g(A) is usually a non-
linear function of A; therefore, the integration boundary is
nonlinear; (ii) multidimensional integration is involved; (iii)
in many cases the evaluation of g(a) is computationally ex-
pensive. Hence, there is rarely a closed-form solution to the
probability integration and it is also often difficult to evalu-
ate the probability with numerical methods. Therefore, nu-
merical approximation methods, such as the sampling-based
approaches, have been adopted to solve the probability in-
tegration (Probabilistic Engineering Design, Accessed April
16, 2019)

3. COMPUTING THE PROBABILITY OF FAILURE IN THE
PROGNOSTIC CONTEXT

Prognosis schemes can be understood as the result of long-
term predictions describing the evolution of a fault indicator,
with the purpose of estimating the Time-of-Failure (ToF) of a
component or system, from the initial conditions of the fault
indicator given by the estimation stage. The prediction of
critical events requires the existence of at least one critical
system state that provides the severity of the studied condi-
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tion. It is always possible to combine different system states
to obtain one unique fault indicator. Then, it is possible to
describe the evolution in time of the dimension of the fault
through non-linear state equations of the system model.

Consider {Xk, k ∈ N} as a Markov process denoting a state-
space representation of the dynamic nonlinear system:

xk = f(xk−1, wk−1)

yk = g(xk, vk),
(3)

where xk denotes an nx-dimensional system state vec-
tor with initial distribution p(x0) and transition probability
p(xk|xk−1), yk denotes the nk-dimensional conditionally-
independent noisy observations, and wk and vk denote inde-
pendent random variables.

For the generation of long-term predictions, consider the τ -
step prediction for the fault indicator (one state system or a
combination of different system states) PDF p̂(xkp+τ |y1:kp)
which describes the state distribution at the future instant
kp + τ , (τ = 1, . . . ,m) . With the assumption that the cur-

rent particle population
{
x
(i)
kp
, w

(i)
kp

}
i=1,...,N

is a good rep-

resentation of the system state PDF at time kp, then it is
possible to approximate the predicted fault indicator PDF at
time k = kp + τ , by sequentially applying the Chapman-
Kolmogorov equation, as shown in Eq. 4, and then updating
each particle by sampling from the transition kernel.

p(xk|y1:kp) ≈ p̂(xk|y1:kp)

=

N∑
i=1

p(xk|x(i)k−1)p̂(x
(i)
k−1|y1:kp)

≈
N∑
i=1

w
(i)
k δ

x
(i)
k

(xk)

(4)

In other words, a population of samples is obtained from the
state posterior PDF at the beginning of prognosis. Then, each
of them is used as an initial condition for simulating state
trajectories in “random walk” fashion iterating the state tran-
sition equation with random realizations of the process noise.
Note that the random variables in the context of prognostic
are dependent.

Considering kp as the time at which prognostics are executed,
and assuming that one of the states corresponds to the fault
indicator, let X = (Xkp , Xkp+1, . . . , Xk−1, Xk) be the col-
lection of random variables (the stochastic process) that rep-
resents the evolution in time of the system state associated
with the fault indicator, x = (xkp , xkp+1, . . . , xk−1, xk) be
realizations of the stochastic process that represents the evo-
lution of the fault indicator, and fXkp ,Xkp+1,...,Xk

be the joint
PDF of X. Note that Xkp is the estimated fault indicator at
kp given the set of measurements y1:kp .

Also, let failure be defined by the event h(X) ≤ y, that
is, the event when the performance function, Y = h(X)
reaches a certain threshold, y. With the occurrence of this
event, the state of the system will change from safety to fail-
ure. For example, if the threshold is defined to be zero, then
Y = h(x) = 0 divides the random variable space into two
well-differentiated regions: safe regions and failure regions
(or hazard zones). When h(x) ≤ 0, the system can no longer
fulfill the function for which it was designed, that is, the sys-
tem undergoes a catastrophic failure (Probabilistic Engineer-
ing Design, Accessed April 16, 2019). Note that h(x) is a
function of the fault indicator trajectory (or system state tra-
jectory), not a function of the fault indicator at specific time
k.

The stochastic state-space representation of the system is
used to compute the failure distribution as a cumulative dis-
tribution function that describes the probability of failure up
to and including time k:

P(ToF ≤ k) =

∫
. . .

∫
h(x)≤y

fXkp ,Xkp+1,...,Xk
(xkp , xkp+1, . . . , xk)dxkpdxkp+1 . . . dxk

=

∫
h(x)≤y

fX(x)dx

(5)

Given the aforementioned definition of the hazard zone, and
specifically the simplest hazard zone, namely a time-invariant
and deterministic hazard zone, Eq. 5 can be rewritten as:

P(ToF ≤ k) =

∞∫
−∞

I(x)fX(x)dx, (6)

where I(·) is an indicator function, which is defined by:

I(x) =

{
1, h(x) ≤ y;
0, otherwise.

(7)

Remember that the mean value of a random variable is de-
fined as the first moment measured about the origin,

µX =

∞∫
−∞

xfX(x)dx. (8)

If there are n samples of the random variable X ,
(x1, x2, . . . , xn), the average of the samples is calculated
by

X̄ =

n∑
i=1

xi · p(xi). (9)

Hence, the integral on the right-hand side of the Eq. 6 is
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simply the expected value of I(x):

P(ToF ≤ k) =

N∑
i=1

I(x(i)) · w(i)

=

N∑
i=1

I(x
(i)
kp
, . . . , x

(i)
k−1, x

(i)
k ) · w(i).

(10)

In the Monte Carlo sampling case, Eq. 10 can simply be esti-
mated by:

P(ToF ≤ k) = Ī(x) =
1

N

N∑
i=1

I(x(i)) =
Nf
N
, (11)

where Nf is the number of predicted fault indicator trajec-
tories (not the fault indicator or system state at time k) that
have the performance function less than or equal to y, i.e.
h(x) ≤ y.

It should be noted that I(x) is a function of the trajectory of
the fault indicator from kp to k, and its range is defined in the
interval [0, 1] . Namely, I(x) : Rnx → [0, 1] .

In addition, I(x) should be defined in such a way that the
following hold:

1. 0 ≤ P(ToF ≤ k) ≤ 1,∀k ∈ N.

2. lim
k→∞

P(ToF ≤ k) = 1.

4. OTHER APPROACHES FOR THE COMPUTATION OF
THE PROBABILITY OF FAILURE IN THE CONTEXT OF
PROGNOSTICS

The authors in (Orchard & Vachtsevanos, 2009; Pola et al.,
2015) define the probability of failure at any time instant k by
the expression,

P (ToF ≤ k) =

Np∑
i=1

w
(i)
k P(failure|X = x

(i)
k ) (12)

where p(failure|X) corresponds to the probability of sys-
tem failure, conditional to the value of the state vector xk ∈
Rnxk . Note that Eq. 12 is a particular case of Eq. 13.

P (ToF ≤ k) =

∫
Rnxk

P(failure | xk)p(xk | y1:kp)dxk

(13)

Further, the authors in (Acuña & Orchard, 2017; Acuña & Or-
chard, 2018) assert that this probability measure (Eq. 12) has
been misinterpreted as a Cumulative Mass Function (CMF)
and is limited to cases of strictly degenerative systems. For
the general case, (Acuña & Orchard, 2017; Acuña & Orchard,
2018) propose that this concept should be reinterpreted as a

Probability Mass Function (PMF) as the probability measure
for ToF is defined at discrete time instants.

The authors in (Acuña & Orchard, 2017; Acuña & Orchard,
2018) also state that a failure event can be treated as a non-
stationary Bernoulli stochastic process in which probabilities
vary as time evolves. They denote healthy and faulty sys-
tems (at the kth time instant) by Hk and Fk, respectively,
and characterize the Probability of Failure (PoF) at the kth

time instant, P (Fk) as:

P (Fk) =
P (Fk,Hkp:k−1)

P (Hkp:k−1 | Fk)
, ∀ k > kp (14)

Since P (Hkp:k−1|Fk) corresponds to the probability of stay-
ing healthy until time k − 1, given that the failure occurred
at time k, the authors note that P (Hkp:k−1|Fk) = 1 (it is
assumed that the system can only fail once).

Applying the definition of joint probability, Eq. 14 is then
rewritten as:

P (Fk) = P (Fk|Hkp:k−1)P (Hkp:k−1), ∀ k > kp (15)

where P (Fk|Hkp:k−1) corresponds to the failure probabil-
ity measure that has been used in (Orchard & Vachtsevanos,
2009; Pola et al., 2015), equivalent to the expression in Eq.
13, i.e.,

P (Fk|Hkp:k−1) =

∫
Rnxk

P(failure | xk)p(xk | y1:kp)dxk

=

N∑
i=1

w(i)P(failure|X = x
(i)
k ),

(16)

where the hazard zone is described by a mapping h(xk) :
Rnxk → [0, 1],

h(xk) := P(failure | xk), (17)

and where P (Hkp:k−1) is the probability that the system is
healthy until the (k − 1)th time instant, that is,

P (Hkp:k−1) = P (Hk−1|Hkp:k−2)P (Hkp:k−2)

= P (Hk−1|Hkp:k−2)P (Hk−2|Hkp:k−3)P (Hkp:k−3)

...

=

k−1∏
j=kp+1

P (Hj |Hkp:j−1).

(18)

Then, as P (Hj |Hkp:j−1) = 1−P (Fj |Hkp:j−1) and the fail-
ure is modeled through a Bernoulli stochastic process, it fol-
lows that:
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P (Hkp:k−1) =

k−1∏
j=kp+1

(
1− P (Fj |Hkp:j−1)

)
(19)

Therefore, the failure probability described in Eq. 15 is de-
fined as the product of P (Fk|Hkp:k−1) and P (Hkp:k−1),
where the first term corresponds to the likelihood of failure
at kth time (assuming that the system was healthy for all pre-
vious moments). The second term indicates the probability
that the system was actually healthy until the (k − 1)th time
instant.

To exemplify, suppose that until the instant kp + τ − 1,
the system was healthy for all previous moments so that
P (Fkp+τ−1|Hkp:kp+τ−2) = 0 and P (Hkp:kp+τ−2) = (1 −
0) = 1. Then suppose that at the instant kp + τ , re-
alizations of the states reach a failure condition such that
P (Fkp+τ |Hkp:kp+τ−1) = 0.1. This value is used to compute
the probability that the system is healthy until kp+τ −1, that
is, P (Hkp:kp+τ−1) = (1 − 0) · (1 − 0.1) = 0.9. At the next
time step, kp + τ + 1, suppose that realizations of the states
reach a failure condition such that P (Fkp+τ+1|Hkp:kp+τ ) =
0.15 and P (Hkp:kp+τ ) = (1 − 0) · (1 − 0.1) · (1 − 0.15) =
0.765.

In this regard, we would like to point out that Eq. 12, Eq.
13 and Eq. 16 do not incorporate information on the evolu-
tion of the fault indicators before the time instant k, that is,
the trajectory of the fault indicator from kp to k − 1. As one
can see, Eq. 16 (which is used later to evaluate Eq. 19) is
evaluated only for xk. In other words, P (failure|xk), that
is, the hazard zone, is defined only for the kth time instant
which leads to failure distributions that do not represent ac-
curately the probability of failure up to and including time k.
Proper failure distribution needs to be a trajectory-dependent
probability instead of a state-dependent one.

For illustration purposes, consider a system that undergoes a
failure when the fault indicator is below the value three (3),
as described in Eq. 20.

P (failure|xk) =

{
1, xk ≤ 3;
0, otherwise.

(20)

Consider also two trajectories of the fault indicator generated
through Eq. 22 for ten (10) time steps as shown in Table
1. Then results of the computation of the failure distribution
through Acuña’s definition using Eq. 15 for these trajectories
is shown in Table 2.

As can be seen from Table 2, the cumulative distribution
function reaches the value one (1) at time step ten (10) even
though one of the two trajectories never actually crossed the
threshold. Also, note that the same results for P (Hkp:k−1)

would have been obtained if variables were assumed to be
independent, as in Eq. 21.

P (Hkp:k−1) =

k−1∏
i=kp

P (Hi) (21)

Table 1. Realizations of the fault indicator for 10 time steps

k 1 2 3 4 5 6 7 8 9 10
Sample No. xk xk xk xk xk xk xk xk xk xk

1 3.55 3.30 3.34 3.45 3.23 3.22 3.18 3.44 3.43 3.23
2 3.26 3.09 2.89 2.82 3.00 2.81 2.56 2.65 2.47 2.05

Table 2. CDF and PMF of ToF through Acuña’s definition,
that is, Eq. 15, for realizations in Table 1

k 1 2 3 4 5 6 7 8 9 10

P (Fk|Hkp:k−1) 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

P (Hk) 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

P (Hkp:k−1) 1.00 1.00 1.00 0.50 0.25 0.13 0.06 0.03 0.02 0.01

P (ToF = k) 0.00 0.00 0.50 0.25 0.13 0.06 0.03 0.02 0.01 0.00

P (ToF ≤ k) 0.00 0.00 0.50 0.75 0.88 0.94 0.97 0.98 0.99 1.00

5. COMPUTING FAILURE DISTRIBUTION WITH A
WELL-DEFINED HAZARD ZONE AND AN ILL-
DEFINED HAZARD ZONE

To further exemplify, consider the space state representation
in Eq. 22 as the Markov process that describes a fault indica-
tor that decreases over time,

xk = α · xk−1 + wk−1 ∀k ∈ N (22)

where 0 < α < 1 and wk in this case denote an independent
Gaussian random variable, that is, w ∼ N(0, σ).

Assuming that kp is the time instant when predictions are
made, and that the system undergoes failure when the fault
indicator reaches a certain threshold value, the hazard zone is
defined by Eq. (23),

h(x) = min(xp, . . . , xk−1, xk), (23)

and the hazard zone indicator is defined by Eq. 24, which is
equivalent to Eq. 7:

I(x) =

{
1, h(x) ≤ threshold;
0, otherwise.

(24)

If comparison with zero is preferred, the hazard zone can be
rewritten as in Eq. 25,

h(x) = min(xp, . . . , xk−1, xk)− threshold, (25)

5
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and the hazard zone indicator can be rewritten as in Eq. 26,

I(x) =

{
1, h(x) ≤ 0;
0, otherwise.

(26)

For illustration purposes, ten (10) trajectories (with equal
weighting) were generated through Eq. 22 for 10-steps for-
ward with α = 0.97 andw ∼ N(0, 0.3). Figure 1 and Table 3
show a single realization for these trajectories. These trajec-
tories can be interpreted as estimations of a decreasing health
index x with a failure threshold of 3. Due to the nature of the
Markov process the trajectories do not exhibit strictly mono-
tonic behavior. While the average of the trajectories decreases
(although there is no guarantee for that, either), individual tra-
jectories migrate in and out of the failure region.

Table 3. Realizations of the fault indicator (Markov process
in Eq. 22) for 10 time steps

k 1 2 3 4 5 6 7 8 9 10
Sample No. x x x x x x x x x x

1 3.08 2.78 2.51 2.09 1.59 1.88 2.2 2.34 2.24 2.72
2 3.27 3.17 2.74 2.93 2.98 2.74 2.88 3.08 2.77 2.67
3 3.18 2.54 1.96 1.69 1.63 2.11 2.38 2.51 2.37 2.35
4 3.39 3.63 3.72 3.54 3.13 2.5 2.53 2.53 2.51 2.95
5 3.26 3.26 3.23 3.35 2.95 2.84 2.46 3.18 3.22 3.44
6 3.68 3.51 3.32 3.11 3.33 3.46 3.84 3.13 2.36 2.66
7 3.03 3.07 2.85 2.46 2.61 2.72 3.01 2.72 2.96 2.81
8 2.69 2.75 2.47 2.69 2.38 2.82 2.68 2.56 3.11 2.98
9 3.67 3.1 2.99 2.56 2.43 2.53 2.52 2.47 2.38 2.42
10 3.42 2.93 3.24 3.05 2.8 2.63 2.5 2.83 3.27 2.73

If the threshold value is set to 3, the evaluation of the hazard
zone as defined in Eq. 25 for each trajectory is shown in Table
4 and the evaluation of the hazard zone indicator as defined
in Eq. 26 is shown in Table 5.

Table 4. Evaluation of h(x) (Eq. 25) for realizations in Table
3

k 1 2 3 4 5 6 7 8 9 10
Sample No. h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x)

1 0.1 -0.2 -0.5 -0.9 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4
2 0.3 0.2 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3
3 0.2 -0.5 -1.0 -1.3 -1.4 -1.4 -1.4 -1.4 -1.4 -1.4
4 0.4 0.4 0.4 0.4 0.1 -0.5 -0.5 -0.5 -0.5 -0.5
5 0.3 0.3 0.2 0.2 0.0 -0.2 -0.5 -0.5 -0.5 -0.5
6 0.7 0.5 0.3 0.1 0.1 0.1 0.1 0.1 -0.6 -0.6
7 0.0 0.0 -0.1 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
8 -0.3 -0.3 -0.5 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6
9 0.7 0.1 0.0 -0.4 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6
10 0.4 -0.1 -0.1 -0.1 -0.2 -0.4 -0.5 -0.5 -0.5 -0.5

Then, the computation of P (ToF ≤ k) for k = 1 is given by

Figure 1. 10-steps trajectory prediction.

Eq. 10, that is:

P(ToF ≤ 1) =

10∑
i=1

I(x(i)) · 0.1

=

10∑
i=1

I(x
(i)
1 ) · 0.1

= 1 · 0.1 = 0.1.

(27)

The computation of P (ToF ≤ k) for k = 2 is:

P(ToF ≤ 2) =

10∑
i=1

I(x(i)) · 0.1

=

10∑
i=1

I(x
(i)
1 , x

(i)
2 ) · 0.1

= 4 · 0.1 = 0.4,

(28)

and so on until k = 10:

P(ToF ≤ 10) =

10∑
i=1

I(x(i)) · 0.1(i)

=

10∑
i=1

I(x
(i)
1 , . . . , x

(i)
9 , x

(i)
10 ) · 0.1(i)

= 10 · 0.1 = 1.

(29)
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Table 5. Evaluation of I(x) (Eq. 26) for realizations in Table
3

k 1 2 3 4 5 6 7 8 9 10

Sample No. I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x)

1 0 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 1 1 1 1 1 1
6 0 0 0 0 0 0 0 0 1 1
7 0 0 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
9 0 0 1 1 1 1 1 1 1 1
10 0 1 1 1 1 1 1 1 1 1

10∑
i=1

I(x(i)) 1 4 7 7 8 9 9 9 10 10

As a result, the CDF of ToF is shown in Fig. 2b.

On the other hand, consider again the space state representa-
tion in Eq. 22 as the Markov process that describes a fault
indicator that decreases over time.

Assuming that the system undergoes a failure when the fault
indicator reaches a certain threshold value, the hazard zone is
now defined according to Eq. 17 as shown in Eq. 30,

h(xk) = xk − threshold (30)

and the hazard zone indicator is defined by Eq. 31,

I(xk) =

{
1, h(xk) ≤ 0;
0, otherwise.

(31)

The evaluation of the hazard zone as defined in Eq. 30 for
each trajectory in Table 3 is shown in Table 6 and the eval-
uation of the hazard zone indicator as defined in Eq. 31 is
shown in Table 7.

Table 6. Evaluation of h(xk) (Eq. 30) for realizations in Table
3

k 1 2 3 4 5 6 7 8 9 10

Sample No. h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x) h(x)

1 0.1 -0.2 -0.5 -0.9 -1.4 -1.1 -0.8 -0.7 -0.8 -0.3
2 0.3 0.2 -0.3 -0.1 0.0 -0.3 -0.1 0.1 -0.2 -0.3
3 0.2 -0.5 -1.0 -1.3 -1.4 -0.9 -0.6 -0.5 -0.6 -0.6
4 0.4 0.6 0.7 0.5 0.1 -0.5 -0.5 -0.5 -0.5 -0.1
5 0.3 0.3 0.2 0.4 0.0 -0.2 -0.5 0.2 0.2 0.4
6 0.7 0.5 0.3 0.1 0.3 0.5 0.8 0.1 -0.6 -0.3
7 0.0 0.1 -0.1 -0.5 -0.4 -0.3 0.0 -0.3 0.0 -0.2
8 -0.3 -0.3 -0.5 -0.3 -0.6 -0.2 -0.3 -0.4 0.1 0.0
9 0.7 0.1 0.0 -0.4 -0.6 -0.5 -0.5 -0.5 -0.6 -0.6

10 0.4 -0.1 0.2 0.1 -0.2 -0.4 -0.5 -0.2 0.3 -0.3

Then, the computation of P (ToF ≤ k) for k = 1 is given by

Table 7. Evaluation of I(xk) (Eq. 31) for realizations in Table
3

k 1 2 3 4 5 6 7 8 9 10

Sample No. I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x) I(x)

1 0 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 1 1 0 1 1
3 0 1 1 1 1 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 1 1 1 0 0 0
6 0 0 0 0 0 0 0 0 1 1
7 0 0 1 1 1 1 0 1 1 1
8 1 1 1 1 1 1 1 1 0 1
9 0 0 1 1 1 1 1 1 1 1

10 0 1 0 0 1 1 1 1 0 1
10∑
i=1

I(x(i)) 1 4 6 6 8 9 8 7 7 9

Eq. 10, that is:

P(ToF ≤ 1) =

10∑
i=1

I(x
(i)
1 ) · 0.1

= 1 · 0.1 = 0.1.

(32)

The computation of P (ToF ≤ k) for k = 2 is:

P(ToF ≤ 2) =

10∑
i=1

I(x
(i)
2 ) · 0.1

= 4 · 0.1 = 0.4,

(33)

and so on until k = 10:

P(ToF ≤ 10) =

10∑
i=1

I(x
(i)
10 ) · 0.1(i)

= 9 · 0.1 = 0.9.

(34)

As a result, the CDF of ToF is shown in Fig. 2c.

Note that the CDF in Fig. 2b (the CDF obtained for the first
case where hazard zone is defined by Eq. 25 and hazard zone
indicator is defined by Eq. 26) is a monotonically increasing
function that converges to value one when time tends to in-
finity, even when realizations of the fault indicator cross the
threshold more than one time. In contrast, note that the CDF
in Fig. 2c, (for CDF obtained for the second case when hazard
zone is defined by Eq. 30 and the hazard zone indicator is de-
fined by Eq. 31) does not increase monotonically. Although
it may reach the value one, it does not necessarily converge
to value one when time tends to infinity.

6. COMPUTING FAILURE DISTRIBUTION WITH THE
CONVENTIONAL DEFINITION AND WITH ACUÑA’S
DEFINITION

The computation of the CDF of ToF is here repeated using
the Acuña definition, that is, using Eq. 15, for dependent and

7
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Figure 2. (a) 10-steps trajectory prediction. (b) CDF of ToF
for realizations in Table 3 when the hazard zone is defined by
Eq. 25 and the hazard zone indicator is defined by Eq. 26. (c)
CDF of ToF for realizations in Table 3 when the hazard zone
is defined by Eq. 30 and the hazard zone indicator is defined
by Eq. 31.

independent variables. Results with Acuña’s definition are
then compared to the result obtained with Eq. 10.

Note that Eq. 15 corresponds to the failure probability at the
time instant k, that is, P (Fk) = P (ToF = k), while Eq. 10
correspond to the failure probability P (ToF ≤ k). There-
fore, computation of the CDF though Eq. 15 needs an addi-
tional step for the summation of the probabilities at previous
time instants.

For the case of dependent variables, one hundred (100) tra-
jectories (equal weighting) were generated through Eq. 22
for 10-steps forward with α = 0.97 and w ∼ N(0, 0.2). Re-

sults for the computation of the CDF and PMF in this case are
summarized in Table 8 and Table 9, and are shown in Fig. 3
and Fig. 5.

Table 8. CDF and PMF of ToF through Eq. 10 for dependent
variables.

k 1 2 3 4 5 6 7 8 9 10

P (ToF = k) 0.06 0.17 0.18 0.14 0.08 0.13 0.05 0.04 0.04 0.02
P (ToF ≤ k) 0.06 0.23 0.41 0.55 0.63 0.76 0.81 0.85 0.89 0.91

Table 9. CDF and PMF of ToF through Acuña’s definition,
that is, Eq. 15, for dependent variables.

k 1 2 3 4 5 6 7 8 9 10

P (Fk|Hkp:k−1) 0.06 0.22 0.38 0.5 0.55 0.67 0.71 0.72 0.77 0.79

P (Hk) 0.94 0.78 0.62 0.5 0.45 0.33 0.29 0.28 0.23 0.21

P (Hkp:k−1) 1.00 0.94 0.73 0.45 0.23 0.10 0.03 0.01 0.00 0.00

P (ToF = k) 0.06 0.21 0.28 0.23 0.13 0.07 0.02 0.01 0.00 0.00
P (ToF ≤ k) 0.06 0.27 0.55 0.77 0.9 0.97 0.99 1.00 1.00 1.00

For the case of independent variables, one hundred (100) tra-
jectories (equal weighting) were generated through Eq. 35
for 10-steps forward,

xk = µk + wk ∀k ∈ N, (35)

wherew ∼ N(0, 0.2) and µ is a value in the interval [2.3, 3.3]
being µ1 = 3.3 and µ10 = 2.3. Results for the computation
of the CDF and PMF in this case are summarized in Table 10
and Table 11 and are shown in Fig. 4 and Fig. 6.

Table 10. CDF and PMF of ToF through Eq. 10 for indepen-
dent variables.

k 1 2 3 4 5 6 7 8 9 10

P (ToF = k) 0.08 0.27 0.34 0.23 0.06 0.02 0.00 0.00 0.00 0.00
P (ToF ≤ k) 0.08 0.35 0.69 0.92 0.98 1.00 1.00 1.00 1.00 1.00

Table 11. CDF and PMF of ToF through Acuña’s definition,
that is, Eq. 15, for independent variables.

k 1 2 3 4 5 6 7 8 9 10

P (Fk|Hkp:k−1) 0.08 0.29 0.51 0.75 0.78 0.91 1.00 1.00 0.99 1.00

P (Hk) 0.92 0.71 0.49 0.25 0.22 0.09 0.00 0.00 0.01 0.00

P (Hkp:k−1) 1.00 0.92 0.65 0.32 0.08 0.02 0.00 0.00 0.00 0.00

P (ToF = k) 0.08 0.27 0.33 0.24 0.06 0.02 0.00 0.00 0.00 0.00
P (ToF ≤ k) 0.08 0.35 0.68 0.92 0.98 1.00 1.00 1.00 1.00 1.00

Results obtained for dependent variables with Eq. 10 and
with Acuña’s definition differ, while results obtained for inde-
pendent variables with Eq. 10 and with Acuña’s definition are
approximately the same. The latter results suggest that there
is an underlying assumption of independence in the Acuña’s
definition. In particular, as mentioned earlier, the hazard zone
in Acuña’s definition (Eq. 17) is defined as a function of the
fault indicator at time k, without taking into account previous

8
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Figure 3. CDF and PMF of ToF through Eq. 10 for dependent
variables.
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Figure 4. CDF and PMF of ToF through Eq. 10 for indepen-
dent variables.
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Figure 5. CDF and PMF of ToF through Acuña’s definition,
that is, Eq. 15, for dependent variables.
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Figure 6. CDF and PMF of ToF through Acuña’s definition,
that is, Eq. 15, for independent variables.
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time instants. In other words, the hazard zone is defined in an
independent manner. Consequently, Eq. 16 and Eq. 19 are
also independent as discussed in Section 4.

Note also that cumulative distribution in Table 8 does not
reach a value equal to 1 during the 10 time steps because not
all trajectories crossed the threshold within those time steps.
Nevertheless, cumulative distribution in Table 9 reaches a
value equal to 1 despite of results in Table 9 correspond to
the same trajectories in Table 8. Namely, despite that not all
trajectories crossed the threshold.

Another example of the above can be seen in Fig. 7 which
corresponds to the prediction of the End of Discharge (EOD)
of a battery in a quadcopter that performs a delivery mis-
sion. Monte Carlo sampling-based predictor was used with
one thousand (1000) trajectories. As you can see from the
figure, the results are similar to the results shown in Fig. 3b
and Fig. 5b. Namely, PMF of ToF through Acuña’s defi-
nition is shifted to the left and consequently, its cumulative
distribution reaches a value equal to 1 before the cumulative
distribution for the PMF through Eq. 10. That is, despite not
all trajectories crossed the threshold.

7. CONCLUSIONS

Definitions in the literature on the computation of the CDF
that describes the probability of failure up to and includ-
ing time k, have suggested the use of state-dependent haz-
ard zones instead of trajectory-dependent hazard zones. This
may lead to a CDF that not always increases monotonically
and that - although it may reach value one - does not neces-
sarily converge to value one when time tends to infinity.

In this study we proposed an alternate definition of hazard
zone which guarantees that: (i) the CDF is always an increas-
ing function of time, even when realizations of the degra-
dation process are not monotonic, (ii) the sum of all proba-
bilities is always 1 and does not need to be normalized, and
(iii) all probabilities are positive and less than or equal to 1.

Figure 7. Predicted battery EOD PMF for a 3S 5100mAh Li-
Po battery in a quadcopter that performs a delivery mission.

For illustration purposes, we computed the CDF for a simple
degradation process using this alternative definition and using
the definition previously reported in the literature.

We then compute the CDF using both the definition suggested
here and using the Acuña’s definition for dependent variables
(the kind of variables encountered in the context of prognos-
tic), and for independent variables. Results showed that both
definitions provide approximately the same results only when
variables are independent, which suggests an underlying as-
sumption of independence in the Acuña’s definition.

Our definition not only guarantees properties of the CDF but
also provides a more straightforward definition for its com-
putation in the context of prognostics. It should be noted that
this work only considered the simplest hazard zone, namely
a time-invariant and deterministic hazard zone. Future work
will investigate time-variant and probabilistic hazard zones.
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