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ABSTRACT 

Field maintenance data is often captured manually and is 
prone to having incomplete and inaccurate information in the 
structured fields. However, unstructured fields captured 
through work order planning, scheduling, and execution 
contain a wealth of historical information about asset 
performance, failure patterns, and maintenance strategies. 
The prevalent data quality issues in maintenance data need to 
be understood and processed in order to extract actionable 
intelligence. This paper describes a best practices framework 
for measuring and improving data quality, developed through 
years of research and working with 120+ process and 
manufacturing organizations. The framework enables 
evaluating and executing analytics by identifying strengths in 
the data. It determines where and how asset performance 
measures such as benchmarking metrics, reliability measures, 
and bad actor identification can be evaluated with confidence. 
Missing or inconsistent information can be extracted from the 
unstructured fields using natural language processing (NLP) 
techniques to bridge gaps in the analysis. While the NLP 
algorithms make historical data usable for some analytics, the 
best practices identify improvements in the work process of 
capturing data, thereby improving future quality. A feedback 
on data quality indicators completes the loop to sustain 
improvements.  

1. INTRODUCTION 

Many industrial organizations would like to take advantage 
of emerging technologies and data-analytics to meet their 
business objectives, but are challenged by the quality of their 
maintenance data. Field maintenance data generated and 
stored in centralized computer systems such as an Enterprise 
Asset Management (EAM) or a Centralized Maintenance 

Management System (CMMS) contains a wealth of 
information around maintenance history, failure patterns and 
the performance of industrial assets under different operating 
conditions. There is potential to integrate information from 
maintenance data into work processes for managing asset 
performance, but the raw data by itself is challenged by data 
quality problems at nearly all industrial organizations. Poor 
data quality is a common issue for every process plant in the 
world, and can be a significant limiting factor in performing 
accurate analytics such as for determining asset performance, 
for predicting failures, and for determining optimal 
maintenance strategies. 

The challenges in the quality of field maintenance data is not 
only on the completeness or the general quality of the data, 
but also in the configuration and the usage of the 
CMMS/EAM. A major challenge lies in the culture of the 
organization and the motivation in capturing accurate data. 
The intent is not in achieving perfection in every aspect of a 
maintenance work order, but to reach a “sufficiently-good” 
state. In order to reach a “sufficiently-good” state, the 
objectives for how the data should be used the context of 
business goals need to be clearly defined. Data quality is only 
meaningful in the context of desired outcomes. 

This paper describes a best-practices framework for 
measuring and improving data quality of maintenance data 
from the CMMS/EAM for applications related to analytics 
measuring asset performance and reliability. The data quality 
improvement framework is a component of a larger work 
process for executing asset performance analytics in a 
scalable way across general datasets. For industrial 
companies who wish to adopt and integrate data-driven 
analytics into asset performance management (APM) work 
processes, the authors recommend two parallel initiatives: 
while implementing APM initiatives, simultaneously 
implement the data quality improvement work process. 

The first step in the data quality improvement process is to 
measure data quality. Data quality measurements are used to 
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determine which data is sufficiently-good for analysis, and 
which data needs improvement. After this assessment, the 
data that is sufficiently good can be used immediately to 
evaluate asset performance analytics. The data quality 
assessment governs which analytics are possible to evaluate 
with sufficient confidence levels. For data fields required for 
desired analytics where the data is too poor to use, it is 
necessary to improve the quality. At this point, baseline 
quality measures have been established as well as a clear 
identification of where to improve.  

Key to improving data quality is to fix the work process to fix 
future data. By implementing best practices in the usage of 
the CMMS/EAM and creating a feedback loop to measure 
and track the quality of new data, future data can be refined 
and made suitable for the purpose of analytics. Culture 
change is often slow, but the complimentary nature of making 
assets more reliable and reducing the effort spent on 
avoidable maintenance can be a boost to making a change in 
work processes. 

Additionally, there is opportunity to improve data quality by 
identifying other data sources containing complementary 
desired information and applying analytics to integrate that 
information into the asset performance management work 
processes. In particular, the data needed for many common 
reliability metrics and analytical methods such as mean time 
between failure (MTBF) and Weibull analysis is often 
missing from the structured fields but can be systematically 
extracted or inferred from the unstructured description fields 
using tools from natural language processing (NLP) and 
machine learning. In these cases, NLP and machine learning 
can be implemented to improve historical data so it can also 
be used immediately for analytics.  

This paper describes the framework and the various 
framework components including assessment and tracking of 
data quality, well-defined asset performance metrics, analytic 
tools from NLP and the implementation of best practices in 
an industrial organization. The rest of this paper is organized 
as follows. Section 2 reviews and characterizes data from the 
CMMS/EAM, different data quality challenges and 
maintenance management processes, as well as reviews 
efforts to date for using NLP approaches on industrial 
maintenance data. Section 3 provides the theoretical work 
process, and Section 4 presents a case study illustrating the 
end-to-end framework. The paper ends with concluding 
discussions and suggests future research directions. 

2. BACKGROUND 

This section covers background and literature review on 
characterization of maintenance data from the CMMS/EAM, 
uses for CMMS/EAM data beyond its intended purpose, and 
a summary of studies applying NLP on unstructured fields in 
maintenance data for different industrial applications. 

2.1. Maintenance data 

Understanding the maintenance management work process, 
which includes work task identification, planning, 
scheduling, and reporting is important for understanding and 
characterizing field maintenance data. Maintenance data 
creation and storage is typically generated in a maintenance 
management system such as an EAM or CMMS (Gulati & 
Smith, 2013). Capabilities of CMMS/EAM include anything 
around a work order for maintenance such as assigning 
personnel, materials, recording costs, and tracking 
information history (Tretten, 2014). A typical maintenance 
process described by Gulati and Smith (2013) is shown below 
in Figure 1. There are several individuals involved in the 
maintenance management process in addition to the 
technician actually performing the maintenance work 
including coordinators, planners, schedulers, and craft 
supervisors. First the work request is routed to the 
asset/resource coordinator who prioritizes the work and sends 
it to the planner or scheduler. Maintenance planners plan the 
job and create a work plan while maintenance schedulers 
work with the craft supervisor to develop the plans of when 
the different work will be executed. The supervisors then 
assign who will do each job and ensure that high quality work 
is maintained and the details of work are properly recorded 
and documented in the CMMS/EAM. 
 

 
Figure 1 Typical maintenance management work process of 
maintenance, reproduced from Gulati and Smith (2013). 
Different players all have roles in the process, which is 
managed through a centralized CMMS/EAM. 
 
Databases from CMMS/EAM systems include records of 
maintenance and maintenance costs across asset fleets, for 
failure management, equipment management and budget 
management (Suzuki, 1994). CMMS/EAM systems are 
typically designed to support business performance work 
processes such as work order management, accounting, and 
procurement. Benefits of a CMMS/EAM in an organization 
to support the maintenance management process include 
enabling data sharing and improved communication through 
enterprise wide access to one digitalized maintenance system, 
efficiency through reduction of personnel and steps, 
improved accountability and response time, tracking 
processes and inventory, and to improve maintenance work 
and budget management through managing resources. 
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Over time, the use of field maintenance data generated by the 
CMMS/EAM system has expanded beyond maintenance 
management. Historical maintenance records can provide 
valuable insight into past maintenance on pieces of 
equipment. One widely-used standard in the oil and gas 
industry for the collection and exchange of reliability and 
maintenance data is ISO 14224 (ISO 2004). ISO 14224 
categorizes reliability and maintenance data into three 
categories: equipment, failure, and maintenance. Equipment 
data contains the description of the equipment, which 
includes attributes, data about operating context, and 
hierarchical classification. Failure data is data used for 
identifying and characterizing failure events, and 
maintenance data is data for characterizing maintenance 
events. The relationship between maintenance data and 
failure data is that corrective maintenance events are recorded 
to describe the corrective work event following a failure 
event.  
 
The use of maintenance data for reliability purposes is not 
new, but recently technological advances in data storage, 
computational capabilities and data-driven analytics have 
generated both the potential and the surge of interest to 
develop and implement work processes with stronger 
emphasis on data utilization. Other data sources about an 
asset in addition to data from the CMMS/EAM include time-
series data from condition monitoring, information from the 
original equipment manufacturer (OEM) or vendor such as 
recommended maintenance, piping and instrumentation 
diagrams (P&ID), inspections, as well as deep knowledge 
possessed by the operators and maintainers themselves which 
could possibly be captured in the form of failure modes and 
effects analysis (FMEA) templates or maintenance strategies. 
There are potentials for utilizing information found in other 
data sources to complement information from the historical 
maintenance data in data-driven analytics for non-
maintenance purposes such as reliability.  

2.2. Maintenance data quality 

Data quality challenges in field maintenance data collected 
and stored in the CMMS/EAM are common across nearly all 
companies and especially in situations where data is 
manually entered. Discussions on different data quality 
challenges in maintenance data are well reviewed in (Lukens, 
Naik, Hu, Doan, & Abado, 2017) (Meeker & Hong, 2014) 
(Hodkiewicz, Kelly, Sikorska, & Gouws, 2006) (Koronios, 
Lin, & Gao, 2005) (Lin, Gao, Koronios, & Chanana, 2007) 
(Naik & Saetia, 2018). 
 
Several studies have explored various dimensions for 
measuring data quality (Aljumaili, 2016) (Koronios et al., 
2005) (Araújo, 2016) (Chambers, 2016) (Cohen, 2017) 

(Lemma, 2012) (S. J. Lin 2006) (Loshin, 2009) (Loshin, 
2011) (Sun 2011) (Distefano & Thomas, 2011). 

 

Different industrial companies use the CMMS/EAM in 
different ways, which leads to differing fields and ways to 
capture the data, leading to hurdles surrounding 
standardization. Standardization is a requirement needed to 
utilize content around industrial data analytics, but there are 
many levels of standardization needed to get there. The work 
processes that generate maintenance data should be 
standardized with respect to how the CMMS/EAM is used 
across multiple sites or companies. Standardized definitions 
for creating, planning, scheduling and executing maintenance 
work orders are needed for the entire maintenance 
management work process. Additionally, standard codes, and 
standardized location hierarchies are also needed (Naik & 
Saetia, 2018).  
 

Hodkiewicz, Kelly, Sikorska, and Gouws (2006) notably 
developed an eight-step framework for assessing and 
improving data quality for reliability analytics. This 
framework is aimed at implementing best practices for 
improving future data. Their eight-step framework starts with 
identifying the business need, identifying the metrics which 
support the business need, identifying the data required for 
each metric, and then analyzing the data quality of each data 
element. Once the data quality has been systematically 
meared, the next step is to analyze how to improve the quality 
of each data element. This analysis determines the changes 
needed to implement in how the data is captured. Once 
changes have been implemented, assess the improvements 
and execute a periodic review process in the context of the 
business need. This framework provides an excellent 
breakdown of the steps needed to bridge the connection 
between the business need and the nature of the data itself, 
and further incorporates best practices where appropriate as 
well as continuous tracking.  
 
In terms of data quality, ISO-14224 recommends using both 
pre-set codes and unstructured fields in maintenance data, 
because often information can be missed from a code. In 
many cases, the true nature of the failure cause can be inferred 
from unstructured fields such as the free text field or service 
notes. Recently, there has been a surge of use of methods 
from natural language processing (NLP) towards getting 
information from unstructured maintenance fields. Different 
approaches both through analytics to clean existing data or 
processes to improve data collection have been discussed and 
explored and will be reviewed in the following section. 

2.3. NLP for field maintenance data  

In this section, different studies that have used NLP on the 
unstructured free text fields in field maintenance data are 
reviewed in the context of the different applications and 
outcomes rather than from the perspective of the different 
approaches/techniques utilized. One commonality between 
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all the applications covered below is that they are all for 
purposes beyond maintenance management.  

2.3.1. Asset performance metrics and benchmarking 

Maintenance performance metrics (MPM) are metrics that 
are used to measure the efficiency and effectiveness of 
maintenance strategies and frameworks (Parida & Kumar, 
2009). There are many categories or pillars of metrics used in 
industry that have been extensively reviewed (Kumar 2013) 
and standardized definitions for best-practice have been 
established by the Society of Maintenance and Reliability 
Professionals (SMRP) (SMRP Best Practices 2017) and the 
European Federation of National Maintenance Societies 
(European Federation of National Maintenance 2007). 
Benchmarking is the processing of identifying, sharing, and 
using knowledge and best practices and can be used in 
conjunction with metrics to identify opportunities and 
measure benefits of an asset performance improvement 
initiative.  
 
Accurate evaluation of metrics is fundamentally challenged 
by data quality problems. Poor data quality can erroneously 
alter many common metrics to look good. For instance, not 
recording failures properly can improve measures of asset 
reliability. Inconsistent data recording practices can result in 
inconsistent values when trying to implement comparative 
analytics. Unstructured fields can be used to both populate 
missing fields and to provide a way to improve consistency 
in structured fields which are populated. Naik (2015) 
described a work process to identify equipment having 
chronic failures through using benchmarking to identify 
opportunity relative to peer groupings. Once a bad actor was 
detected, the information in the work order description was 
necessary for understanding the nature of the identified 
chronic failures.  
 
Brundage, Sexton, Morris, Moccozet, and Hoffman (2018) 
proposed a set of maintenance key performance indicators 
(KPI’s) based on the characterization of the data from the 
CMMS/EAM and the possibilities in the data 
characterizations after incorporating results from NLP on the 
unstructured fields. Lukens and Naik (2019) proposed a 
methodology for practitioners to consistently utilize the 
SMRP Best Practices metrics with respect to data quality 
considerations, leveraging NLP technologies where 
appropriate. Traditional maintenance KPI’s have been 
developed from a functional perspective (and rightly so), but 
in practice have been challenged as field data gets wrangled 
to fit metric definitions. The approach of defining or 
identifying how to evaluate KPI’s robustly and consistently 
from the perspective of the data is a novel concept with 
increasing importance to compliment the increasing 
emphasis on data-driven technologies in maintenance 
processes. 

2.3.2. Reliability analytics 

Reliability analytics encompasses different analytical 
methods concerned with the characterization of failure events 
used for the estimation, prevention, and management of 
failures in reliability applications. This class of analytical 
methods can range from simple analyses based on failure 
characterizations such as Pareto charts to methods in survival 
analysis such as Weibull analysis or repairable systems 
analysis. The first step towards assessing reliability using a 
dataset is understanding which data describes failure events. 
The Society for Maintenance and Reliability Professionals 
(SMRP) defines a failure as a situation when “an asset is 
unable to perform its required function.” (SMRP Best 
Practices 2017). Despite this clear definition, in practice 
many engineers and operators hesitate to mark an asset as 
failing when an incident occurs.  

There have been several studies using NLP on the 
unstructured text to characterize event types. Edwards, 
Zatorsky, and Nayak (2008) used an unsupervised clustering 
approach (similar to topic modeling) to determine if 
maintenance work orders were scheduled or unscheduled. 
While they were unsatisfied with their results towards 
achieving that goal, they were successful in identifying 14 
distinct of maintenance jobs in their dataset which could be 
useful for analyses requiring failure event classifications. 
Bastos, Lopes, & Pines (2012) developed a knowledge 
mining framework which incorporated data mining on 
unstructured free text for maintenance teams to use for 
forecasting failures, and tested it on determining if an event 
was preventative or corrective. Arif-Uz-Zaman (2016, 2017) 
used Naïve Bayes classification to determine if a work order 
(for Australian power plant data) was a failure or preventative 
maintenance. Naik and Saetia (2018) used a classifier to 
determine the event type, because the event type code for 
their use case was used too generically to distinguish between 
corrective and preventative work. 

A Naïve-Bayes classifier was developed on labeled data from 
the CMMS/EAM from an aggregate database from many 
industrial facilities from around the world and used by the 
authors to determine if a corrective work event from the 
CMMS/EAM was a failure or not (Lukens & Markham, 
2018a) (Lukens, Naik, Markham & Laplante, 2019). The 
labeled training database was curated from working with a 
team of domain experts who reviewed and labeled if a repair 
description described a failure or not. Naïve-Bayes was 
selected as the classifier because it was the lazy learner that 
had the best performance based on the performance criteria, 
and the project required the flexibility for new users to add 
data and retrain the model if needed while preserving the 
anonymity of the aggregate database. 

Once the failure is identified, the next level of reliability 
analysis is basic failure event classification. Stenström (2015) 
looked at term frequency of a corpus of maintenance work 
orders on rail infrastructure to gain insights on common or 
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repeated failure patterns. The process of looking at terms and 
tagging similar words based was developed further by 
Sexton, Brundage, Hoffman and Morris (2017), who 
formally introduced a tagging work process for creating 
content on maintenance work orders which could be used 
very powerfully and simply. They further suggested some 
simple applications such as plotting “hot spots” of common 
failure classifications over time. He (2016) integrated 
machine learning classification using unstructured fields into 
a data unification work process towards using data for data 
analytics. 

Conducting reliability analytics such as Weibull analysis or 
failure forecasting on general maintenance data has 
traditionally been challenged by data quality issues, but 
enabled with the application of NLP on the description fields. 
Hodkiewicz and Ho (2016) used a rule-based approach for 
work orders on heavy mobile equipment in mining, and 
makes several suggestions from insights gained in the study 
on how maintenance data should be entered or created in the 
first place into the CMMS/EAM. Sexton, Hodkiewicz, 
Brundage, and Smoker (2018) compared failure 
characterizations between rules-based and word tagging 
through survival analysis and fitting Weibull distributions. 
Lukens and Markham (Lukens  & Markham, 2018b) did 
Crow-AMSAA modeling on characterized failures in order 
to look at trends in the recurrence of different failure modes 
over time. 

2.3.3. Applications for reliability information 

One application or use for the results of reliability distribution 
fitting and maintenance metrics is system reliability 
modeling. Parameters fit from reliability models can be used 
as inputs to reliability simulations of different systems over 
time. The results of reliability-based simulations can be used 
to estimate the contribution of the total cost of ownership 
from maintenance and reliability over a product’s lifecycle 
which can be used to make procurement or repair versus 
replace decisions based on data. Hodkiewicz, Batsioudis, 
Radomiljac, and Ho (2017) performed a system reliability 
analysis for mining shovels to provide quantitative 
information for a business case towards automating shovels. 
Characterizing shovel failures from maintenance data was a 
necessary step in this analysis because it provided the 
granularity to partition which maintenance events could be 
avoided in an automated system. Lukens, Naik, Markham, 
and Laplante (2019) focused on understanding annual costs 
and reliability from different failure modes from observed 
field data in order to illustrate the challenges that need to be 
considered to extract actionable insights to use maintenance 
data across a supply chain. Mahlamaki, Niemi, and Jokinen 
(2016) did simulation modeling for estimating maintenance 
life cycle costs of a product. 

Another application which uses reliability and failure mode 
information is the development of maintenance strategies. 

Traditional approaches include reliability centered 
maintenance (RCM) and failure modes and effects analysis 
(FMEA). There is a massive opportunity for incorporating 
historical data into the maintenance strategy management 
creation, deployment, and tracking process. Sikorska, 
Hammond and Kelly (2008) develop a data-cleaning 
approach for reliability analytics from CMMS data using 
case-based reasoning (CBR). They created a search tool 
called “failure finder” to find likely failure modes associated 
with a record, to link an RCM database with maintenance 
data from the CMMS. Yang, Letourneau, Zaulski, and 
Scarlett (2010)  used maintenance data from Auxiliary Power 
Unit Engine (APU) to quantify instances of part 
replacements, using the unstructured text to match 
replacements with the manufacturer-supplied FMEA to 
compare observed with the manufacturer recommendations. 
As a result, a workflow to use real world data to assist in 
decision-based system to assist in the maintenance of an asset 
was proposed.  

Lukens and Markham (2018b) described a high-level 
workflow for CMMS/EAM data for identifying, prioritizing, 
and creating asset strategies systematically, providing 
examples of how data-driven analytics can augment work 
processes for initiating RCM programs. Lukens and 
Markham (2018a) showed how natural language processing 
can be incorporated into traditional approaches for 
calculating age-failure patterns across different asset 
populations in order to assess the relationship between 
reliability of a group of assets and the operating age, and to 
suggest strategies based on this information. 

2.3.4. Other industrial applications 

The use of NLP on industry data can go beyond 
characterizing maintenance work orders for maintenance and 
reliability applications. Brundage, Kulvantunyou, 
Ademujimi and Rakshith (2017) developed a knowledge 
framework for root cause analysis in manufacturing where 
NLP was used to create a knowledge database. Saetia, 
Lukens, Hu, and Pijcke (2019) used the equipment short 
description in the equipment registry to characterize a 
standard taxonomy for equipment, enabling matching “off-
the-shelf” analytics to relevant equipment. Nair (2018) 
developed a workflow for inspections of fixed equipment in 
order to rapidly make data-driven decisions during a 
turnaround. In the workflow, inspection data was mined as it 
was entered for potential failures which were compared to 
other data sources such as thickness measurements to 
determine if action was needed during the turnaround. 

3. THEORETICAL FRAMEWORK 

In this section a best practices framework is presented for 
improving maintenance data quality as part of enabling asset 
performance analytics. High-performing organizations who 
wish to adopt data-driven analytics in work processes for 
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improving asset performance should do so in the form of two 
parallel initiatives: improving data quality and asset 
performance analytics. Both initiatives are integrated in the 
framework. 

In order to measure the quality of the data, it is important to 
have clearly defined business goals. In this general 
framework, the business goals are generically defined as 
those of an APM initiative such as improving asset 
performance and reliability through reducing unplanned 
downtime, maintenance costs, etc. However, the exact 
objectives depend on the organization.  

The first step in this exercise is to quantify the data in terms 
of areas of “sufficiently-good data” and data that requires 
improvement. The areas where the data quality is identified 
as “sufficiently-good” can be used right away to kick off the 
asset performance analytics initiative such as through 
generating certain metrics and identifying poor performing 
assets (bad actors). Parallelly, for the identified poor data 
quality, start putting work process improvements in place that 
ensure that the bad areas of data turn into good areas, which 
can then feed into the asset performance analytics. Lastly, it 
is important to monitor and track the effort. The process is 
summarized below in Figure 2, and each step is described in 
the more detail in the following sections. 

 
Figure 2 Data quality best practices workflow presented for 

utilizing field maintenance data for asset performance 
analytics. Data that is “sufficiently-good” for asset 

performance analytics can be used immediately, while work 
processes to improve poor data can be put into place. 

3.1.1. Data quality assessment 

Identify the areas where the data is “sufficiently good”, and 
where the data needs improvement. The concept of 
“sufficiently good” is congruent with the definition of quality 
data as “data that is fit for purpose” (Hodkiewicz et al. 2006). 
To measure the quality of the data it is important to first 
define what you are trying to measure with the data, aligning 
with business goals. This process is explicitly spelled out in 
the first four steps in framework developed by Hodkiewicz et 
al. (2006).  

To apply this framework to generalizable asset performance 
metrics and analytics, first there must be a mapping between 
the maintenance management process and how the data is 
captured at an industrial organization to a standard view of 
the maintenance processes. In this way, data fields can be 
mapped to standard definitions of event types, different 
failure codes, standard equipment taxonomies, etc. Standard 
ways of assessing different maintenance performance 
measures create a consistent and repeatable mapping between 
CMMS/EAM data and the data quality assessments. 
Assuming a standardized scorecard of desired asset 
performance metrics and analysis, the quality of all of the 
different data fields needed for each measure can be 
measured with a summary report. The scorecard summary 
will show which metrics can be estimated with “sufficiently-
good” confidence, and which ones cannot be evaluated 
because of poor data. From here it is the possible to drill 
down, identify, and measure the precise factors which drive 
these measurements.  

For example, if an organization is good at capturing failure 
dates, out-of-service and in-service dates but bad at 
identifying the total maintenance cost, then the 
recommendation is to rely on mean time to repair (MTTR) or 
asset downtime to identify bad actors rather than maintenance 
cost. More specific examples are described in detail in the 
case study. 

3.1.2. Improve historical data  

For data fields required for desired analytics where the data 
is too poor to use, it is necessary to improve the quality. 
Improving historical data refers to improving the quality of 
existing data through incorporating data analytics to 
triangulate missing or inconsistent information from the data 
using other data. For asset performance measures 
specifically, the information in the unstructured field often 
provides detailed information that is commonly missing such 
as event type, failure mode, or component which 
characterizes the data. For certain fields that can be filled in 
through NLP,  NLP analytics are generated to fill them in.  

One major strength of using analytics to populate structured 
fields is consistency. Two similar inputs will always have the 
same classification by a computer model, while two similar 
inputs may have different codes if two different humans are 
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filling in the work order. Another strength is speed and 
scalability. What may take a human days or weeks can take 
seconds or minutes running a computer model. 

Some data fields are better candidates than others to be filled 
in through NLP such as breakdown indicator and failure 
mode. However, other data fields are more challenging such 
as dates, costs, detection methods, etc. Evaluating the 
strengths (and data quality) of the unstructured data is part of 
the feedback loop.  

3.1.3. Implement best practices to improve future data 

Implementing best practices to improve future data refers to 
fixing the work process to improve the quality of future data 
as it is generated. Where to fix the work process depends on 
where the desired data quality improvement areas which have 
been identified in previous steps are located. It extremely 
important to have feedback loops in place that monitor data 
as it comes in and flags exceptions. Humans generally tend 
to want to do a good job if they know that someone actually 
cares about the data they enter into the system. A connection 
between the people entering the data and the people analyzing 
the data needs to be made. By having accuracy in the former, 
the latter can pinpoint the underlying causes and improve the 
performance of the assets, which in turn will make it easier 
for the former as assets break down lesser and lesser. 

A recommended work process for improved best practices is 
through identification and appropriate modifications in the 
maintenance management work processes. First, there needs 
to be a work process in place for tracking data quality, which 
depends on what data quality measures you have identified to 
track. Simple dashboards containing summary information 
such as work orders with missing data can provide visibility 
into specific work orders that have been closed recently and 
are missing data.  
 
Gulati and Smith (2013) describe a typical work maintenance 
process as shown in Figure 1. However, what is missing from 
the traditional maintenance process is monitoring and 
tracking data quality. As a best practice, one suggestion is 
that the work process should be adapted as per Figure 3 
below, introducing the role of a data quality reviewer. The 
data quality reviewer analyzes data quality reports and the 
dashboard each month and follows up with the right people if 
certain information is missed.  

 

 
Figure 3 Proposed maintenance work process with data 

quality reviews 
 
The framework presented above can be generalized for 
applications beyond asset performance analytics. Certain 
specifics such as integrating NLP to extract structured 
information can be generalized to any triangulation 
information using other data sources. For any application, an 
essential component is standardization of data into some form 
for repeated use which is not trivial. For APM applications, 
the authors have developed and deployed this work process 
repeatedly specifically using standards developed for 
maintenance and reliability. Mapping data into such an 
analytic template enables repeatable and scalable use of 
various analytics across different industrial companies. A 
case study on a maintenance data set is presented in the next 
section to illustrate the end-to-end specifics of the theoretical 
framework in the next section. 

4. CASE STUDY 

An end-to-end example of the proposed data quality 
measuring, improving, and tracking process is presented step 
by step in the following case study. The case study applies to 
a generic asset-intensive company with multiple sites where 
maintenance management is conducted through a 
CMMS/EAM. The company wants to begin an APM 
initiative for managing and improving the performance of 
their assets, using their historical data for asset performance 
analytics such as benchmarking KPI’s, identifying bad actors 
to focus on for optimal maintenance strategies, and for 
determining the root cause of chronic failures. 

To protect proprietary information, all variables have been 
anonymized and age has been scaled. This case study is for 
illustrative purposes only and values do not reflect any one 
specific company. We restrict the scope of the case study to 
a subset of data for a single equipment type (such as a 
centrifugal pump) at comparable sites by industry, size, and 
region of the world. The dataset identified for the study 
consists of N = 1,800 assets observed over a period of 4 units 
of time (such as a year) for 3 different sites. There were about 
8,000 repairs observed total over that period of time. 
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Existing standard metric definitions for reliability 
benchmarking established by the Society of Maintenance and 
Reliability Professionals (SMRP) are used as a starting point 
(SMRP Best Practices 2017). The company determined that 
a scoreboard reflecting their objectives could be realized with 
evaluating Mean time Between Failure (MTBF), Average 
Corrective Work Cost ($), and Reactive Work Count (%). 
Standard definitions with descriptions of the type of data 
needed for each of these metrics are reported in Table 1.	
	

Table 1 Metric definitions and description of data needed 
for maintenance and reliability metrics desired in the case 

study. 
Metric Formula  Type of Data needed 
Mean time 
between 
failure 
(MTBF) 
(Unit of time) 

Operating time / 
Number of 
failures 

Estimates of uptime 
and failure count for 
each asset over the 
time interval of 
interest 

Average 
Corrective 
Work Cost 
($) 

Average 
maintenance cost 
for corrective 
work events 
(repairs) 

Estimates of total 
maintenance cost for 
a corrective work 
event and corrective 
work event types 
correctly classified  

Reactive 
Work Count 
(%) 

Percentage of 
maintenance 
work events that 
interrupt the 
schedule 

Priority for each 
corrective work 
events. We assume 
that emergency work 
orders cause a break 
in schedule.  

 
After understanding the standard definitions, the need was to 
define how to apply data consistently and in a scalable way 
to these definitions, a process that is not straightforward. The 
process for applying data consistently to standard definitions 
is challenged by the fact that many existing standards are 
theoretical and not designed with consistent rules for 
applying data in mind.  

4.1.1. Measuring data quality 

Once the definitions with respect to the data were clear, a 
summary report is produced which reports the data quality in 
Table 2. The summary values of “Low”, “Medium”, and 
“High” are aimed at describing the level of “sufficiently-
good” or needing improvement of the data for evaluating 
each metric. The different data quality factors needed for 
each metric are defined and measured, and combined to 
produce the “Low”, “Medium” and “High” values.  
 
 
 

Table 2 Scoreboard for case-study company summarizing 
data quality with respect to desired metrics defined in Table 

1. 
Metric Corporation Site A Site B 
Mean time between 
failure (MTBF)  

Low Low Low 

Average Corrective 
Work Cost ($) 

Low Medium Low 

Reactive Work 
Count (%) 

High High Medium 

 
In this scorecard approach to visualizing data quality, the 
company can view which metrics are supported by data 
quality and have the summary information available to drill 
down and understand what factors contributed to the 
summary score. In this example, MTBF was low at all sites 
because the company did not use the breakdown indicator, a 
field in the CMMS/EAM used to record whether the asset 
failed or not. In fact, of the 8,000 repairs in the dataset, only 
2 of them were marked as failures. The reason for low score 
for average corrective work cost was dominated by many 
missing costs at one site. 
 
The high score for Reactive Work Count (%) was due to the 
fact that the priority field was well populated. In general, 
priorities tend to be well-populated in maintenance data 
because they are required fields in many popular 
CMMS/EAM. The goodness of how consistently a priority 
score is used from site to site is an open question to determine 
(for instance, benchmarking reactive work between two sites 
could be challenged by inconsistent definitions of what is an 
emergency). 

4.1.2. Good quality data 

The best practices workflow recommends identifying where 
the data is sufficiently-good and using that data immediately. 
In the case study, while it was identified that evaluation of 
the MTBF metric and reliability analytics are challenged by 
the fact that the company does not record failures, it was 
identified that that they were decent at recording which 
maintenance work events were repairs, or corrective work, 
and which were reactive work (emergency repairs).  

In this example, the MTBF evaluated for the pumps using the 
raw maintenance data came out to 48,000 months, a 
nonsensical number. However, using the decent data, other 
metrics such as mean time between repairs (MTBR) and the 
mean time between emergency repairs could be calculated. 
The values of these three metrics are reported in Table 3. In 
this example, while MTBF and MTBR are well-established 
metrics, the metric “mean time between emergency repairs 
(MTBER)” was made up based on the data quality and 
functional purpose.  
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Table 3 Summary metrics for one asset type across a multi-
site industrial company in the case study 

Metric Value 
(months) 

MTBF (months) 48,282 
Mean time between repairs (MTBR) 12 
Mean time between emergency repairs 
(MTBER) 

37 

 

4.1.3. Improving historical data 

After investigating corrective work orders, several work 
orders that should have been marked failures according to the 
SMRP definition of failure but were not correctly marked in 
the maintenance management system prevented an accurate 
calculation of the MTBF metric (Table 3). However, in 
addition to identifying fields that were decent to use (priority 
and event type), it was also identified that the description 
fields contained a rich amount of information which outlined 
the problem and key relevant information. In Table 4, work 
orders with IDs 1-4 should have been marked with the 
breakdown indicator set to TRUE instead of FALSE in the 
CMMS/EAM to indicate asset failure and be counted in the 
MTBF metric. 

Table 4 Sample repair work orders for the case study for 
pumps 

WO 
ID 

Description Event 
type 

Breakdown 
Indicator 

Prediction 

1 Pump-1122 
plugged up 

Repair False True 

2 Reflux 
pump has 
no power 

Repair False True 

3 Pump motor 
bad 

Repair False True 

4 Pump-2233 
replace 
failed seal 

Repair False True 

5 Install seal 
pot 

Repair False False 

 

In this situation, it is possible to use analytics with the 
description field to improve the historical data by identifying 
which event is a failure event using the description. In the 
case study, we use the same machine learning classifier 
trained on labeled data in (Lukens & Markham, 2018a) 
(Lukens et al., 2019). The machine learning classification 
model uses the text field as input data and returns a prediction 
(and prediction score) on whether that event was a failure or 
not. Users go from having missing of “unknown” fields to 
performing analyses on detailed data for insights that help 
organization improve asset performance. 
 

The company with an MTBF of 78,000 months applied this 
classifier to it data and the MTBF was recalculated to be 15 
months. Further, before there was not enough information 
before to benchmark MTBF between the 3 sites, but 
afterwards the capability to benchmark between sites in such 
a way that the model was consistent in what it characterized 
a failure or not. A comparison is shown in Figure 4. 
 

 
Figure 4 Benchmarking reliability through mean time 
between failures (MTBF) between sites for an asset type. 
 
Once an infrastructure for text mining analytics has been built 
around the maintenance data, from the work descriptions it is 
typically possible to characterize additional key information 
for reliability analytics such as failure mode and maintainable 
item. For instance, it becomes possible to benchmark 
information at the failure mode level, and to evaluate the 
maintenance strategy based on risks and risk mitigating 
actions. In the case study, it was determined that the most 
common failure groupings were seal failures, bearing 
failures, and valve failures. Comparisons of MTBF between 
the two sites by failure groupings are shown in Figure 5. 
 

 
Figure 5 Benchmarking reliability by failure grouping 

 
Observe that in both cases described (identifying metrics that 
can be evaluated given the current state of the data quality 
and incorporating NLP to fill in information for evaluating 
other metrics), the data quality workflow enables confidence 
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in the metric value. Strengths of the analytics approach is that 
the model is always consistent while data may be captured 
differently between different sites. However, strengths in 
using “proxy metrics” include transparency – analyses into 
“why” certain numbers are straightforward without needing 
to understand a model. 

4.1.4. Improving future data 

The next piece is to improve and track improvements to 
future data through introducing best practices at how the data 
is generated. While the company can continue to rely on 
metrics using “proxy metrics” or by implementing NLP on 
their maintenance work orders, there is need to also start 
putting work process improvements in place to ensure that 
the bad areas of data turn into good areas.  
 
In the case study, the company also wanted to evaluate 
maintenance costs, which are not as straightforward to fill in 
from text mining. In their case, they identified that they were 
only using costs about 20-30% of the time across their plant. 
The reliability engineers identified several issues in their cost 
accounting work process, and they began to start fixing their 
work process in accounting for the total maintenance cost: 
including labor hours, materials, and contractor costs. With 
constant monitoring and tracking of work orders with missing 
costs, they were able to reverse the trend of missing costs 
within three years since they started monitoring and tracking 
their data quality. The results of the data quality tracking are 
shown in Figure 6. 
 

 
Figure 6 Data quality tracking for missing costs. Once the 
company began implementing best practices, monitoring and 
tracking data quality improvements showed an improvement 
from about 20% of work orders with costs filled in to over 
90%. 
 
An end-to-end example starting with raw maintenance data 
from the CMMS/EAM for a generic industrial company was 
presented. The business goals were defined with what the 
company wanted to achieve by utilizing their data, and what 
they wanted to measure. Data quality was then systematically 
measured towards executing these analytics, and based on 
where the data was sufficiently good, metrics were identified 

based on the desired goal. Text mining analytics was 
incorporated to the process in order to utilize the free text 
description fields in the historical data in a consistent scalable 
way. Lastly, because exactly what areas data quality was 
needed was precisely defined, the company was able to 
identify challenges with their existing data collection 
practices and introduce best practices. Through a process of 
measuring and tracking data quality, the company is able to 
have confidence in the outputs of their analytics towards 
meeting the business objectives.  

5. CONCLUSION 

Data quality issues are prevalent and wide-spread across 
industrial organizations, but without knowing specifics, the 
use of data for analytics and decision making should not be 
dismissed or postponed. A framework for measuring data 
quality executed simultaneously with efforts to utilize data 
for asset performance analytics was presented, and a case 
study developing specific details end-to-end was presented. 

There is much opportunity to build out the process for 
industrial applications beyond maintenance and reliability, as 
well as integrating other common data sources. Key steps for 
integrating other data sources includes understanding how a 
new data source can be used to meet business goals for 
industrial companies, and developing standards for using the 
data source in an analytics template. For prognostics and 
health management (PHM) work processes, understanding 
failure mode and health monitoring patterns for different 
assets is key.  

One key root cause of the data quality challenges prevalent in 
CMMS/EAM data is the maintenance management work 
process itself. The best practices workflow outlined here 
provides a process for identifying where in the existing 
maintenance management process to focus on improved data 
quality. Stepping back even further, there is opportunity to 
re-evaluate the entire maintenance management process with 
respect to generating and collecting reliable, consistent data 
for the ready use of digital solutions. Important to note is an 
emerging research effort focused on developing a framework 
for evaluating existing maintenance management processes 
which are dominated by human factors, starting with 
identifying sources of human unreliability (Brundage, 
Sexton, Hodkiewicz, Morris, Arinez, Ameri, Ni & Xiao, 
2019). Once sources of human error in the maintenance 
management process are systematically identified and 
quantified, the maintenance management process itself can 
be re-evaluated. The direction of this research effort and 
future adoption specifics by industrial companies is 
something to watch and will be very important as more 
emphasis is placed on integrating data-driven and machine 
technologies into the industrial space. 
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NOMENCLATURE 

CMMS Computerized Maintenance Management System 
EAM Enterprise Asset Management 
APM Asset Performance Management 
PHM Prognostics and Health Management 
NLP Natural Language Processing 
OEM Original Equipment Manufacturer 
P&ID Piping and Instrumentation Diagram 
FMEA Failure Mode and Effects Analysis 
RCM Reliability Centered Maintenance 
KPI Key Performance Indicator 
MTTR Mean time to repair 
MTBF Mean time between failure 
CBR Case-Based Reasoning 
APU Auxiliary Power Unit Engine 
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