
Kinematic Frequencies of Rotating Equipment
Identified with Sparse Coding and Dictionary Learning

Sergio Martin-del-Campo1, Fredrik Sandin2, and Stephan Schnabel3
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sergio.martindelcampo@ltu.se
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ABSTRACT

The detection of faults and operational abnormalities in ro-
tating machine elements like rolling element bearings and
gears requires information about kinematic properties, such
as ball-pass and gear mesh frequencies. Typically, condition-
monitoring experts obtain such information from the manu-
facturers for diagnostics purposes. However, the reliability of
such information can be compromised during installation and
maintenance, for example, if components are replaced and
do not match the documented specifications. Thus, methods
enabling verification and online extraction of such kinematic
properties are needed to improve diagnostic reliability. Unsu-
pervised machine learning methods, like sparse coding with
dictionary learning, enable automatic modeling and charac-
terization of repeating signal structures in the time domain,
which are naturally generated by rotating equipment. Sparse
coding with dictionary learning represents a vibration signal
as a linear superposition of noise and atomic waveforms. The
activation rate of the atomic waveforms typically possesses a
cyclic nature in rotating environments, similar to how bear-
ing kinematic frequencies correlate with faults in a rolling
element bearing. However, there is no explicit relationship
between the activation rates of the atoms and the bearing
kinematic frequencies. This motivates this investigation of
the possibility to extract bearing kinematic frequencies from
sparse representations. Former work describes the use of dic-
tionary learning for the detection of anomalies in rolling el-
ement bearings. In this paper, we describe how a similar
unsupervised machine learning method can be used to ex-
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tract kinematic frequencies of bearings and gears, for exam-
ple for anomaly detection purposes and comparisons with an
expected signature. We study the activation rates and changes
of atoms learned from vibration signals in two case studies.
The first case is based on data from a well-known controlled
experiment with faults seeded in the bearings. The second
case is based on a public dataset recorded from the high-speed
shaft of a wind turbine with a bearing failure. Furthermore,
we compare the activation rates and weights of the atoms
to the bearing kinematic frequencies and harmonics. Sparse
coding with dictionary learning offers a possibility for self-
learning of the kinematic frequencies of a bearing, which can
be useful for the further improvement of automated anomaly
detection methods in condition monitoring.

1. INTRODUCTION

Rotating machinery depends on the structural integrity of
many machine elements to enable the relative motion be-
tween the moving parts. Rolling element bearings and gears
are among the most common of these components. Con-
dition monitoring is often applied to these components for
early fault identification and prediction of fault conditions,
thereby extending the operational life of the machine through
condition-based maintenance. However, fault detection and
prediction is a challenging task because of the large number
of factors that affect the performance and behavior of the ma-
chines.

Typically, experts rely on kinematic properties of the machine
elements when performing vibration analysis in order to iden-
tify defect frequencies that are expected for the typical failure
modes. The precise mathematical relationship between the
kinematic properties of rotating components and frequency
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content is well documented in the literature by Randall &
Antoni (2011). Frequency bands, known as fault frequen-
cies, in the spectra of velocity, acceleration or enveloped vi-
bration signals are trended over time. The amplitude of those
frequency bands typically remains stationary under healthy
conditions, while the magnitude increases when a fault de-
velops in the component. The faults frequencies are typically
associated with periodic events related to the (Patidar & Soni,
2013):

• motor shaft speed,

• ball pass frequency, inner race (BPFI),

• ball pass frequency, outer race (BPFO),

• ball (roller) spin frequency (BSF),

• fundamental train frequency – cage speed (FTF),

• gear mesh frequency.

However, by themselves, these frequencies are not sufficient
to enable early identification of the wide range of faults that
can occur in a rolling element bearing or gear. Increased vi-
bration analysis robustness and reliability is achieved by tak-
ing into consideration also the harmonics and sidebands of
the fault frequencies. Typically, a vibration analysis expert
would investigate when one of the defect frequencies or the
related harmonics reach some relative threshold, and thereby
determine if the component needs to be replaced/maintained
or not.

The current interest for machine learning in condition moni-
toring is motivated by the need to automate the vibration anal-
ysis process described above and infer more accurate predic-
tions. The number of works that consider machine learning
methods to enable early fault diagnosis in rotating machinery
is increasing, see Wei et al. (2019) for a recent review. Many
of the strategies proposed, use the information of the fault fre-
quencies and their harmonics as inputs to the proposed meth-
ods. These models require that the fault frequency informa-
tion is up to date after each maintenance action, which can
involve component replacements that render historical kine-
matic information incorrect. Thus, an unsupervised machine
learning approach to condition monitoring with reduced inter-
vention of human experts requires a method that enables auto-
matic identification of kinematic information, possibly using
a catalog listing the available options.

Former work in the area of unsupervised machine learning
approaches to condition monitoring has focused on the iden-
tification of faults in vibration signals. In these approaches,
the fault identification is treated as a classification problem
where a fault is present or not, or as a localization problem
where the fault is found, for example, in the inner race, outer
race or ball. Yiakopoulos et al. (2011) use the K-means clus-
tering algorithm on frequency spectra of raw and enveloped
vibration signals, and among the considered features they in-
troduce the fault frequencies. A deep learning approach has

been proposed by Jia et al. (2016). They use stacked auto-
encoders, which are a type of feed-forward neural network,
to learn a non-linear projection of the signal spectra to dif-
ferentiate between labeled health conditions. Another unsu-
pervised machine learning approach is sparse coding. B. Liu
et al. (2002) uses the matching pursuit sparse coding algo-
rithm on vibration data from test rigs to identify the presence
of localized faults. H. Liu et al. (2011) builds on the previ-
ous work by introducing an adaptive scheme called dictionary
learning where several basis functions are learned and used
as features into a multiclass linear discriminant classifier to
identify faults in the signals.

In this paper, we apply an unsupervised feature learning
method called convolutional sparse coding with dictionary
learning on vibration signals recorded from a controlled ex-
periment and sensors installed on a gearbox of a wind tur-
bine. With this method, the vibration signal is modeled as a
linear superposition of noise and atomic waveforms. Our in-
terest here focuses on the resulting sparse representation and
the possibility to infer the fault properties given the cyclic
nature of a rotating machine. Sparse coding with dictionary
learning is useful for online monitoring (Martin-del-Campo
et al., 2013) and anomaly detection (Martin-del Campo et al.,
2019). The work presented here is novel because it focuses on
the learning of fault frequencies of a rolling element bearing,
without prior kinematic information. We observe clear differ-
ences in the weight distribution of the sparse representation of
signals corresponding to healthy and faulty conditions. Under
the presence of faults in a rolling element bearing, spikes in
the weight distribution of certain learned waveforms appear at
the fault frequencies, which is not the case for healthy signals.
These results indicate that convolutional sparse coding with
dictionary learning is useful for the extraction of kinematic
information about machine elements in rotating machines.

2. CONVOLUTIONAL SPARSE CODING WITH DICTIO-
NARY LEARNING

Convolutional sparse coding with dictionary learning pro-
duces succinct representations of signals, which means that
the resulting representation occupies a minimum of space
but it is still useful and informative for analysis. The model
we use here was developed by Smith & Lewicki (2006) and
it is inspired by earlier work of Olshausen & Field (1997).
The work by Smith & Lewicki (2006) describes how learned
waveforms, known as atoms, from speech data resemble
cochlear impulse response functions. The working hypoth-
esis behind our work is that features that characterize rotating
machines can be learned in a similar manner. The sparse cod-
ing model decomposes a signal x(t) as a linear superposition
of atomic waveforms with compact support and noise

x(t) = ε(t) +
∑
i

aiφm(i)(t− τi). (1)
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Figure 1. Convolutional sparse coding with dictionary learning method using the matching pursuit algorithm.

The functions φm(t) are the atoms, which represent shift-
invariant morphological features of the signal, while τi and
ai indicate the temporal position (shift) and amplitude of each
atomic event. The values of τi and ai are calculated with the
matching pursuit (MP) algorithm (Mallat & Zhang, 1993) and
the triple m(i), τi, ai represents one atomic event. A collec-
tion of atoms forms a dictionary as

Φ = {φ1, · · · , φM} . (2)

where M indicates the total number of atoms.

The optimization of the atoms follow an unsupervised ap-
proach consisting on gradient ascent of the approximate log
data probability (Smith & Lewicki, 2006)

∂

∂φm
log [p(x | Φ)] =

1

σ2
ε

∑
i

ai(x− x̂)τi , (3)

where (x− x̂)τi is the residual of the matching pursuit algo-
rithm over the support of atom φm at time τi with an atom
amplitude of ai. This means that the shape and length of each
atom are adapted from a weighted average of the residuals of
the matches identified by the matching pursuit algorithm. The
stop condition of the matching pursuit algorithm determines
the sparseness of the representation. Note that the resulting
representation is not a linear function of the input signal be-
cause the matching pursuit is non-linear.

The dictionary Φ is optimized in an iterative manner. The

first step is the initialization of the dictionary. Here, we
set the initial length of each atom in the dictionary to fifty
and sample the initial amplitudes from a Gaussian distribu-
tion. The matching pursuit algorithm provides with the cross-
correlation of the vibration signal (residual) with all atoms in
the dictionary. The maximum cross-correlation defines one
event,m(i), τi, ai, which is subtracted from the signal by sub-
tracting the corresponding waveform, aiφm(i)(t − τi). The
resulting residual is used as input to the next iteration of the
matching pursuit algorithm. This process continues until the
stop condition is reached. The stop condition used in this
work is sparsity, which is the number of events per signal
sample but the stop condition can be defined in terms of the
signal-to-residual ratio as well.

The main challenge and area of opportunity of this approach
is to learn the dictionary Φ, which makes it fundamentally
different from other condition monitoring approaches like
Fourier and wavelet analysis. We look for a dictionary of
atoms Φ that maximizes the expectation of the log data prob-
ability

Φ = arg maxΦ〈log [p(x | Φ)]〉, (4)

where
p(x | Φ) =

∫
p(x | a,Φ)p(a)da. (5)

The prior of the amplitude, p(a), is defined to promote a
sparse representation in terms of statistically independent
atoms (Olshausen & Field, 1997). The integral is approxi-
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mated with the maximum a posteriori estimate resulting from
the matching pursuit algorithm. This results in a learning al-
gorithm that involves gradient ascent on the approximate log
data probability defined by Eq. (3). The gradient of each
atom in the dictionary is proportional to the sum of residuals
corresponding to the activation of that atom. The prefactor,
1/σ2

e , is the inverse variance of the residual that remains after
matching pursuit. Additionally, we introduce a learning rate
parameter η so that Eq. (3) is modified to

∆φm =
η

σ2
e

∑
i : m=m(i)

ai(x− x̂)τi . (6)

The resulting adaptation rates of each atom depends on the
matching-pursuit activation rate, which implies that some
atoms may adapt slowly or not at all. Our approach is compa-
rable to that used by H. Liu et al. (2011) and is motivated by
the relatively low complexity and simplicity of the algorithm.

Figure 1 presents a block diagram of our proposed approach,
which describes the complete convolutional sparse coding
with dictionary learning method. The diagram describes the
stages responsible for generating the sparse representation us-
ing the matching pursuit algorithm and dictionary learning.
The output includes the sparse representation of the input seg-
ment, which is used to identify the fault frequencies of rotat-
ing equipment.

3. CASE STUDIES

We apply convolutional sparse coding with dictionary learn-
ing to vibration data from two case studies. The first case
study is a controlled experiment with the data taken from
the bearing data center at Case Western Reserve University
(Loparo, 2003). This experiment consisted of a motor, a
torque transducer, and a dynamometer. The evaluated ball
bearings were mounted on the motor shaft and data consists
of vibration signals recorded near the drive end of the motor.
The sampling frequency is 12 kHz and faults were manually
introduced at the inner raceway (we consider a selected part
of the data set). The second case study is based on data from
a real-world condition monitoring system. The data origi-
nates from a database that collects information from condi-
tion monitoring systems installed in wind turbines located in
northern Sweden. The wind turbine has a three-stage gear-
box that includes two sequential planetary stages, followed
by a helical gear stage. Raw time-domain vibration signals
are measured by an accelerometer mounted on the housing of
the output shaft bearing in the axial direction. The sampling
frequency is 12.8 kHz and it is recorded in segments 1.28 sec-
onds long with an interval of approximately 12 hours over a
period of 46 consecutive months. The data is made publicly
available by the Luleå University of Technology (Martin-del
Campo et al., 2018).

The vibration data is processed with our MATLAB/C++ im-

plementation of matching pursuit and the algorithm for dic-
tionary learning by (Smith & Lewicki, 2006). In both case
studies, signal segments are preprocessed to have zero mean
and unit variance. The stop condition of the matching pursuit
is 90% sparsity, which is comparable to a compression ratio
of 0.1. In the controlled experiment case study, we use a dic-
tionary with 16 atoms and in the wind turbine case study the
dictionary contains eight atoms. During dictionary update,
we use a step size of η = 10−6 and the length of atoms are
optimized using the method presented in (Smith & Lewicki,
2006). The atoms are normalized after each learning iteration.
Further details of the testing setup of the controlled exper-
iment are provided by Martin-del-Campo & Sandin (2017).
Details of the wind turbine dataset and data collection con-
ditions, as well as method evaluation setup is available in
(Martin-del Campo et al., 2019).

3.1. Controlled Experiment

The processing of the vibration signals in the bearing data
center data is carried out using a signal window of 5 seconds
duration (60000 samples). The windows are randomly sam-
pled from the different load and speed cases to simulate a
time-varying load on the rotating machine. Two datasets are
considered in this test, which intends to mimic the appearance
and growth of a defect in the bearing, thereby simulating the
evolution from a healthy state of operation to a faulty state.
First, sparse coding with dictionary learning is applied to a
healthy state of operation represented by 5 hours of vibration
data (3600 segments of 5-seconds duration). This is referred
to as the baseline (BL) case. Next, the atoms were adapted
to 5 hours of data corresponding to a faulty bearing with a 7
mils (0.18 mm) diameter fault on the inner race. This case is
henceforth referred to as IR7. Figure 2 shows the spectra of
a vibration segment originated from the IR7 case. The dotted
line in the figure points to the BPFI fault frequency. The com-
plete list of the fault frequencies in this experiment is shown
in Table 1.

Table 1. Fault frequencies in the controlled experiment.

Fault characteristic Frequency
Motor shaft speed 30 Hz
BPFI 162 Hz
BPFO 107 Hz
BSF 70 Hz
FTF 12 Hz

In Figure 3a, we present the histogram of the cumulative
weight of four atoms of the sparse representation at the end of
the BL case. Frequencies are estimated from the inter spike
interval (ISI) of consecutive atomic events per each atom in
the dictionary. The distribution of the weights follows a nor-
mal profile that leans towards lower frequencies with a mean
value centered around the motor shaft speed frequency, which
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Figure 2. Frequency spectrum of a vibration signal from a
ball bearing with an inner race fault of 7 mils diameter.

is represented by a dotted line. The waveform of each of these
atoms is shown in Figure 3b. The learned atoms are normal-
ized and are arranged in decreasing order of center frequency.

After the BL case, we studied the sparse representation of the
IR7 case. The histograms of the cumulative weight of the
sparse representation at the end of the IR7 case are shown in
Figure 4a. The same four atoms described in Figure 3 are
presented in Figure 4 with the intention to showcase the evo-
lution of the histograms and atom waveform with the intro-
duction of an inner race fault. A closer look at the histograms
shows the appearance of a spike in the weight distribution
at the BPFI fault frequency in atoms 15 and 16. Simulta-
neously, atom 14 has a spike at the motor shaft speed and
atom 11 has equal height spikes at both, the shaft speed and
BPFI frequencies. Notice the increase of one order of mag-
nitude in the weights histogram amplitude between Figure 4
and Figure 3. Additionally, a visual inspection of the atoms
Figure 4b shows how the atoms continued to adapt with the
introduction of the fault on the inner raceway of the bearing.
The remaining 12 atoms in the dictionary not shown in these
figures did not present significant changes in their weight dis-
tribution between the BL and IR7 cases. Further information
about this experiment, the remaining atoms not shown here,
and the evolution of the waveforms is found in (Martin-del-
Campo & Sandin, 2017).

3.2. Wind Turbine Data

The vibration signals used in the wind turbine case study orig-
inates from a wind farm located in Northern Sweden. The
particular turbine used in this study had two bearing failures
in the period of data made available to this investigation. The
first fault was an inner raceway failure on a four-point ball
bearing on the output shaft that resulted in the replacement of
the bearing after 1.2 years of operation. The second failure
occurred in one of the cylindrical roller bearings supporting
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Figure 3. Histograms of cumulative weight versus atom
repetition frequency (a) and the learned atomic waveforms
(b) for the vibration signals corresponding to the BL case.

The dashed vertical line in the histogram corresponds to the
shaft speed of the motor [Hz].

one of the planets in the first planetary gear of the gearbox.
This failure required the replacement of the entire gearbox af-
ter two years of operation of the wind turbine. Processing of
the vibration signals with the sparse coding with dictionary
learning method required filtering signal segments that corre-
sponded to an unloaded condition of the wind turbine. After-
ward, a baseline dictionary was trained using 5000 segments
of one-second duration (12800 samples) from a period of time
where the wind turbine operated in healthy conditions. After
the baseline dictionary was learned, it was propagated over
time using all signal segments where the wind turbine was
loaded (1907 segments total). Each signal segment is 16384
samples long and it was modeled using 1600 atomic events,
which corresponds to 90% sparsity. Table 2 provides a sum-
mary of the fault characteristics of the wind turbine bearing
evaluated in this study in terms of order, which is the ratio
between frequency and shaft speed.

Figure 5 shows the histograms of the cumulative weight of
three atoms of the sparse representation at three different
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Figure 4. Histograms of cumulative weight versus atom
repetition frequency (a) and the learned atomic waveforms
(b) for the vibration signal corresponding to the IR7 case.

Note the impulse-like shape of these atoms, unlike the shape
of the atoms learned in the BL case. The spikes on the

histograms indicate the shaft speed of the motor and BPFI.

points in time during the operation of the wind turbine. The
plots in row A correspond to a signal segment collected ap-
proximately two months prior to the replacement of the ball
bearing in failure one, while row B corresponds to a segment
collected a few days before the replacement of the bearing.
Row C describes a healthy signal segment collected approx-
imately six months after gearbox replacement described in
failure two. Similarly to the controlled experiment case study,
the order is estimated from the inter spike interval (ISI) of
consecutive atomic events per each atom in the dictionary di-
vided by the mean rotational speed at the particular signal
segment. The dotted line present in all plots at order 1 cor-
responds to the shaft speed of the wind turbine. Atoms 1
and 2 in rows A and B have a spike in the histogram at the
BPFI fault frequency that is represented by the dashed line.
Simultaneously, atom 3 captures the gear mesh frequency at
order 35. Once the wind turbine operates under healthy con-
ditions, the spikes at the fault frequencies decrease as shown
in row C. Notice the difference in the y-axis magnitude of the

Table 2. Fault frequencies in wind turbine.

Fault characteristic Order
Motor shaft speed 1.0
BPFI 9.6
BPFO 7.4
BSF 3.7
FTF 0.4
Gear mesh 35

histogram between the faulty operational conditions and the
healthy conditions. This change in the histogram magnitude
is similar to the results described in the controlled experiment
case study. A visual inspection of the atoms Figure 6 shows
the continuous adaptation of atom 1 over time. Simultane-
ously, atoms 2 and 3 appear to had converged and further
adaptation is not evident. The remaining five atoms in the
dictionary not shown in this picture do not present signifi-
cant changes between healthy and faulty conditions. Further
information about this case study, together with a detailed de-
scription of gearbox schematics and the evaluation protocol
used is provided by Martin-del Campo et al. (2019).

4. DISCUSSION

We study the possibility to extract the fault frequencies of
rotating machine elements using unsupervised learning. We
find that the distribution of the atom weights of the sparse
representation of a vibration signal change between healthy
and faulty operational conditions. In the presence of a fault
in a rolling element bearing the weight distributions of some
atoms exhibit spikes at the corresponding fault frequency,
with an order of magnitude increase in the amplitude com-
pared to the healthy case. This tendency is observed in two
case studies, including real-world vibration signals collected
in a condition monitoring system for wind turbines. These re-
sults motivate further improvements of the method and exper-
iments, including different types of faults in the bearings and
studies of the harmonics of the fault frequencies. An inves-
tigation of the effects of varying operational and application
conditions would be beneficial to understand the capabilities
and limitations of this approach. Convolutional sparse coding
with dictionary learning is an interesting approach to condi-
tion monitoring automation, which requires few assumptions
about the machine and the expected structure of the signal.
Further work is required to integrate this approach with an
anomaly detection framework that enables automatic early
detection of faults in machine elements of rotating machines
with reduced human intervention. Databases with kinematic
information and atoms learned from signals of a population
of similar machine elements can potentially be used to sim-
plify the unsupervised optimization problem and improve the
accuracy of the result.
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