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ABSTRACT

Parametric faults are detected and isolated using parameter
tracking algorithms based on optimization algorithms or fil-
tering techniques (e.g., Kalman filter, particle filter). Online,
simultaneous tracking of all parametric faults can fails since
there may be too many combinations of parameter values that
explain the observed behavior. Hence, a correct diagnosis
solution is not obtained. An alternative in the single fault
case is to track separately each parametric fault in parallel
and choose the one that best explains the observed behav-
ior according to some chosen metric (e.g., mean square er-
ror). This approach is feasible but computationally expensive,
since there may be too many tracking algorithms running in
parallel. Analytic redundancy relations (ARRs) are used to
reduce the number of parametric faults that are tracked si-
multaneously. ARRs qualitatively point to a set of possible
explanations but usually require a large number of sensors to
achieve good isolability of fault causes. They induce a fault
signature matrix (FSM) that can be derived offline. The pa-
rameter tracking algorithms will be instantiated for the faults
in the set of possible explanations produced by the ARRs. By
combining ARRs with online parameter tracking algorithms
we can obtain a good tradeoff between computational effort
and fault isolability. The approach is validated by diagnosing
faults in a rectifier circuit.

1. INTRODUCTION

Our goal is to design a model-based diagnosis engine for de-
tecting and isolating parametric faults in a dynamical system.
The diagnosis engine is provided with a model of the system,
nominal values of the parameters and values of some of its
inputs and outputs over time. There is a rich literature on
model-based diagnosis results proposed independently by the
artificial intelligence (de Kleer, Mackworth, & Reiter, 1992)
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and control (Gertler, 1998; Isermann, 2005; Patton, Frank,
& Clark, 2000) communities. Data-driven approaches are
widely used as well. They use statistical models (classifiers
or regressors) trained with labeled data that describe the be-
havior of the system under various fault modes. They usually
require a large amount of data to build statistically meaning-
ful models. This requirement is not always easy to satisfy,
since system are designed not to fail. In addition, we may
lose explainability of the root causes.

In this paper we focus on parametric faults. A significant
change in a parameter value as compared to its nominal value
indicates a fault in the component associated with the respec-
tive parameter. There are several approaches for parameter
tracking. Filter based approaches such as the Kalman filter
(Kalman, 1960) and its extensions to non-linear systems (ex-
tended and unscented Kalman filters) are an option. They
do not always perform well on nonlinear systems and non-
Gaussian noise. Alternatively, we can use a particle filter
algorithm (Arulampalam, Maskell, & Gordon, 2002). The
computational effort required to implement such a filter may
be prohibitive though.

Filters track the state of a dynamical system and hence the
state needs to be augmented by including the system param-
eters. Tracking the state and all parameters simultaneously
does not guarantee accurate results since a multitude of pa-
rameter value combinations may explain the system behav-
ior. Another option for tracking the system parameters is to
use an optimization based approach. Time series reflecting
the system behavior are compared with the simulated behav-
ior, and the model parameters are adjusted until the real and
simulated behaviors match. Typically, the parameters are ad-
justed as part of solving a nonlinear least square problem.

Tracking multiple parameters simultaneously faces the same
challenges as in the case of the filtering methods. Since the
least square cost function typically depends nonlinearly on
the system parameters, the more parameters we have the more
local minima exist. Hence, unless we use global optimization
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algorithms, which are slower, we cannot guaranteed conver-
gence to the global minimum.

When dealing with single fault cases, each parameter is
tracked using an instantiation of an optimization algorithm.
For large number of parameters this may prove computation-
ally costly. Therefore we need a procedure to select a subset
of these parameters. We propose using analytic redundancy
relations (ARRs) to implement this procedure.

ARRs are constraints that when not satisfied indicate the pres-
ence of a fault. They induce a fault signature matrix (FSM)
that shows which parameters are sensitive to the variables in
the ARRs. It encodes signatures in the observations associ-
ated with the faults. We cannot guarantee that the signatures
are all different. That is, several faults may have the same
signatures.

The FSM structure depends on the number of sensors and
what variables are actually measured. We use the fault signa-
tures to derive a set of possible faults, and use optimization
(or filtering) methods to estimate the parameters associated to
a particular fault signature in parallel. This way we limit the
computational effort by tracking only a subset of parameters.
In this paper we track the parameter by applying optimization
algorithms. The approach can be easily adapted to work with
filter-based methods.

Paper structure: We start with a description of the problem
in Section 2. In Section 3 we introduce background mate-
rial on ARRs and optimization-based parameter tracking. In
the same section we discuss how the two approaches can be
combined to improve the computational efficiency of the pa-
rameter tracking procedure. In Section 4 we demonstrate our
approach when diagnosing faults in a rectifier.

2. PROBLEM SETUP

The objective is to detect and isolate faults in dynamical
systems expressed as a set differential algebraic equations
(DAEs) of the form:

0 = F (ẋ, x, u; θ), (1)
y = h(x, u; θ), (2)

where x is the state vector, u is the input for the system, y is
the vector of output measurements and θ is a vector of system
parameters. Often, we can separate the DAE into an ODE and
a set of algebraic equations of the form

ẋ = f(x, z, u; θ), (3)
0 = g(x, z, u; θ), (4)
y = h(x, z, u; θ), (5)

where we have a new vector z called vector of algebraic
variables. This is the type of DAE we will use in the ex-
ample section. In addition, the sensing model is based on
measuring a subset of the state and algebraic variables x
and z. Time series of the input and output vectors are pe-
riodically produced and used by a diagnosis engine to de-
tect and isolate a fault, if present. Such time series are of
the form uT1:T2

= {utk}
N2

k=N1
, yT1:T2 = {ytk}

N2

k=N1
, where

N1 = bk = T1/hc, N2 = bk = T2/hc, tk = kh, with h the
sampling period.

The diagnostic engine processes the time series and produces
a diagnosis result reflecting what parameter has drifted and by
how much. The engine processes the time series all at once
unlike the filter based implementations that can process data
one sample at a time. The length of the time series should
sufficiently large to ensure convergence of the optimization
algorithm. This is equivalent to ensuring the invertability of
the Hessian of the cost function at a local minimizer.

For linear minimum-square problem, convergence can be
tested by computing the rank of a particular matrix. For non-
linear cases, it is rather challenging to specify when we have
enough information since we would actually need to know
the local minima. We are left with choosing “long enough”
time series and making them longer in case convergence is
not achieved.

Figure 1. Rectifier circuit

Focusing on parametric faults only is not as constraining as it
may seem. In our previous work we showed how we can in-
troduce a variety of parameterized fault models based on the
physics of failure. Under this approach the initial nominal
model is augmented with fault modes, each mode depending
on one or more parameters. The type of faults introduced
are domain dependent. We cover electrical (short, open con-
nections, parameter drifts), mechanical (broken flanges, stuck
flanges, torque losses due to added friction, efficiency losses),
or fluid (blocked pipes, leaking pipes) domains.

Fault augmented models enabled us to execute a number of
system analytics tasks, ranging from fault diagnosis (Minhas
et al., 2014), reliability analysis (Honda et al., 2014) to main-
tenance scheduling (Saha et al., 2014). Hence parametric
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faults cover a significant number of possible faults that can
affect a system.

The example on which we test our approach is shown in Fig-
ure 1. It is a rectifier circuit powered by an AC source, with a
smoothing capacitor and a resistive load. The diodes’ behav-
ior follow the ideal nonlinear characteristics

i = iS

(
e

v
nvT − 1

)
, (6)

where is is the reverse bias saturation current, vT is the ther-
mal voltage and n is the ideality factor. As we will see in the
example section, the behavior of the rectifier is described by
a DAE rather than an ordinary differential equation.

We are interested in detecting faults in the diodes represented
as open connections, and drifts in the parameters C and R.

3. ARRS AND OPTIMIZATION BASED APPROACH FOR
PARAMETER TRACKING

In this section we briefly describe how ARRs are used for
fault diagnosis and how optimization algorithms are used to
track parameters of dynamical systems. In the last part of this
section we combine the two approaches. More details on the
use of ARRs for fault diagnosis can be found in (Staroswiecki
& Comtet-Varga, 2001), (Staroswiecki, 2000), (Samantaray
& Bouamama, 2008).

3.1. Analytic redundancy relations

The mathematical representation of the system model is a set
of differential equations that are used to produce ARRs. The
ARRs represent various constraints among a set of known
process variables (Staroswiecki & Comtet-Varga, 2001). To
account for the modeling uncertainties and noise the thresh-
olds δi need to be adaptive. Typically, function Φ is of
the form Φ(r) = |r|. This defines a basic change detec-
tion scheme. A smoothing of the change detection scheme
be applied by using a moving average scheme to compute
Φ(r), that is Φ(r(t)) = 1

N

∑N−1
i=0 |r(t − i)|, were the time

is assumed to be discrete. Other change detection schemes
can be employed, such as the cumulative sum control chart
(CUSUM) test. We can define the cumulative sum quan-
tities S+

i (t) = max{0, S+
i (t − 1) + ri(t − 1) − d} and

S−i (t) = max{0, S−i + ri(t− 1) + d}, where d is the size of
the shift to be detected. They can be used in a CUSUM based
coherence vector definition:

ci(t) =

{
1, S+

i (t) > δior S−i (t) < −δi
0, otherwise (7)

A fault is detected if c 6= [0, 0, . . . , 0], that is, at least one el-
ement in the coherence vector is non-zero. A fault is isolated
by matching the coherence vector to a binary fault signature
matrix (FSM). The FSM denoted by S embeds the structural

sensitivity of each residual to the faults in the system com-
ponents (Staroswiecki, 2000). The entries of the FSM are
defined as

Sji =

{
1, ith residual is sensitive to jth component
0, otherwise. (8)

A fault in a component is detectable if at least one residual
is sensitive to it. Fault isolation is performed using the FSM.
Note that if there are too few sensors, the resulting ARRs may
not be able to differentiate among some faults. The ideal case
is when each residual is sensitive to only one fault. This type
of residuals are called structured residuals. If we try to mon-
itor more faults than the number of sensors, we cannot con-
struct structured residuals. A significant of ARRs is the fact
that we do not need to explicitly include the fault models. A
fault appears when a significant change in the variables and
parameters of a component takes place. Therefore, a residual
is affected by a component fault if the variables contributing
to the computation of the residual are sensitive to the respec-
tive fault,

ARRs can be determined using a structured approach, where
a bipartite graph describes the dependence between the vari-
ables and the constraints that define the system behavior
(Staroswiecki & Comtet-Varga, 2001). If a variable appears
in a constraint then an edge in the graph exists between them.
The structural analysis is done through matching on the bi-
partite graph: system variables are associated with the con-
straints from which they can be computed. ARRs are gen-
erated from over-constrained subsystems and are completely
expressed when only known variables appear (inputs, outputs
and parameters) (Staroswiecki, 2000).

The elimination of unknown variables is done iteratively. At
the first iteration, we find the variables that can be computed
directly from the current set of initial set of known variables.
These variables are added to the known variables set which
are used to express additional unknown variables at the next
iteration. The algorithm stops when all variables are ex-
pressed in terms of inputs, outputs and parameters. The con-
straints that were unused in this process become the ARRs.
We emphasize that this determines a structural dependency
between known and unknown variables. This dependency
may be broken for particular choices of system parameters.
More details on the ARR-based diagnosis and other model-
based diagnosis techniques can be found in (Samantaray &
Bouamama, 2008). In Section 4 we show how we can con-
struct ARRs for the rectifier circuit.

3.2. Optimization-based parameter tracking

The goal is to estimate the parameters of the system using
field data. The field data is represented by input and out-
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put time series uT1:T2 and yT1:T2 . The output time series
are used to construct the least square cost function J(θ) =

1
N2−N1

∑N2

k=N1
‖yk − ŷk(θ)‖2, where ŷk(θ) is the simulated

sampled output having as input the time series uT1:T2
. The

parameter estimates are computed as solution of the non-
linear least-square problem

min
θ

J(θ) (9)

subject to: θ ∈ Θ

where Θ is a constraint set. The constraint set ensures that the
system parameters take values that make physical sense. For
example, the resistance of a electrical resistor must be posi-
tive. For box type constraints, that is θmini ≤ θi ≤ θmaxi ,
where θi is an entry of θ, we can transform the constrained
optimization problem (9) into an unconstrained one by apply-
ing the transformation θi = θmini +

[
sin(θ̃i) + 1

]
θmax
i −θmin

i

2

(James & Roos, 1975), and minimizing J(θ̃). Similar trans-
formations can be used when the parameters are only par-
tially bounded. Namely for −∞ < θi ≤ θmaxi we have

θi = θmaxi + 1 −
√
θ̃2i + 1 and for θmini < θi ≤ ∞ we

use θi = θmini − 1 +
√
θ̃2i + 1. This is useful since typ-

ically, unconstrained optimization problems are simpler to
solve, and there are more optimization algorithms available
for such problems.

We can use both gradient-free and gradient based optimiza-
tion methods to solve the unconstrained optimization prob-
lem. Both methods rely on model simulations. In the case
of gradient-based methods, in the best case scenario we can
symbolically obtain the gradient vector. When this is not the
case possible options include automatic differentiation or nu-
merical approximations.

We usually prefer to avoid approximating the gradient numer-
ically, since the process introduces numerical errors that tend
to accumulate. One avenue for automatic differentiation is
using the deep-learning platform such as Tensorflow (Abadi
et al., 2015) or Pytorch (Subramanian, 2018). This will re-
quire building customized objects that described the behavior
of the system. If the system is dynamic, solving the opti-
mization problem requires solving an ODE (or a DAE). Ten-
sorflow already includes a numerical solver for ODEs. Alter-
natively, we can implement explicit numerical solvers such as
the Runge-Kutta algorithms, the simplest of such solvers be-
ing the Euler first order approximation. Implementing such
solvers is equivalent with designing a “custom” recurrent
neural network (RNN), where the number of identical cells is
given by the length of the input and output time series. Rea-
sonable choices for gradient-based optimization methods are
part of the class of nonlinear least square algorithms such as

trusted-region-reflective or Levenberg-Marquardt (Kanzow,
Yamashita, & Fukushima, 2004), which take advantage of the
cost function’s structure.

For large scale optimization algorithms, first order methods
such the gradient decent algorithms and its extensions are
the state of the art. Gradient-free methods include Nelder-
Mead (Powell, 1973), pattern search (Hooke & Jeeves, 1961),
or Powell (Powell, 1964) algorithm with its different ver-
sions (Powell, 1964). The optimization problem (9) is usu-
ally nonlinear and non-convex. Hence there are no guarantees
that the optimization algorithm converges to the global mini-
mum. There is the option of using global optimization algo-
rithms (e.g., particle swarm optimization, (Kennedy & Eber-
hart, 1995), genetic algorithms, (Mitchell, 1998), evolution
strategy) (Beyer & Schwefel, 2002)) but they are usually too
slow. The optimization algorithm uses the model to generate
the simulated output. If the model is dynamic, it requires the
initial state for simulation. If the initial state is not available,
we can treat its entries as optimization variables and estimate
both parameter and initial conditions.

Note that estimating the parameters using an optimization
based procedure is one option among many. Alternatively,
we can use filtering based techniques based on the extended
Kalman filter or particle filter (Arulampalam et al., 2002).

3.3. ARRs enabled parameter tracking

In the previous subsections we discussed how ARRs are used
for diagnosis and how optimization algorithms can be used
for parameter tracking. The ARRs approach gives an qualita-
tive diagnosis, that is, it provides a list a parameters that are
the cause of the abnormal behavior. Parameter tracking pro-
vides quantitative values for the parameters, which gives an
idea about the severity of the fault. The isolability property
of the ARR approach depends on what variables can be mea-
sured and how many. We have at most 2m signatures with m
being the number of sensors. Hence with two sensors we can
encode in the best case scenario at most four modes, nominal
mode included. Even if a signature corresponds to a list of pa-
rameters, rather than a single one, this list is typically a subset
of the set of all parameters. Hence we need to track fewer pa-
rameters. In other words, the ARRs based diagnosis is used
to filter out parameters that are unlikely to be responsible for
the abnormal behavior.

Figure 2 depicts the architecture behind the combination of
ARRs and optimization based parameter tracking. First the
input and output time series are used to evaluate the ARRs
and generate a coherence vector c. This vector is checked
against the FSM which produces a list of possible param-
eters {θi1 , . . . , θiM } responsible for the abnormal behavior.
Next, for each parameter θij , an optimization procedure is in-
stantiated which estimates the parameter value θ̂ij that best
explains the observed behavior. Finally, the likely parame-
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ter responsible for the faulty behavior is selected by choosing
the one for which the cost function is the smallest, that is, θ̂i∗ ,
where i∗ = arg minθ∈{θi1 ,...,θiM } J(θ).

Figure 2. ARRs enabled parameter tracking architecture

The optimization blocks in Figure 2 can be replaced with
filters that track each parameter θij , if filtering based tech-
niques for parameter tracking are used. Since filters require
the statistics of the initial state, we would need to track the
state of the system until an abnormality is detected, and the
statistics of state estimate at the respective point will be used
as initial state for the bank of filters.

4. ILLUSTRATIVE EXAMPLE

In this section we demonstrate the ARRs enabled parame-
ter tracking approach for parametric fault diagnosis. The
schematic of the rectifier was introduced in Figure 1. The in-
put for the rectifier is an sinusoid signal E = Ea sin(2πft).
The nominal parameter values of the rectifier’s components
are shown in Table 1.

Table 1. Rectifier parameters

Notation Description Value
Ea amplitude 8.91 [V]
f frequency 60 [Hz]
R resistor 100 [Ohm]
C capacitor 2.2e-6[F]
iS saturation current 1e-12[A]
vT thermal voltage 26e-3[V]
n ideality factor 1.5

We consider two types of faults: open connections in the
diodes and parameter drifts for the capacitor and resistor. The
open connections are simulated by making the saturation cur-
rent iS zero.

We first construct a set of ARRs and the FSM. We assume we

measure two variables: potentials v2 and v3. The behavior of
the rectifier is described by the following DAE system:

v1 = E + v2 (10)

i3 = iS3(e
− v1

nvT − 1) (11)

i1 = iS1
(e

v1−v3
nvT − 1) (12)

iE = −i1 + i3 (13)

i4 = iS4
(e
− v2

nvT − 1) (14)

i2 = iS2(e
v2−v3
nvT − 1) (15)

i2 = i4 + iE (16)
RiR = v3 (17)
iC = i1 + i2 − iR (18)

Cv̇3 = iC (19)

To solve the above DAE, it is needed to solve, at each time-
step, the optimization problem

min |i2 − i4 − iE | (20)

where (20) is subject to the following constraints:

v1 − E − v2 = 0 (21)

i3 − iS3
(e
− v1

nvT − 1) = 0 (22)

i1 − iS1(e
v1−v3
nvT − 1) = 0 (23)

iE + i1 − i3 = 0 (24)

i4 − iS4
(e
− v2

nvT − 1) = 0 (25)

i2 − iS2
(e

v2−v3
nvT − 1) = 0 (26)

This problem can in fact be simplified to an iterative Newton-
Raphson algorithm where the iteration variable is the poten-
tial v2. Once v2 is solved, the rest of the unknown variables
can be computed.

To find the ARRs we apply the structured approach. Since we
have two sensors we can generate two ARRs. Note that there
is no unique set of two ARRs. In fact, any two equations from
the constraints (10) – (19) can serve as ARRs. However, they
will induce the same fault signature matrix. The structured
approach uses a greedy procedure to compute the unknown
variables. In the case of derivatives, explicit equations are
added. For example for v̇3 we add the equation

v̇3 =
dv3
dt

(27)
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This is a causal equation though, meaning that we can com-
pute v̇3 from v3 but not the other way around. The “computa-
tion” is in fact an approximation since we have samples of v3
in time. Hence we have 11 equations and 9 unknowns. From
the measurement variables v2 and v3, in the initial step we
can find solutions for the unknowns v1, i2, iR, i4 and v̇3 from
constraints 10, 15, 17, 14 and 27, respectively. In the second
step, we can derive the unknowns iC , i1 and i3 from the con-
straints 19, 12 and 11, respectively. Finally, in the third step
we can compute iE from constraint 13.

We have solved for all the unknowns and we are left with the
constraints 16 and 18. They are the ARRs for our example,
resulting in the residuals r1 = i2−i4−iE and r2 = iC−i1−
i2 + iR. The next step is to construct the FSM. This involves
tracking the dependence of each variable in the constraints 16
and 18 on the parameters or the components of the system. In
particular, we will track the dependance of the variables on
the four diodes and on the parameters C and R. For example,
i2 depends only on the state of diode D2 while iE depends
on the state of diodes D1 and D3. We repeat the dependency
analysis for all variables involved in the ARRs, resulting in
the FSM depicted in Table 2.

Table 2. Fault signature matrix

r1 r2
D1 1 1
D2 1 1
D3 1 0
D4 1 0
R 0 1
C 0 1

We discover that we can differentiate between three pairs of
components {D1, D2}, {D3, D4} and {R,C}.

Figures 3a-3b depict the residuals r1 and r2 over a time inter-
val of 0.1s, and their average values, in the nominal model.
As we expect, their values are close to zero.

Figures 3c and 3d depict the residuals r1 and r2 over a time
interval of 0.1s, and their average values in the case diode D1

suffers from an open connection fault. The simulated residual
values are unrealistically large, but it has the correct signa-
ture.

The detection thresholds can be chosen based on the desired
sensitivity of the ARRs. For example if we want to detect a
±25% change in the parameters R and C, we would need to
choose a threshold of maximum 0.01 for the average residual
values. This value was derived by ignoring any noise in the
measurements. It would need to be revised to accommodate
for the noise when used on a real system.

Once a fault is detected using the ARRs, a list of possible
causes is generated. For each possible cause, an optimiza-
tion algorithm is instantiated to find the best explanation. Us-
ing the magnitude of the ARR residuals to draw a conclu-

sion may be misleading. For example a short in resistor R
generates residual values comparable in magnitude with the
residual values generated in the case of an open connection in
D1. For the resistor and capacitor we track the parameters R
and C. In the case of the diode faults, we track the saturation
currents iS .

We used Powell’s gradient free algorithm for estimating the
fault parameters. With this approach we do have to worry
about the gradient approximation. Since the number of opti-
mization variables is small, the algorithm runs fast enough.

Tables 3 and 4 show the results when the ARRs indicate that
either R or C may be faulty. The first column of the table
depicts the real mode. This means that the second row cor-
responds to the resistor having drifted from 100 Ohm to 150
Ohm. We estimate each parameter at a time (columns 2 and 3)
and the results when R and C are estimated simultaneously.

Table 3 presents the parameter estimates while Table 4 shows
the cost values computes at the estimate values. First we
note that the cost estimates can indeed be use to differenti-
ate between the faults. We also note, that when estimating
the two parameters simultaneously, the results are not correct
although the resulting cost value may be small.

Table 3. Optimization results for faults in R and C - parame-
ter estimates

mode R̂[Ω] Ĉ[µF ] R̂[Ω], Ĉ[µF ]
R = 150[Ω] 149.99 3.33 105.01, 3.18
C = 5[µF ] 149.99 4.99 149.99,3.28

Table 4. Optimization results for faults in R and C - cost
function estimates

mode J(R̂) J(Ĉ) J(R̂, Ĉ)
R = 150[Ω] 9.83e-12 1e-4 8.4e-5
C = 5[µF ] 5.6e-2 2.1e-5 1.9e-4

We repeat the same steps for differentiating between faults in
diodes D1 and D2.

Table 5. Optimization results for faults in D1 and D1 - satu-
ration currents estimates

mode îS1
[A] îS2

[A] îS1
[A], îS2

[A]

îS1
= 0[A] 1e-22 7.57e-13 1.05e-22, 1e-12

îS2
= 0[A] 7.19e-13 9.99e-23 9.99e-13,1e-22

We note that in this case even when estimating simultane-
ously the saturation currents in the two diodes we get correct
results (recall that the nominal value for the saturation current
is iS=1e-12 A). Since the optimization problem in nonlinear
and usually non-convex, we cannot guarantee convergence to
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(a) Residual r1 in nominal mode, r1,0:0.1 = 4.08e− 16 (b) Residual r2 in nominal mode,r2,0:0.1 = 5.81e− 19

(c) Residual r1 for open connection in D1, r1,0:0.1 = 3.4e38 (d) Residual r2 for open connection in D1,r2,0:0.1 = 3.4e38

Figure 3. Residuals r1 and r2 for various nominal and fault modes

Table 6. Optimization results for faults in D1 and D1 - cost
function estimates

mode J (̂iS1
) J (̂iS2

) J (̂iS1
, îS2

)

îS1
= 0[A] 0 2.4976 1.55e-3

îS2
= 0[A] 0.038 3.83e-13 4.03e-13

the global minima. We can imagine an architecture where dif-
ferent types of optimization algorithms initialized at different
initial conditions are instantiated. We can then select the pa-
rameter estimates based on their cost functions evaluated at
the estimates. The approach discussed above can be applied
online as well, by using a moving window idea to generate
time series. This provides the advantage of a good guess for
the initial conditions of the optimization variables under the
assumption that there are no sudden changes in the parame-
ter values. Some of the simulated residual values take values
unrealistically large. In a real system we would expect these
value to be between some physically realizable values. Still,
we expect them to be significantly large to induce correct val-
ues in the coherence vectors.

5. CONCLUSIONS

We discussed an approach under which qualitative based di-
agnosis is used to improve the numerical efficiency of an opti-

mization based approach for parameter estimation. The qual-
itative diagnosis uses ARRs to generate a list of candidate
components/parameters that would explain an abnormal be-
havior. It is based on a FSM derived offline. This list is used
to instantiate a set of optimization algorithms that learn sepa-
rately the values of the parameters in the list. We demonstrate
our approach for diagnosing faults in a rectifier circuit.

As a future work we plan to extend our approach to handling
non-parametric faults as well. Parasitics, for example, is a
growing problem in modern integrated circuits and plan to
revise our approaches for diagnosing these kinds of problems.
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