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ABSTRACT

Prognostics can enhance the reliability and availability of in-
dustrial systems while reducing unscheduled faults and main-
tenance cost. In real industrial systems, data collected from
the normal operation conditions of system is available, but
historical degradation data is often unavailable. Hence, this
paper proposes a general data-driven prognostic approach
dealing with the lack of degradation data in the offline phase.
First, features are computed on the collected raw signal, then
One Class Support Vector Machine (OCSVM) is used to de-
tect the degradation, this anomaly detection method is trained
using only normal operation data. Then, features are ranked
according to the selection criteria. The feature having the
highest score is chosen as Health Indicator (HI). Finally an
adaptive degradation model is applied for the prediction of the
degradation evolution over time and Remaining Useful Life
(RUL) estimation. The proposed approach is validated using
run-to-failure vibration data collected from a high speed shaft
bearings of a commercial wind turbine.

1. INTRODUCTION

Prognostics and Health Management (PHM) or predictive
maintenance can provide an advanced maintenance strategy
compared to the traditional one (e.g., curative and preven-
tive maintenance). PHM can enhance the reliability and
the availability while reducing unscheduled faults and main-
tenance cost of industrial systems such as Wind Turbines
(WTs). The production of energy using WT has an increas-
ing trend, this entails a growing evolution in the number and
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size of WTs which increase the Operation and Maintenance
(O&M) cost. Prognostic is a part of the PHM strategy and
focus to define the remaining time to a failure occurrence,
named the Remaining Useful Life (RUL). It is estimated by
using the HI, where the HI represents the evolution over time
of the system performances or conditions, it is used to pre-
dict the degradation evolution and estimate the RUL. RUL
is estimated based on two main approaches (Abid, Sayed-
Mouchaweh, & Cornez, 2018): Experience based (reliabil-
ity, similarity), and degradation modeling based (model, data-
driven) approaches. Experience based approaches require a
large datasets about the degradation dynamics, which is not
often available in industrial systems. It is difficult to apply
model based approaches in real complex systems, due to the
interaction between different components and the environ-
mental variations. Despite the lack of interpretation, data-
driven approaches are the most suitable methods for the prog-
nostics of industrial complex systems. These methods offer a
trade-off in terms of applicability, precision, implementation,
and cost.

Prognostic of bearings is widely investigated in the literature,
for the reason that bearings are most subject to failure due to
the wear and tear during operation. For this application, prog-
nostic methods are mainly data-driven approaches. HI con-
struction in this category of methods can be based on a single
feature or it can be based on a fusion of multiple features that
can improve the representation of the system degradation. For
example, In (Benkedjouh, Medjaher, Zerhouni, & Rechak,
2013) HI is built from a reduction of eight features computed
on a vibration signal by using the Wavelet Packet Decompo-
sition (WPD). HI is contructed using Mahalanobis distance in
(Wang, Peng, Zi, Jin, & Tsui, 2016), where the HI is the dis-
tance between normal and evolving class (i.e., degradation).

1



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

In (Tobon-Mejia, Medjaher, Zerhouni, & Tripot, 2012), fea-
tures are extracted from vibration signal using WPD, which
can analyses the higher frequency domains of a signal.

Some works evaluate the extracted features using criteria and
select the feature with high score as HI. The best features
can also be fused in order to enhance the selection criteria.
Monotonicity and trendability selection criteria are widely
employed in the literature. Monotonicity evaluates the in-
creasing or decreasing trend, where the trendability evalu-
ates the correlation between features and the operating time.
In (Javed, Gouriveau, Zerhouni, & Nectoux, 2015), classical
feature and proposed trigonometric features are ranked us-
ing monotonicity and trendability criteria (Coble, 2010). A
combination of the monotonicity and trendability criteria are
applied in (Guo, Li, Jia, Lei, & Lin, 2017) for features se-
lection, the best features are fused using a Reccurent Neu-
ral Network (RNN) in order to construct the HI. These crite-
ria are also applied in (Saidi, Ali, Bechhoefer, & Benbouzid,
2017) to select the best features as HI among different statis-
tical and frequency domain features.(Atamuradov, Medjaher,
Dersin, Zerhouni, & Camci, 2018) proposed a hybrid feature
selection method for point machine sliding chair monitoring,
where the affinity matrix and inherent features (monotonic-
ity, trendability, and robustness) are combined in order to im-
prove the selection.

In industry, data from different normal operating conditions
can be found, otherwise there is a lack of past occurred degra-
dation data or it is often unavailable (e.g., new machine). Also
generating degradation data in the laboratory is very costly
and the degradation dynamics do not behave as the reality due
to the change in environmental and operating conditions (e.g.,
wind speed variability for wind turbine). Hence, applying a
prognostic approach is challenging due to several reason. i)
it is difficult to select the most sensitive features in order to
detect and predict the degradation using only normal condi-
tions data, ii) it is arduous to construct the HI online; most of
the works in the literature select the best features as HI using
evaluation criteria in the offline phase (using run-to-failure
degradation data). In order to address these challenges, a
prognostic approach dealing with the lack of degradation data
is proposed in this work. First of all, a general library is con-
structed in order to include as much as possible features sen-
sitive to different degradation dynamics. Secondly, anomaly
detection method is used since only normal conditions data
is available. Anomaly detection or novelty detection is the
identification of new patterns which differ significantly from
the patterns generated during normal operation conditions.
Hence, One Class Support Vector Machines is applied in or-
der to detect the degradation and trigger the RUL estimation
without using degradation data for training. Thirdly, features
are ranked online according to meaningful evaluation criteria
(monotonicity and trendability), where the feature with high
score is selected as HI and used for the degradation predic-

tion. Finally, adaptive degradation model is used in the aim
to follow the degradation evolution over time and estimate
RUL.

This paper is organized as follows. Section 2 explains the
proposed approach for degradation detection and RUL es-
timation. Section 3 describes the run-to-failure high speed
shaft bearings data and presents the results of the proposed
approaches. Conclusion and perspectives are given in Sec-
tion 4.

2. PROPOSED APPROACH

A data-driven based approach is proposed (Figure 1) for the
degradation detection and prognostics. The proposed ap-
proach uses data about the normal conditions of the system
as a priori knowledge. It can be decomposed into three parts.

2.1. Feature definition

The first part aims to choose the most sensitive features to the
degradation. The selected features can be used for early and
reliable detection of the degradation, and can also be used for
the characterization of the degradation evolution with time.
Degradation result in a change of a measured signal which
can be a system performance signal (e.g., produced energy of
a wind turbine) or it can be related to the operation conditions
of a system (e.g., vibration and temperature). In order to de-
tect the change in the measured signal, a library of statistical
features is used in this work. Table 1 presents the 12 statis-
tical features defined in the library, which are widely used
in the litterature for the degaradation detection and prognos-
tics (Saidi et al., 2017)(Wang et al., 2016). These different
features are sensitive to different degradation dynamics. For
example, the standard deviation can measure the dispersion
of the signal, skewness and kurtosis examine the probabil-
ity density function (PDF) of the signal, where the skewness
measures the asymmetry of the PDF and the kurtosis mea-
sures the flatness degree. The shape factor is defined as the
ratio of the Root Mean Square (RMS) value to the mean abso-
lute. RMS describes the signal strength (e.g., sensitive to the
bearing’s wear). This standard library is defined in the offline
phase and the included features can be modified, suppressed,
or enriched by feedback or human experts.

2.2. Degradation detection

In this work, One Class Support Vector Machines (OCSVM)
is chosen among the different anomaly detection methods for
several reasons:

• No assumption about data distribution
• Capability of dealing with high dimensional data
• Deal with complex problem (Non linear decision bound-

ary)

OCSVM separates all the data points from the origin in a
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Figure 1. Flowchart of the proposed prognostic approach.

high dimensional feature space. The objective is to find an
optimal hyperplan that maximizes the distance from it to the
origin. It can be formulated in a quadratic programming prob-
lem (Schölkopf, Williamson, Smola, Shawe-Taylor, & Platt,
2000).

min
ω,ξ,ρ

1

2
‖ω‖2 +

1

νn

∑
i

ξi − ρ (1)

Subject to
(ω · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0 (2)

Where n is the number of training samples, ω is the normal
vector that separating hyperplane, ρ is the offset of the de-
sired hyperplane, ξ = [ξ1...ξn] is a vector of errors, and Φ(.)
is a kernel function. ν ∈ [0, 1] is an upper bound on the frac-
tion of training samples outside the decision boundaries and
a lower bound on the fraction of support vectors.

After solving the quadratic programming problem, the final
decision function is :

f(x′) = sgn(
∑
i

αiK(xi, x
′)− ρ) (3)

K(xi, x
′) = exp[−‖xi − x′‖2/2σ2] (4)

Where: K is the kernel function, Radial Basis Function
(RBF) is used (Eq. (4)), αi is the observation coefficient,
σ2 is the variance, and ‖.‖ is the Euclidean norm.

The function f(x′) returns +1 if the observation x′ belong to
the known regions and -1 elsewhere. A OCSVM score can
also be computed using Eq. (3) which is positive in the nor-
mal class, negative outside, and 0 in the boundary. OCSVM
doesn’t take in consideration the sequentiality of points, for
this reason a moving median is applied to the score. Mov-
ing median is used for smoothing the OCSVM score by re-
moving outliers score, which can be interpreted as including
the sequentiality between the observation at the present time
and past observations. The degradation can thus be detected
by using the smoothed OCSVM score when it is below the
boundary 0.

2.3. HI-selection

The detection of the degradation triggers the HI-selection and
RUL estimation. The HI selection method start in a blind
way, where no apriori knowledge about the best HI is known.
The best HI is selected online for each time sample among
the different features defined in the library according to se-
lection criteria. Selection criteria allow combining the most
pertinent HI evaluation metrics which are monotonicity and
trendability (Coble, 2010; Abid et al., 2018; Atamuradov et
al., 2018).

Monotonicity

The monotonicity evaluates the negative or positive trend of
the HI, with the assumption that the system cannot self-heal.
Monotonicity is measured by the absolute difference between
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Table 1. Features library.

negative and positive derivative of HI as indicated in the fol-
lowing equation

Monot =

∣∣∣∣Nb of (d/dx > 0)

n− 1
− Nb of (d/dx < 0)

n− 1

∣∣∣∣ (5)

where d/dx represents the derivative of the HI, n represents
the number of observations, Monot ∈ [0, 1], where 1 repre-
sents the highest monotonicity.

Trendability

Trendability is related to time and represents the correlation
between the degradation trend and the operating time of a
component, and it is calculated as follow (Javed et al., 2015)

Trend =
|n(∑n

i=1 xiti)−(
∑n

i=1 xi)(
∑n

i=1 ti)|√
[n

∑n
i=1 x

2
i−(

∑n
i=1 xi)2][n

∑n
i=1 t

2
i−(

∑n
i=1 ti)

2]
(6)

Trend ∈ [0; 1] represents the correlation coefficient between

the value of HI for a pattern x at time t. Trend approaches
1, when the HI has a strong positive linear correlation with
time.

Selection criteria

The two metrics are confined in the range [0, 1] and are pos-
itively correlated with the performance of the best feature.
Consequently they are suitable for the selection criterion,
which can be computed by a linear combination of the two
metrics as follow:

Crit =
Trend+Monot

2
(7)

The selection criteria is computed online using the points
from degradation detection until present time. According to
this criterion, the features defined in the library are ranked on-
line (at each time sample), then the best one is selected as HI
and used in the next step of remaining useful life estimation.

2.4. Remaining useful life estimation

Remaining useful life estimation consists in predicting the
evolution of the HI through time. The remaining time is the
difference between the present time and the time of End Of
Life tEOL, where the degradation evolution reaches a speci-
fied Failure Threshold (FT).

For this work a Generalized Linear Model (GLM) is used
in predicting the HI evolution, which is a flexible general-
ization of the standard linear regression (McCullagh, 2018).
This model is chosen because it can be used to fit different
degradation dynamics (e.g., linear or exponential). GLM al-
lows for response variable that has error distribution model
other than a normal distribution, which belongs to the expo-
nential family (e.g., the normal, binomial, Poisson). GLM
generalizes linear regression by allowing the linear model
(α + Xβ) to be related to the response variable via a link
function (g(µ) = (α + Xβ)). Accordingly, the regression
model is given by

E(Y) = µ = g−1(α+Xβ) (8)

The coefficient estimation of the GLM is achieved using the
method of maximum likelihood. The development of a GLM
model can be viewed as choosing the response distribution
and the link function with the linear model, where the selec-
tion of the appropriate parameters is often dependent on the
application. The degradation model is adapted by updating
the model parameters (i.e., α and β) online. Hence, the RUL
is corrected with each new sample collected.

The predicted RUL must be evaluated a posteriori using
suitable and meaningful metrics. Root Mean Square Error
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(RMSE) and Mean Absolute Percentage Error (MAPE) are
used for RUL evaluation. RMSE is the standard deviation of
the prediction errors, where MAPE is a relative error that can
expresses the accuracy as a percentage.

RMSE =

√√√√ 1

n

n∑
i=1

(RULr(i)−RULp(i))2 (9)

MAPE =
100%

n

n∑
i=1

∣∣∣∣RULr(i)−RULp(i)RULr(i)

∣∣∣∣ (10)

Where n is the number of observations, i is the index, RULr
represents the real RUL, and RULp represents the predicted
RUL. The prediction accuracy is computed after failure oc-
currence, due to the dependency on the real RUL.

3. EXPERIMENTATION

3.1. Description of the recorded data and sequences gen-
eration

The vibration are collected from a real high speed shaft bear-
ing installed in a real commercial wind turbine with a 2MW
power output provided by the Green Power Monitoring Sys-
tems in USA (Bechhoefer, Van Hecke, & He, 2013). After
the last day of recording, an inspection of the bearing showed
that the inner race was cracked (Figure 2).

Figure 2. Cracked inner race of the high speed shaft bearing
after the last day of recording.

Vibration data is measured each day for 6 seconds at high
sample rate (97656 samples per second), this measure is
repeated for 50 days. The unit of measurement is in ”g”,
where 1g is the earth gravitational acceleration. Figure 3
shows the collected run to failure vibration signal over 50
days, where each part of the signal with different color has
a length of 585936 samples (97656 samples times 6 seconds).
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Figure 3. Collected vibration signal.

The collected data are composed of one sequence run to fail-
ure vibration measure where the first 10 days of measurement
are considered in this paper as normal conditions and for the
remaining days, the system is considered under degraded con-
ditions. This one sequence of degradation is not sufficient
for testing the robustness of our proposed approach. For this
reason, different degradation sequences are generated based
on this vibration measurement. A white Gaussian noise is
added to the vibration signal in order to increase the number
of degradation sequences. Two levels of white Gaussian noise
have been added with 0 mean and different std (N(0, 0.5)
and N(0, 1)). In order to test our approach, 5 generated se-
quences of noise are added to the signal, and this is done for
each level of noise. The obtained vibration noisy signals are
noted: vibration signal with low level of noise (N1

L...N
5
L),

and vibration signal with high level of noise (N1
H ...N

5
H ).

3.2. Feature computation

The 12 statistical features predefined in the library are com-
puted using a window length of 6 seconds, and the library is
expanded with other frequency features. For bearings mon-
itoring, spectral analysis is useful. More precisely Spectral
Kurtosis (SK), which is the kurtosis of the spectral compo-
nents. It can detect impulsive bearing signatures since they
could be masked by other source of vibration (e.g., gears,
shafts, mechanical misalignment...)(Saidi et al., 2017; Ali,
Saidi, Harrath, Bechhoefer, & Benbouzid, 2018). It is com-
puted as follow (Antoni, 2006):

K(f) =
〈S(t, f)4〉
〈S(t, f)2〉2

− 2 (11)

Where K(f) is the spectral kurtosis around frequency f , 〈.〉
denotes the averaging over time, and S represents the Short-
Time Fourier Transform (STFT).

Figure 4 shows the computed SK on the original collected
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data, where a window length of 128 time samples is chosen.
As shown in this figure, the SK value increases from yel-
low color to red color as the degradation severity increases.
Hence, it can be used as an indicator of the degradation sever-
ity. 4 statistical features (i.e., mean, std, peak-to-peak, kurto-
sis) are computed on the SK value for each day as indicated
in (Saidi et al., 2017; Ali et al., 2018). The features library is
enriched this 4 frequency features.

Figure 4. Spectral Kurtosis.

Figure 5 shows some features examples computed on the SK
(sk-mean,sk-std, and sk-peak2peak) and some features com-
puted on the vibration signal (kurtosis, peak2peak, and shape-
factor).

0 10 20 30 40

time (day)

0

0.1

0.2

s
k
-m

e
a

n

0 10 20 30 40

time (day)

0

0.5

s
k
-s

td

0 10 20 30 40

time (day)

20

30

40

p
e

a
k
2

p

0 10 20 30 40

time (day)

3

4

5

6

k
u

rt
o

s
is

0 10 20 30 40

time (day)

1.25

1.3

1.35

s
h

a
p

e
fa

c
to

r

0 10 20 30 40

time (day)

0

2

4

s
k
-p

e
a

k
2

p

Figure 5. Examples of computed features.

3.3. Degradation detection

The data provided by the article (Bechhoefer et al., 2013)
are labeled as normal for the first 10 days of the original vi-
bration, where the remaining days from 11-50 are labeled as
degradation data. 10 days corresponds to 10 samples of fea-
tures which is not sufficient for training the OCSVM, fea-
tures are computed on a moving window of 6s with a moving
step of 1.2s in order to augment the normal data samples for
the training. Hence 50 samples of normal data corresponding
to the 10 first days are computed for each feature and used
for the OCSVM training. For both the training and predic-
tion, features are normalized (z-score normalization) using
the mean and standard deviation of normal data. The pre-
dicted OCSVM score is then smoothed using the moving me-
dian with a window of 3 samples. The anomaly is detected
when the score is below 0 (outside the boundary).

Figure 6. OCSVM score of the original vibration data before
and after smoothing.

The computed OCSVM score is shown in Figure 6. It shows
that the days 19 and 26 are considered as normal before the
smoothing and are corrected after smoothing which is consid-
ered as the anomaly indicator. The anomaly indicator shows
that the degradation can be detected at the day 11 using only
the normal conditions data. So the proposed approach has an
early degradation detection capabilities. Degradation detec-
tion trigger the HI selection and RUL estimation step.

3.4. HI selection

The online HI selection is triggered after the degradation is
detected. The computed features are ranked according to their
selection criterion computed with Eq. (7). The computed on-
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line selection criterion for each features is presented in Fig-
ure 7. The feature with the best score of selection criterion
is selected as HI at each day (Table 2), it can be seen that for
the first period of degradation (from day 11 to day 22), the se-
lected feature changes among std, sk-std, skewness, mean due
to the low degradation severity. Where, the sk-mean remains
after the day 23 the best feature until the last day (failure).
Because of sk-mean represents the mean of the SK at each
day, where the SK is proportional to the degradation severity.
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Figure 7. Selection criteria computed online for each day of
the degradation.

Table 2. Selected features as HI for each day.

Selected
features

std sk-std skewness mean sk-mean

Time(day) 11 12-18 19-20 21-22 23-50

Table 3 shows the features ranking, according to the selec-
tion criterion for the last day of degradation, where the 6 best
features (sk-mean, sk-std, peak2p, kurtosis, shapefactor, and
sk-peak2p) are plotted in Figure 5.

3.5. Remaining useful life estimation

The feature selected as HI for each time sample (day) can
characterize the degradation evolution. The aim is to predict
the HI evolution over time until it reaches a failure thresh-
old. HI evolution is predicted by applying an adaptive GLM
model where its coefficients are updated according to new
sample (day), and the GLM parameters are chosen depend-
ing on the domain knowledge. It is reported that the bearing
degradation has commonly an exponential growth over time
(Gebraeel, Lawley, Liu, & Parmeshwaran, 2004). Hence, a
GLM model is used with a log link function and Poisson dis-
tribution as defined in Eq. (12). Failure threshold can be
computed by using some available failure data or it can be
set by a domain expert. In this case, features computed on
the last day of the degradation are used as failure threshold,

Table 3. Ranked features at the last day of degradation.

Rank Features Monot Trend Crit
1 sk-mean 0,231 0,887 0,559
2 sk-std 0,128 0,858 0,493
3 peak2p 0,179 0,75 0,465
4 kurtosis 0,077 0,805 0,441
5 shapefactor 0,026 0,828 0,427
6 sk-peak2p 0,026 0,808 0,417
7 min 0,026 0,775 0,401
8 max 0,077 0,708 0,392
9 impulsefactor 0,077 0,679 0,378
10 std 0,128 0,613 0,371
11 rms 0,128 0,606 0,367
12 energy 0,128 0,595 0,362
13 crestfactor 0,077 0,646 0,361
14 mean 0,077 0,225 0,151
15 sk-kurtosis 0,077 0,205 0,141
16 skewness 0,026 0,164 0,095

Table 4. RUL prediction accuracy for the different degrada-
tion dynamics.

Degradation dynamics N RMSE MAPE
Original degradation data - 16.484 42.908

Degradation data with
low level noise

N1
L 16,182 46,68

N2
L 15,402 61,41

N3
L 17,481 50,235

N4
L 16,289 51,745

N5
L 16,264 54,794

Degradation data with
high level noise

N1
H 15,906 62,94

N2
H 14,296 44,01

N3
H 17,502 63,979

N4
H 13,601 51,646

N5
H 14,165 44,543

then HI is normalized between 0 and 1, where 1 is the failure
threshold, after that the time of End Of Life tEOL (time of
failure) is computed from Eq. (13) as follow

E(Y) = µ = e(α+Xβ) (12)

tEOL =
ln(µ)− α

β
(13)

Where µ is the failure threshold equal to 1 after normaliza-
tion, α and β are the regression model coefficients. RUL
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Figure 8. Predicted RUL based on the collected vibration data using different Health indicators.

Table 5. RUL prediction accuracy using different HI and regression model.

HI Linear Regression Exponential Model GLM Model

RMSE MAPE RMSE MAPE RMSE MAPE

sk-peak2p 42,158 453,665 17,064 86,027 17,235 80,534
shapefactor 36,675 372,112 16,927 72,177 19,286 65,375
kurtosis 36,215 377,605 17,591 75,129 19,271 66,424
peak2p 29,069 335,871 21,915 136,879 23,647 139,926
sk-std 37,417 370,55 17,438 70,794 17,233 56,53
sk-mean 36,804 304,617 22,214 58,207 21,112 50,514
HI-selection 36,252 298,243 16,691 48,238 16,484 42,908

is deduced by the difference time between (tEOL) and the
present time at index i (ti).

Figure 8 shows the true and the predicted RUL of the col-
lected vibration data over the 40 days of degradation. In this
figure, The RUL is estimated using the defined GLM model.
The latter is applied by two manners in order to compare the
performance (RUL prediction accuracy) of the proposed on-

line HI-selection and the traditional use (offline) of HIs. In
the former, the selection of the best HI according to the se-
lection criterion Eq. (7) is achieved online after the reception
of each new vibration data sample. While in the latter, the
performance of each HI is calculated using all the sequence
of vibration data. For simplicity, Figure 8 shows the perfor-
mance of the best 6 HIs defined in Table 3. It can be seen
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that the predicted RUL deviates from the true RUL in the be-
ginning until 50% of degradation length due to the lack of
data. It becomes more precise when more data points are
collected. RUL prediction accuracy for the original collected
data and for the generated data (noisy data) are presented in
Table 4. The computed RUL errors RMSE and MAPE using
the HI-selection method indicate that the proposed approach
is robust to the different levels of noise (low and high levels).

In Table 5, a comparison is presented according to RUL pre-
diction accuracy. RUL is computed using 6 HI selected of-
fline and the proposed online HI-selection method. It is also
computed using different regression models: linear regres-
sion y = at + b, exponential model y = aebt, and the GLM
model represented by Eq. (12). It is shown that the GLM
model outperforms the linear regression model and it slightly
exceeds the exponential model. It is noticed also that the pro-
posed online HI selection method performs better than the
selected offline HI (6 best HI). It is even better than the sk-
mean selected offline which is the best feature at the end of
degradation.

4. CONCLUSION

In this paper, a general data-driven prognostic approach is
proposed, which can deal with the lack of degradation data
in the offline phase. First, a library of statistical features is
defined, then the smoothed OCSVM score is used to detect
the degradation as early as possible. The degradation detec-
tion trigger the HI selection and RUL estimation steps. In the
HI selection step, features defined in the library are ranked
according to the evaluation criteria, where the best feature is
selected as HI. In the RUL estimation step, an adaptive degra-
dation model is used where its parameters are re-estimated
online. This model can predict the degradation evolution (HI
evolution) over time, where the RUL is corrected online. The
proposed approach is validated with real degradation data col-
lected from a high speed shaft bearings of a commercial wind
turbine. Experimentation result shows that the proposed ap-
proach is able to detect the degradation early at day 11 and
can predict a precise RUL after collecting about 50% of the
degradation data.

As future work, it is planned to improve the RUL estima-
tion by computing RUL confidence, where the confidence in-
creases while collecting more data. Then, the proposed ap-
proach will be validated on other degradation data-sets re-
lated to other wind turbine components, where the system is
impacted by the environmental variation (e.g., wind speed)
and the change in operating conditions.
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