Prognostics As-A-Service: A Scalable Cloud Architecture for
Prognostics

Jason Watkins!, Christopher Teubert?, and John Ossenfort?

13 SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035

Jjason.watkins @nasa.gov

Jjohn.ossenfort@nasa.gov

2 NASA Ames Research Center, Moffett Field, CA 94035

christopher.a.teubert@nasa.gov

ABSTRACT

Comprehensive aircraft system health-state awareness is crit-
ical for maintaining safe, efficient growth in global oper-
ations, enabling higher levels of autonomy, and facilitat-
ing new forms of aviation. Maintainers, vehicle operators,
air traffic controllers, dispatchers, pilots, autonomous sys-
tems, and other decision-makers must have reliable real-time
knowledge of the vehicle health, the health of its critical com-
posite systems, predictions of how health changes with time,
and forecasts of how its capabilities change with health degra-
dation to preserve safety and efficiency. Providing this infor-
mation in a reliable manner in computationally constrained
environments and across a wide range of vehicles and sys-
tems continues to be a challenge. This challenge can be par-
tially resolved through cloud computing, where the execu-
tion of prognostic and diagnostic algorithms is performed on
a network of remote servers hosted on the internet. NASA
is developing a cloud computing service, Prognostics As-A-
Service (PaaS), that explores the feasibility and challenges
of cloud-enhanced prognostics. Though such a system has
broad applicability, this research effort is focused on aviation
applications.

1. INTRODUCTION

Comprehensive aircraft system health-state awareness is crit-
ical for maintaining safe, efficient growth in global operations
as well as enabling higher levels of autonomy and new forms
of aviation. Maintainers, operators, controllers, dispatch-
ers, pilots, autonomous systems, and other decision makers
must have reliable real-time knowledge of the vehicle health,
health of its critical composite systems, predictions of how
health changes with time, and predictions of how its capabili-

Jason Watkins et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

ties change with health degradation in order to preserve safety
and efficiency. Providing this information reliably in com-
putationally constrained environments and across the wide
range of vehicles and systems continues to be a challenge.

This challenge can be partially resolved through leveraging
of cloud computing. Leveraging external resources could
enable aircraft with computationally constrained systems to
gain improved efficiency and reduced lifecycle costs through
resource sharing, and enables the use of new algorithms uti-
lizing the large quantity of data aggregated from many users
to provide better services to all. NASA is developing Prog-
nostics As-A-Service, a cloud computing service for diagnos-
tics and prognostics. While cloud computing architectures
have many advantages, some challenges will need to be ad-
dressed, as described below:

1. Generality: PaaS must be capable of providing services
across a wide spectrum of vehicle types and configu-
rations. For prognostics, this requires flexible, config-
urable, generalized systems models, so as to describe the
system of interest. Such generalized models often re-
quire extensive system characterization to derive model
parameters. The challenges of generalization and param-
eter identification for generalized models are major tech-
nological barriers.

2. Communications: Many aviation systems rely on com-
plex and often limited communications systems. Users
of the PaaS system will need to rely on prognostic pre-
dictions from PaaS, even in the presence of communi-
cation constraints (latency, bandwidth) or dropout from
communication failures.

3. Utility: A PaaS architecture must be capable of predict-
ing with the precision, timeliness, and accuracy required
for decision makers to take action to protect the safety
and efficiency of the aircraft and others. These prediction
attributes make up the Quality of Service (QoS) require-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

ments for a PaaS. Decision makers could be operating in
real-time, such as UAS operators, pilots, autonomous pi-
lots, air traffic controllers, etc., or they could be operating
in a strategic manner, such as maintainers.

4. Security: A PaaS architecture requires end-users to send
information about the operation of that system over a
network. Protecting the Confidentiality, Integrity, and
Availability of that information and the prognostic esti-
mates to the degree appropriate is a real challenge.

5. Environmental Complexity: Future load prediction and
system degradation prediction can both be a function of
the environment it operates in. Inaccurate or incomplete
understanding of the environment can lead to imprecise
or inaccurate predictions.

6. Trust: Predictions must be trusted in order to be used.
This means that they must be both trustworthy and that
the end user must be convinced of its trustworthiness.

The Prognostics As-A-Service effort at NASA explores the
feasibility and challenges of cloud-enhanced prognostics.
Though such a system has wide applicability, this research
effort was focused on aviation applications. This effort is ex-
ploring and demonstrating the ability to address the six ma-
jor challenges of a PaaS architecture, described above. This
paper details the PaaS architecture and describes its use in
NASA projects.

2. SIMILAR ARCHITECTURES

Cloud computing is a topic at this year’s IEEE International
Conference on Prognostics and Health Management, demon-
strating the elevated interest in cloud prognostics architec-
tures. A number of cloud-based prognostics or health man-
agement architectures are proposed in the literature (Lee,
2013; Deb, 2013; Ning, Huang, Shen, & Di, 2013). Peng
Wang et al in A Computational Framework for Cloud-Based
Machine Prognosis (Wang, Gao, Wu, & Terpenny, 2016) de-
scribes the value case and a basic formulation of a theoretical
cloud-architecture for manufacturing prognostics. Jay Lee et.
al. in Methodology and Framework of a Cloud-Based Prog-
nostics and Health Management System for Manufacturing
Industry (Lee, 2013) present a detailed architecture for cloud
PHM built on the IMS Watchdog PHM Toolbox. Their ar-
chitecture is designed to be configurable, leveraging configu-
ration files to customize the PHM workflow. These architec-
tures highlight the challenge of Generality for PaaS architec-
tures and illustrate potential solutions.

Researchers at NASAs Diagnostics and Prognostics group
created the Prognostics Virtual Lab (Kulkarni et al., 2017),
a live-virtual-constructive (LVC) testbed for prognostics re-
search. This work resulted in an extendable, modular frame-
work for performing prognostics remotely using the LVC-DE
software and message set (NASA, n.d.; Murphy, Jovic, &
Otto, 2015; Murphy & Hoang, 2015). The work identified

many of the challenges facing remote architectures for per-
forming prognostics. Researchers struggled with communi-
cations, utility, and environmental complexity challenges.

Researchers with NASA Diagnostics and Prognostics group
also created the Generic Software Architecture for Prog-
nostics (GSAP) (Teubert, Daigle, Sankararaman, Goebel, &
Watkins, 2017). GSAP is an open-source modular, extend-
able framework for performing prognostics. It was designed
to reduce the investment required to create and deploy a prog-
nostics application. The GSAP architecture has been imple-
mented in C++ and open-sourced. Because of its extendibil-
ity and generality, GSAP was selected as the foundation of
the NASA PaaS Architecture.

There are many Internet of Things (IOT) cloud based services
available to the consumer with open source licenses and from
well-known publicly traded companies, such as Google, Mi-
crosoft, General Electric, Amazon Web Services, Autodesk,
Salesforce, and IBM. (IoT Cloud Platform Landscape, n.d.)
These solutions provide secure, open (any device, operating
system, data source, application software, or service), and
scalable solutions that can be used to process data from sen-
sors that are on-site at the edge (computation node near the
sensor or sensors), or in the cloud. These platforms enable
the user to integrate their applications for data processing and
analytics.

Of particular relevance to the prognostic service developed
at NASA, is the General Electric (GE) Predix Platform™, a
distributed application and services platform for the Indus-
trial Internet of Things (IIoT). GE’s Predix Platform provides
a scalable, public cloud infrastructure for industrial organiza-
tions to “rapidly build, securely deploy, and effectively run
IIoT applications from edge to cloud.” (Predix Platform,
n.d.). Predix enables edge computing and cloud computing
to optimize workload execution. GE’s platform offers core
platform-as-a-service components, a robust and secure data
fabric layer with certificate management, authentication, and
governance services, and a defined set of runtime, storage and
development services. Services are provided by GE and third-
party partners. Predix works in heterogeneous environments
that could include GE equipment or equipment from other
vendors. Customers can implement their own analytic ser-
vice, such as prognostic digital twins and prognostic predic-
tion algorithms.

Vitria is a company that sells an Internet of Things (IoT) Ana-
Iytics Platform-as-a-Service that enables customers to utilize
the Vitria analytics engine to monitor, detect, diagnose, ana-
lyze, and predict based on IoT data and configurations. The
platform allows the customer to prioritize and classify inci-
dents and to suggest automated actions to remediate and re-
solve anomalies and incidents. Customers can deploy their
own algorithms and system models in this service platform.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

> 1.RequestPaaS Services > 2.SendData >

3. Conduct Prognostics >

4. Inform Decision Makers

—
—

PaaS

Prognostics Services:

Pilots

Remote Operators
Air Traffic Control (ATC) Hl

UAS Traffic Management (UTM) ﬁ("

—>
II> Decision Support Services >

Airline Dispatch B

‘ Maintainers (Predictive Maintenance)@

Figure 1. Overview of PaaS operation

3. GENERAL USE CASE

PaaS is designed to fulfil a need for in-flight prognostics
beyond what can be achieved onboard. The PaaS service
augments any onboard prognostics by applying more pow-
erful hardware to enable more sophisticated prognostic algo-
rithms. This includes both faster multi-core server CPUs as
well as GPUs and potentially FPGAs. Abstracting these var-
ious hardware components behind a service also simplifies
development by minimizing the number of changes to the ve-
hicle configuration.

The service covered by this paper includes facilities to regis-
ter and manage platforms, systems and components (defined
in detail below), configure those entities, send data to the ser-
vice, and retrieve events from the service. The registration
and configuration steps only need to be done once for a given
configuration. Once a complete platform is configured, the
user can request that a session be started. Starting a session
triggers the creation of the configured prognosers on the ser-
vice backend. Once a session is active, the user can send data
and periodically check for results.

The service does not include any kind of client-side user in-
terface. It is our expectation that many end-users will prefer
integration of the data provided by the service into their exist-
ing user interfaces over the addition of another separate inter-
face to already crowded UAS ground station environments.
We are also exploring possible graphical user interface de-
signs as part of the System Wide Safety project.

As part of the service’s operation, it naturally stores most data
received and calculated in a database. In addition to the ba-
sic performance of prognostics, this also enables research by
giving easy access to a large quantity of uniform data that can
be used to tune and enhance prognostic algorithms.

4. SOFTWARE ARCHITECTURE DESCRIPTION

The Prognostics as a Service architecture builds on the
Generic Software Architecture for Prognostics (GSAP)
(Teubert et al., 2017) library. PaaS provides the infrastruc-
ture to store and manage data and configuration information

associated with systems being prognosed, and to efficiently
pass data to prognosers and results back to the user.

The PaaS prototype was developed over the last two years as
part of the Convergent Aeronautic Solutions (CAS) Project’s
concept incubation process. The prototype system consists of
a Prognostics Application Driver written in C++ that wraps
GSAP in a thin communication framework that talks to the
front-end process. The front-end process consists of a web
server written in Java that exposes a RESTful API to end-
users. The application also uses a PostgreSQL database to
store prognostics data, configuration information, and appli-
cation state.

4.1. Entities

PaaS models discrete prognostic problems as a hierarchy of
entities that describe a complete set of things to be prognosed.

4.1.1. Platform

Each prognostic session is tied to a single platform. The plat-
form represents a collection of prognostic targets to be ana-
lyzed together. The most common manifestation of a plat-
form in our work is an unmanned aerial system (UAS). Each
platform has one or more systems associated with it.

4.1.2. System

Each system represents a discrete object that can be analyzed
by a single GSAP prognoser. The system is usually one half
of the total representation of this object. It stores configu-
ration information about the object that depends on the plat-
form. The other half of the object is represented by the Com-
ponent entity.

4.1.3. Component

Components represent a pluggable object that is used in a sys-
tem. As an example, a UAS battery has a system that repre-
sents the requirement that the UAS have a battery attached
during operation, while the specific battery used in any given
flight is represented by a component. The component stores

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Platform System Data Point
Name Name H Oq Timestamp
Type H Tag
Config Value
User Component Event
Username Name +O- Timestamp
Type HO——04 Time of Event
Config Probability of Event

Figure 2. A simplified representation of PaaS entities. The relationship between a user and a component/platform and between a
platform and system represent ownership (e.g. a user owns a platform). The relation ship between systems and components rep-
resents assignment (a component is assigned to a system). The relationship between data points/events and systems/components
represents an association (e.g. a data point is associated with a system) These entities represent the user’s conceptual view of
the service. They map closely to the database entities used to store data used by the service. The Platform entity maps to a
GSAP process, a System/Component pair map to a prognoser and Data Points and Events map to individual messages passed

within the service.

configuration information that is specific to a particular phys-
ical device.

4.1.4. Data Point

Each data point represents a single input value, such as a bat-
tery voltage or vehicle latitude. Data points are published
individually to allow prognostic components (primarily ob-
servers and predictors) to aggregate only the data they re-
quire.

4.1.5. Event

Events represent a piece of information that may be of inter-
est to the user. The primary events of interest are prognos-
tic events that contain the results of a prediction. Additional
events may be generated that do not relate to a specific prog-
nostic result. These include things like status events that no-
tify the user of the status of particular parts of the system.

4.2. Service Structure

PaaS is organized into three distinct layers that each inter-
act with the adjacent layer or layers. The lowest layer is the
Prognostics Application Driver, which creates and manages
the lifetime of GSAP prognosers. The PAD is also responsi-

ble for one half of the inter-process communication link that
connects the C++ process running GSAP to the Java process
running the REST server. The service layer is the core of the
Java server. It handles the other half of the inter-process com-
munication and handles all communication with the database.
The service layer receives sensor data from the REST API
layer and passes that data to the PAD, and also receives prog-
nostic results from the PAD that it stores in the database for
retrieval via the REST API. Finally, the REST API layer is
a thin wrapper over the service layer that exposes the service
architecture to the world as a set of HTTP endpoints to which
requests can be made.

Data is passed between parts of the application using a
lightweight publish/subscribe system. This system allows
data to be published in granular pieces allows prognostic
components to aggregate exactly the data they need to per-
form their calculations. This model also enables a very sim-
ple model for asynchronous execution.

4.2.1. Prognostic Application Driver (PAD)

Within the main Java application, the execution layer consists
of two sets of components, first a set of repositories that en-
capsulate database operations. These are primarily standard
Spring JPA repositories. Second, the execution layer con-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

PAD Message Bus

Batt.

Observation Prediction

Telemetry Event
. Battery Battery
PAD Router PAD Main Observer Predictor
Prognoser
Manager API Router
v | Java Message Bus

Data Controller

f L f
A

Data Service Event Service

Event Controller|

UAS Telemetry System Events

User

Figure 3. A simplified representation of the PaaS communi-
cation bus. A new PAD is created for each prognostic session.
After initialization, the PAD’s main function enters an infinite
loop that reads messages from stdin until an exit” message
is received. During initialization, the PAD creates a Router
object that intelligently subscribes to messages that need to
be transferred to the front-end.

sists of a simple IPC messaging protocol and infrastructure
for maintaining prognostics processes associated with each
active session.

The current version of the GSAP framework implements a
lightweight message bus architecture to enable the efficient
routing of data between various parts of the application. This
message bus architecture is also replicated in the service layer
described below, and messages of interest are determined and
serialized between the two busses as necessary.

On the other end of the IPC pipe, a C++ application provides
a thin wrapper around the GSAP library that processes incom-
ing messages, configures prognosers based on those messages
and places incoming data on a message bus. It also monitors
the message bus for prognostic events and passes those events
back to the Java server application.

4.2.2. Service Layer

The service layer contains components that execute the main
“business logic” of the system. This includes input validation,
storage and retrieval of data from the database. The service
layer also routes session data needed by the prognostics com-
ponent to the prognostics component in the execution layer.

4.2.3. REST API Layer

Representational State Transfer (REST) is a web architecture
that allows for both querying and updating of resources us-

Display Client Server
[[
One Time Setup
Create Platform N
4
loop |
Create System A
P
Set System config N
P
loop |
Create Component Y
4
Set component config N
4

Each flight LW

]
opt |

Update system/component configs y |
P

Assign compoenents to systems o
4

Start Session

h 4

| loop J

Send Data Al
14

Calculate safety metrics :

Request Events

b
Ld
Events

Process events :

End Session

b
4

Client Server

Display

www.wehsequencediagrams.com

Figure 4. A high level overview of the sequence of requests
used to set up and perform prognostics.

ing structured HTTP requests. The REST style provides a
uniform stateless architecture that fits well into today’s web-
centric world. The API is not without limitation however. In
particular, the REST format (and HTTP in general) do not
provide any mechanism for push-based notifications. Due to
this limitation, the current API requires that clients poll peri-
odically to receive new events.

4.2.4. Data Flow

A typical user’s workflow breaks down into three categories
of operations. The user must perform certain one-time oper-
ations to create a workable set of components, must perform
certain operations “pre-flight” to ensure that the pieces are
configured correctly, and finally the user performs “in-flight”
operations of sending data and receiving results.

When a user first registers, they must set up platforms, sys-
tems and components to tell the service about the things they
wish to perform prognostics on. At a minimum, the user must

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

create a single platform (if they only wish to do vehicle-level
prognostics), but most users will also create subsystems (e.g.
batteries) for each platform. Finally the user creates compo-
nents, which represent the specific serial-numbered part that
can be assigned to a system. These operations can be per-
formed at any time, but only need to be performed once. Once
a platform exists in the system, it is stored in the database for-
ever.

Once initial configuration is complete, the user can start a ses-
sion at any time. To start a session, the user must make sure
that all systems have a component assigned and then make
a request to start a session. Once the session is started, the
user can send sensor data to the service, and receive events
back either by polling an endpoint in the RESTful interface
or via direct pushes in the MAVLINK interface. Once the
session is concluded, the user sends an end session request to
the service to indicate that the service can release resources
associated with the session.

5. CASE STUDIES
5.1. CASAS

The CASAS project was a NASA effort to demonstrate the
integration of multiple intelligent systems technologies devel-
oped at NASA. As part of the project, PaaS was used as an op-
erational battery health-monitoring tool. A Python client was
developed to interface with the CASAS ground station soft-
ware to collect battery voltage, current and temperature data
in real time and publish that data to PaaS via an HTTP POST
every second. The client simultaneously made an HTTP GET
request each second to retrieve prognostic results from the
server.

PaaS was integrated as one source of decision making in the
project. To accomplish this, one of the UAS platforms flown
by the project was set up in PaaS by creating a Platform repre-
senting the UAS and a System representing the battery pow-
ering the UAS’s motors. A Component was also created for
each of the flight batteries used by the project. During each
test flight, the battery for the flight was assigned to the battery
system and the vehicle ground station started sending battery
sensor data to PaaS as soon as the vehicle was powered on.

The project successfully demonstrated the application of
cloud-based battery prognostics, but execution was not with-
out issue. We encountered significant safety challenges in de-
ploying the service. The primary issue we encountered was
a security concern by NASA’s flight safety review board with
connecting the UAS ground station to the network. To work
around this, we had to slave a second computer to the active
ground station and connect that machine to the network so
that it could stream data to PaaS.

5.2. System Wide Safety (SWS)

The goal of the System Wide Safety (SWS) project is to pro-
vide system-wide, model-based predictive capabilities in the
UAS domain to ensure overall system safety. This would po-
tentially include areas such as weather, navigation or com-
munication performance, population density models, vehicle
system health, and more. Much of the work performed in the
initial year of the project was a reimplementation of existing
technologies that had been developed for the Real-Time Sys-
tem Monitoring (RTSM) project in order to provide similar
assurances for commercial aircraft in the National airspace.
Because the initial RTSM implementation was developed as
a demonstration of the technology, it did not provide a scal-
able or accessible solution for multiple aircraft and did not
provide the functionality needed to collect aircraft teleme-
try from multiple data sources. The PaaS architecture was
adopted in order to solve both of these shortcomings, and
also provide the general framework needed to port over bat-
tery prognostics that were planned as one of the initial safety
metrics for SWS.

An important ongoing deliverable of the SWS project is
in supporting flight tests to investigate and demonstrate ad-
vancement of its goals under the technical challenge for In-
Time Safety Nets for Emerging Operations. Specifically,
these tests would demonstrate automated in-time risk iden-
tification and mitigation for small UAVs over the duration of
the flight, and to that end the SWS project has been working
towards integration of its technologies into the UAS Traffic
Management (UTM) ecosystem as a Supplemental Data Ser-
vice Provider (SDSP). The intent of the SDSP is to respond
to queries from UAS operators in order to increase system
awareness and overall safety in the airspace. In its current im-
plementation, the SWS SDSP has focused on battery health
monitoring and obstacle proximity information as the initial
safety metrics being calculated. Using the RESTful web ser-
vice provided by PaaS, the SWS project participated in UTM
”Sprint 3” and ”Sprint 4” integration activities using simu-
lated flight data. Telemetry items such as latitude, longitude,
altitude, speed, battery voltage, current and temperature were
sent to the SDSP via the PaaS RESTful interface, and obsta-
cle awareness (nearby building and trees) and battery health
monitoring data were returned.

A second demonstration effort was also performed in concert
with standalone flights at Langley Research Center in Vir-
ginia. This earlier, initial implementation specified MAVlink
protocol messages to pack and unpack the required data being
sent between the UAS ground station and SWS SDSP. Rather
than utilizing the RESTful interface, this data was sent via a
TCP port and relied on intermediate front-end Java code to
translate between the MAVlink data messages and the inter-
nal PaaS API for storing data and performing stateful session
management.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Integrating the battery monitoring and obstacle awareness
metrics into PaaS each had different challenges. The bat-
tery health monitoring effort had already begun, and served
as the primary metric to prove out the PaaS/GSAP model.
This made it a natural fit for the SWS SDSP, and in general
there were few issues with the integration. Although this inte-
gration went smoothly overall, we did find that the API doc-
umentation did not sufficiently specify the expected units for
various telemetry items. As a result, we encountered several
instances where the client would initially send the right data
but in the wrong units (e.g. 100mV rather than 0.1V). An-
other shortcoming in the use of PaaS is a relatively low ceil-
ing for high-rate data. For all testing so far, the SWS project
has specified a rate of 1Hz for all incoming telemetry. Higher
data rates are desirable for some prognostic applications, but
the nature of HTTP, especially over a secure connection may
make this impractical.

The integration of obstacle awareness using PaaS proved to
be slightly more difficult, or at least unwieldy in its imple-
mentation. Part of the reason for this is the PaaS treatment
of “components” as the underlying basis for its system or
platform health prediction. In viewing the system as a col-
lection of components, it does not easily support those data
inputs that describe the behavior of the system as a whole,
or the relationship of other nearby systems or objects. While
these deficiencies did not prevent PaaS from being a useful
tool it sometimes added additional overhead. Having a more
comprehensive schema or development of optional domain-
specific libraries would be useful in solving this. Presently
the GSAP component of PaaS is not being used for obstacle
awareness.

Despite any shortcomings, leveraging the health management
framework of PaaS proved to be extremely useful in provid-
ing the generalized prognostic tools as well as the front-end
API and back-end database. Adoption of PaaS greatly simpli-
fied the process of getting the SWS server running and col-
lecting user data from the customer in a short timeframe. It
is hoped that the SWS project will be able to attract more
customers and allow us to test the PaaS framework over hun-
dreds of simultaneous users, potentially tracking thousands
of objects. Scaling up to this size in a robust and reliable way
would be the gold standard for proving PaaS in the field.

6. CONCLUSIONS/FUTURE WORK

Prognostics can inform decisions to protect the safety of a
vehicle and reduce lifetime costs through predictive mainte-
nance. The PaaS architecture has the potential to bring preci-
sion prognostics capabilities to vehicles that otherwise would
not have access to such information or supplement any on-
board capabilities.

The work on PaaS so far has partially addressed the 6 chal-
lenges outlined in the introduction:

Utility Generality Comms

Security Environmental Trust
Complexity

Figure 5. The 6 key challenges addressed by PaaS

Generality: PaasS is built on the GSAP library, and there-
fore inherits its generic prognostics architecture, includ-
ing configurable and generic prognostics models. Addi-
tionally, the interface has been carefully designed to ac-
cept a wide range of data, and to produce its output in a
general and extensible format.

Communications: The PaaS architecture is built on
RESTful principles, which are in turn built on the HTTP
protocol. The stateless nature of HTTP requests gives
the service an inherent resilience in the face of tempo-
rary communication loss. This is balanced against a cer-
tain amount of overhead involved in using JSON (a text-
based format) for all data. In the future, we may need to
develop binary data formats to maximize data through-
put.

Utility: The PaaS architecture has been tested in two use
cases described above. The architecture has and contin-
ues to evolve in response to those tests.

Security: Development of a security infrastructure is
largely unmentioned in this paper, however much of the
security will come from adherence to software industry
standards. REST API’s of the kind described here are
increasingly common in the software world and there is
a wide set of best practices to draw from. The service
is available only over TLS, which provides encryption of
data in flight, and we are developing authentication and
authorization controls that adhere to both industry and
NASA standards.

Environmental Complexity: The SWS project is ac-
tively working on quantifying and refining our environ-
mental models, including advanced trajectory genera-
tion (Corbetta, Banerjee, Okolo, Gorospe, & Luchinsky,
2019) and battery power estimation.

Trust: The PaaS architecture is not yet fully mature. Ini-
tial tests in the case studies above show promise, but the

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

architecture is not yet ready for deployment in safety-
critical applications.

Feedback from the CASAS and SWS projects show a poten-
tial for improvement in usability when addressing domains
outside of component health management. Using more gen-
eralized system models has its advantages in being applicable
to many domains, but also increases the burden of translating
inputs and outputs to something useful. Perhaps allowing an
end user to map a domain-specific ontology onto the generic
PaaS interface would allow for a simplification of integration
and promote further use, possibly in novel ways.

Further feedback from the CASAS project suggests that con-
necting vehicles directly to internet services is likely to re-
ceive pushback from those concerned with aircraft safety.
Further investigation into how to demonstrate safe operation
of a highly-connected UAS is necessary for PaaS to fully suc-
ceed.

The SWS project will continue to mature their safety met-
rics and safety assessment algorithms in the PaaS platform.
The PaaS architecture will be matured to better support these
advancements. Additionally, the SWS project will test the
PaaS architecture with their algorithms in flight tests, provid-
ing an additional opportunity to reveal and fix weaknesses in
the PaaS architecture. Additionally, the authors are planning a
study to better understand the stakeholder QoS requirements
and to understand the performance of the prototype PaaS sys-
tem. These will be used to identify the performance gaps,
areas where performance does not meet requirements, for fu-
ture work.

ACKNOWLEDGMENT

The authors thank the NASA Airspace Operations and Safety
Program (AOSP) System Wide Safety (SWS) project and
the NASA Transformative Aeronautics Concepts Program
(TACP) Convergent Aeronautic Solutions (CAS) project for
supporting this research.

REFERENCES

Corbetta, M., Banerjee, P., Okolo, W., Gorospe, G., &
Luchinsky, D. G. (2019). Real-time uav trajectory pre-
diction for safety monitoring in low-altitude airspace.
In Aiaa aviation 2019 forum (p. 3514).

Deb, B. e. a. (2013). Towards systems level prognostics in
the cloud. IEEE Conference on Prognostics and Health
Management (PHM), 1(6).

lot cloud platform landscape. (n.d.).

aviation and airspace prognostics research. AIAA.

Lee, J. e. a. (2013). Methodology and framework of a cloud-
based prognostics and health management system for
manufacturing industry.

Murphy, J. R., & Hoang, T. (2015). Uas integration in the nas
project: Integrated test and lvc infrastructure (Tech.
Rep.). NASA.

Murphy, J. R., Jovic, S., & Otto, N. M. (2015). Message
latency characterization of a distributed live, virtual,
constructive simulation environment. AIAA Infortech
Aerospace Conference.

NASA. (n.d.). Live virtual constructive distributed environ-
ment (lvc) lve gateway, gateway toolbox (Tech. Rep.).
Author.

Ning, D., Huang, J., Shen, J., & Di, D. (2013). A cloud
based framework of prognostics and health manage-
ment for manufacturing industry. [EEE International
Conference on Prognostics and Health Management.

Predix platform. (n.d.).

https://www.ge.com/digital/iiot-platform.

(Accessed: 2019-04-29)

Teubert, C., Daigle, M., Sankararaman, S., Goebel, K., &
Watkins, J. (2017). A generic software architecture
for prognostics. International Journal of Prognostics
and Health Management, 8(13).

Wang, P., Gao, R. X., Wu, D., & Terpenny, J. (2016). A com-
putational framework for cloud-based machine progno-
sis. Procedia CIRP, 57, 309-314.

BIOGRAPHIES

Jason Watkins is a software engineer with
Stinger Ghafarrian Technologies (SGT)
working for the Diagnostics and Prognostics
group at NASA Ames Research center. He
currently works on the System-Wide Safety
project at NASA Ames. Jason received his
B.S. in Computer Science from University
of California, Irvine in 2018. Prior to grad-
uating and joining SGT full time, Jason completed several
undergraduate internships with NASA and SGT. As part of
those internships, Jason has worked on several NASA soft-
ware projects, including the open source projects X-Plane
Connect and Generic Software Architecture for Prognostics
(GSAP).

Christopher Teubert is a subproject tech-
nical lead for Autonomous Systems and
group lead of the Diagnostics and Prognos-
tics group at NASA Ames Research Center.
He is also the principal investigator for the
Generic Software Architecture for Prognos-
tics (GSAP). Christopher received his B.S.

‘ in Aerospace Engineering from lowa State
Umversny in 2012 and is currently working on his M.S. in

https://www.postscapes.com/internet-of-tTommrerpSaenterand /Engineering at Santa Clara Univer-

(Accessed: 2019-04-30)
Kulkarni, C., Gorospe, G., Teubert, C., Quach, C. C., Hogge,
E., & Darafsheh, K. (2017). A virtual laboratory for

sity. Chris worked as a research engineer with Stinger Gha-
farrian Technologies (SGT) at NASA Ames Research Center
from 2012-2016. Since 2016, Chris has been a computer en-
gineer and lead with the Diagnostics and Prognostics group.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

In 2018 Chris took on the role of subproject technical lead for
autonomous systems.

John Ossenfort is a Computer Scientist
and employee of SGT/KBRWyle at NASA
Ames Research Center. He is currently writ-
ing software as part of the System-Wide
Safety (SWS) project, under the Airspace
Operations and Safety Program (AOSP). He
also works in the Discovery and Systems

Health research area, integrating fault man-
agement technologies with advanced testing and demonstra-
tion for the Orion Multi-purpose Crew Vehicle. In the past
he has worked on several exploration projects, including the
Ares I-X flight test, Exploration Flight Test 1 (EFT-1) and
Deep Space Habitat (DSH). John has a dual BA degree in
Anthropology and East Asian Studies from Washington Uni-
versity in St. Louis.

