
 

1 

Accurate Estimation of Battery SOH and RUL Based on a 

Progressive LSTM with a Time Compensated Entropy Index 

Taejun Bak1 and Sukhan Lee2 

1,2Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea 

ptjvv@skku.edu 

lsh1@skku.edu 

 
ABSTRACT 

The accurate estimation of the State of Health (SOH) and 

Remaining Useful Life (RUL) has been a subject of keen 

interest due to its impact on safety and condition-based 

maintenance services. A number of approaches have been 

proposed to tackle this problem based either on a model-

driven or on a data-driven framework. Due to the electro-

chemical complexity involved in battery aging, they are yet 

to achieve the accuracy required, especially, for real-world 

applications. This is because of the difficulty either in 

identifying the time-varying nature of model parameters and 

in collecting the real-world training dataset from widely 

varying modes of battery usage.  

In this paper, we propose a method of estimating SOH and 

RUL simultaneously in such a way as to contribute to its real-

world applicability. First, noticing that battery aging causes 

the time sequence of charging and discharging voltage and 

current in a cycle to be shortened and dispersed, we define an 

aging index, referred to here as the time compensated entropy, 

for SOH and RUL. Second, for LSTM-based RUL prediction, 

we optimize the number of SOH input and the RUL 

prediction sequences for the minimum prediction error 

associated with a sequence of cycles. Third, we adopt a 

progressive framework of LSTMs such that whatever learned 

from the prior predictions are transferred to the subsequent 

prediction, starting with learned SOH. For experimental 

verification, we train the proposed progressive LSTM 

network based on CALCE datasets and apply to various cases 

of charging and discharging cycles. With SOH estimated 

online, we achieve less than 10 cycles of accuracy in RUL 

prediction, moving closer to real-world applicability.  

1. INTRODUCTION 

The advent of lithium-ion batteries has changed our lives. 

The small, wireless gadgets like the smartphones and wireless 

devices could have been developed with the advance of 

lithium-ion battery technology. This technology provides us 

a breakthrough to overcome spatial and temporal limits and 

is the key to advance in Electric Vehicles (EV), Robotics and 

Aerospace industries.  

As the importance of batteries grows, the battery 

management system (BMS) technology becomes more 

significant. The biggest disadvantage of batteries is the aging. 

A primary cause of battery aging is a change in the electrode 

and electrolyte in batteries. Solid Electrolyte Interphase (SEI) 

is formed on the electrode surface due to chemical reactions 

during the operation of batteries (Arorat, White, Carolina, & 

Doyle, 1998). The SEI is becoming more unstable and 

increasing in quantity as the battery charges and discharges 

repeatedly. The growth of SEI results in capacity and power 

fade in batteries (Vetter, Nov, Wagner, & Veit, 2005). 

Because of the aging effect which induces degradation of 

batteries and devices, accurate prediction or estimation on the 

degree of aging in batteries is necessary.  

In order to manage the battery efficiently, it is necessary to 

accurately estimate and manage the battery State of Health 

(SOH) and Remaining Useful life (RUL). SOH represents the 

maximum discharge capacity to the rated capacity of batteries 

(Murnane & Ghazel, 2017). Since the maximum discharge 

capacity is characteristic of battery aging, SOH is used as an 

indicator of degree of ageing. SOH of new battery with no 

degradation is processed in is 100%. When SOH value 

reaches 80%, that is the time for the replacement and can be 

regarded as reaching at an End of Life (EOL). RUL 

represents remaining life until the EOL. 

It is major research subject in battery health management to 

estimate degree of aging in battery. There are many 

approaches to achieve that goal. These methods could be 

categorized into three methods, i.e. direct approach, model-

based approach and data-driven approach. 
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In the direct approach, there are few methods using measured 

values directly. The coulomb counting method is a method of 

estimating SOH through the calculated discharge capacity by 

integrating the discharge current (Ng, Moo, Chen, & Hsieh, 

2009). The open circuit voltage method is estimating SOH 

using the relationship between SOH and OCV obtained by 

prior experiment. Weng, Sun, and Peng (2014) used OCV 

model to monitor SOC and SOH. The direct approach is easy 

to implement but having disadvantages of on-line estimation. 

The model-based approach utilizes filtering such as kalman 

filters or particle filters. Liu, Yin, Song, and Peng (2018) 

estimate SOH using an Unscented Kalman Filter (UKF) with 

the health indicator as the operating time corresponding to the 

discharge voltage range. The filter methods have been used 

to predict RUL. SVR-UPF, which combines a Support Vector 

Regression (SVR) and an Unscented Particle Filter (UPF), 

has been proposed by (Peng, Zhang, Yu, & Zhou, 2016). The 

model-based approach has the advantage of real time 

estimation, but high computational capacity is needed, and 

multiple tasks can’t be performed on one model. 

The data-driven approach uses learning models with pre-

performed battery measurement data. Several SOH 

estimation and RUL prediction studies based on NN structure 

have been conducted due to its excellent ability to learn 

features from the data. Especially Long Short-Term Memory 

(LSTM) is widely used in aging estimation model. You, Park, 

and Oh (2017) studied various methods of estimating SOH 

with LSTM structure. Zhang, Xiong, He, and Pecht (2018) 

proposed the model with LSTM and Monte Carlo simulation 

for RUL prediction and its uncertainty. This approach is 

based on the data collected by simulation in laboratory, i.e. 

voltage, current and temperature etc. It can lead to inaccurate 

results in real environment applications because these 

parameters vary depending on the battery operating 

environment. 

We proposed a time compensated entropy index from battery 

voltage distribution which has low variation and a 

Progressive LSTM networks for SOH estimation and RUL 

prediction. The advantage of our approach is that it is capable 

of estimating SOH as well as predicting RUL. Many studies 

considered these two separately. A number of studies to 

predict the timing of battery replacement have been carried 

out under the assumption that SOH is known as label data. 

However, in a real application, BMS needs to estimate SOH 

and predicting RUL would be made through accurate SOH 

estimation. In order to perform different tasks with one model, 

we apply the progressive neural networks (Rusu, Rabinowitz, 

Desjardins, Soyer, Kirkpatrick, Kavukcuoglu, Pascanu, & 

Hadsell, 2016) and combine them with LSTM for extracting 

features from time-series data. Knowledge for SOH 

estimation accumulated in a network is transferred to another 

network for predicting sequence of SOH accurately. 

In this paper, we show a new health indicator based on 

information entropy for estimating SOH. Using battery 

datasets from CALCE in the Maryland university, we 

demonstrate our progressive networks which use these 

indices having ability to infer the degree of aging. 

Section 2 covers brief introduction to progressive neural 

networks. Section 3 describes our method including the time 

compensated entropy index and the progressive LSTM 

networks. In section 4, we do experiments for evaluating our 

methods are good at accomplishing our goal. Section 5 comes 

up with a conclusion. 

2. BACKGROUNDS 

Progressive neural networks are structures that have been 

proposed to mimic humans performing new tasks based on 

past experiences. Existing learning transfer models, such as 

transfer learning, have the disadvantage that it is impossible 

to transfer such knowledge that they can do various tasks. To 

solve these shortcomings, they use the lateral connection that 

leads to the existing learned network to learn the network to 

perform the new task (Rusu et al., 2016). It transfers the prior 

knowledge existing in the existing network to other networks 

via this connection. Through such a structure, it is possible to 

extract useful features for a new task. 

 

 

Figure 1. Progressive Neural Networks. Dashed lines are 

lateral connections for transferring knowledge. Each column 

learns to deal different tasks.  

 

The figure 1 shows the progressive neural networks structure. 

The ability to integrate prior knowledge through the structure 

where the output is transferred to other networks on each 

floor of each network, hence, reduce oblivion of existing 

knowledge. The lateral connection in P-NN makes the 

network capable of doing various tasks. The ability to transfer 

knowledge and deal with multi-task is the reason why we use 

P-NN in this paper. From the second column network in P-

NN, the output of each hidden layer is written as follows: 
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ℎ𝑖
𝑘 = 𝑓(𝑊𝑖

𝑘ℎ𝑖−1
𝑘 +∑𝑈𝑖

𝑘:𝑗
ℎ𝑖−1
𝑗

𝑘<𝑗

) (1) 

where ℎ𝑖
𝑘 is the hidden output of layer 𝑖 in a column 𝑘, 𝑊𝑖

𝑘 is 

the weight matrix of layer 𝑖 in column 𝑘 and 𝑈𝑖
𝑘:𝑗

 is weight 

matrix of lateral connection from a column 𝑘 to a column 𝑗. 
𝑓(𝑥) is an activation function such as ReLU function. The 

learning process in P-NN is sequential. When learning the 

column 𝑗, we freeze weights of the columns before column 𝑗 
and update weights of the column 𝑗 and weights of all lateral 

connection from column 𝑘 to 𝑗 in all 𝑘 less than 𝑗. 

The progressive neural network has been applied in various 

fields, as it has the advantage of reusing previous results and 

learning new things. The performance of progressive neural 

networks is superior to the Transfer Learning or Deep Neural 

Networks as evident from the experiments on emotion 

recognition on learned knowledge in order to distinguish 

speakers and gender in (Gideon, Khorram, Aldeneh, 

Dimitriadis, & Provost, 2017). 

3. PROPOSED METHOD 

Aging phenomenon of batteries is caused by physical-

chemical changes inside the battery and makes the internal 

resistance of the battery and the maximum charge capacity be 

changed (Williard, He, Osterman, & Pecht, 2013). Old 

batteries are characterized by a wider discharging voltage 

distribution than that non-aging battery’s. It means changes 

in the distribution can be used as an indirect indicator of 

battery aging (Lorenzo & Labed, 2005). In this section, the 

time compensated entropy index based on the battery voltage 

distribution and the progressive LSTM networks to infer 

degree of aging is proposed. 

3.1. Time Compensated Entropy Index 

Entropy in information theory is the concept that Shannon 

(1948) proposed to represent the amount of information that 

data has. Information entropy means the number of bits 

required to represent information. The amount of information 

increases as the information is chaotic and irregular. 

𝐻 = −∑𝑝𝑖 logb 𝑝𝑖

𝑁

𝑖=1

(2) 

Eq. (2), is a basic equation for obtaining information entropy. 

𝑝𝑖  is the probability that an event 𝑖  occurs. Information 

entropy can be used to indicate a disorder, an uncertainty of 

the system. As the battery ages, the system is disordered due 

to the transition in the internal characteristics. Information 

entropy is used to represent the changes emerged as voltage 

distribution. A voltage in an operating cycle is represented by 

a histogram. Eq. (2) can be represented as Eq. (3), with the 

histogram which has 𝑀 bins. 

𝐻𝑘 = −∑𝑝(𝑥𝑖
𝑘) log10 𝑝(𝑥𝑖

𝑘)

𝑀

𝑖=1

(3) 

where 𝐻𝑘 is information entropy in the 𝑘th battery cycle and 

𝑝(𝑥𝑖
𝑘)  is the probability for the bin 𝑥𝑖

𝑘  in a histogram of 

voltage distribution at 𝑘th battery cycle. The operating time 

of the battery varies depending on the operating environment 

and variation of the information entropy may occur. 

Information entropy tends to decrease as operating duration 

is shortened. To minimize this effect, the entropy is 

normalized by multiplying the normalization term including 

the duration. 

𝐸𝑘 = −
𝛼

𝐷𝑘
∑𝑝(𝑥𝑖

𝑘) log10 𝑝(𝑥𝑖
𝑘)

𝑀

𝑖=1

(4) 

𝐸𝑘 = −
𝛼

𝐶𝑘 ∙ 𝐷𝑘
∑𝑝(𝑥𝑖

𝑘) log10 𝑝(𝑥𝑖
𝑘)

𝑀

𝑖=1

(5) 

where 𝐸𝑘  is the time compensated entropy index. 𝐷𝑘  is the 

discharging (or charging) duration of the 𝑘th cycle and we 

call this term a time compensated term. 𝛼  is a length 

coefficient and can be defined as an operating time of the 

shortest cycle in the data. In Eq. (5), we can compensate 

entropy index in Eq. (4) by the discharging current additional 

term 𝐶𝑘 under the condition that discharging current changed. 

Discharging Time Compensated Entropy Indices and 

Charging Time Compensated Entropy Indices come from the 

voltage distribution during discharging and charging. 

3.2. Progressive LSTM model 

A progressive LSTM model (P-LSTM) with input vectors 

including time compensated entropy index was designed to 

predict battery SOH and RUL. The goal of our model is 

multiple performance capability to accurately estimate the 

SOH of the battery in time, predict the future SOH sequence 

through the predicted SOH and obtain it to the RUL. The 

progressive neural networks (P-NN) is a suitable structure for 

these objectives. The structure can effectively communicate 

knowledge between networks to perform multiple tasks. We 

have designed a P-LSTM based on LSTM that is suitable for 

extracting features of time series data according to the battery 

operation. 

Figure 2 describes our models. Our model includes two P-

LSTM networks: 1) A network that estimates SOH at the 

current time 𝑡 and predict SOH sequences based on predicted 

SOH sequences. 2) A network that predicts future SOH 

sequences until life of batteries reaches EOL through the 

predicted SOH sequence at a first network. Both networks are 

based on P-LSTM architecture. The hidden state in the 

column is combined with the hidden state of the previous 

columns through the lateral connection. In P-LSTM, ℎ𝑖
𝑘 is the 

hidden state of the layer 𝑖 in the 𝑘th column: 
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ℎ𝑖
𝑘 = 𝑓 (𝐿𝑖

𝑘(ℎ𝑖−1
𝑘 ) +∑𝑈𝑖

𝑘:𝑗
ℎ𝑖−1
𝑗

𝑘<𝑗

) (6) 

where 𝑈  is weighted matrix in lateral connection from 

column 𝑘 to 𝑗 and 𝐿𝑖
𝑘 is LSTM layer 𝑖 in the 𝑘th column. we 

use ReLU function as 𝑓(𝑥). 

3.2.1. P-LSTM for SOH 

The first P-LSTM network consists of a P-NN structure with 

three network columns performing different roles.  

The first column (𝐂𝟏
𝟏) estimates SOH at the current point in 

time. Inputs of C1
1 is the vector 𝑢𝑡  including the time 

compensated entropy indices. When voltage data at the cycle 

𝑡  is given, 𝐸𝑡 = [(𝐷𝐸𝑡 , 𝐶𝐸𝑡)]  is the time compensated 

entropy indices. where 𝐷𝐸𝑡  is the discharging time 

compensated entropy index at the cycle 𝑡  and 𝐶𝐸𝑡  is the 

charging time compensated entropy index at the cycle 𝑡. To 

specify battery’s operation, input vector includes a discharge 

voltage distribution. For a given data set until the cycle 𝑡, 
input vector 𝑢𝑡

1 with sequence length 𝑘1 is written as: 

 𝑢𝑡
1 = [(𝐸𝑡−𝑘1−1, 𝑃𝑡−𝑘1−1),⋯ , (𝐸𝑡 , 𝑃𝑡)]

𝑇
(7) 

where 𝑃𝑡 ∈ ℝ
𝑛 is a discharge voltage distribution with 𝑃𝑡 =

(𝑝(𝑥1), 𝑝(𝑥2),⋯ , 𝑝(𝑥𝑛))
𝑇. The input vector passes through 

the LSTM layer on each floor and is changed to knowledge 

for the next columns. After three LSTM layers and a fully 

connected layer, SOH at the cycle t 𝑆𝑡  as a final output is 

obtained. Accumulated results used as the input vector of C1
2.  

The second column (𝐂𝟏
𝟐)  predicts a SOH sequence as much 

as the prediction cycle 𝑚2 from the current cycle. C1
2 consists 

of two LSTM layers and one LSTM Enc-Dec. The Enc-Dec 

is responsible for predicting the SOH sequence of variable 

lengths. An input vector of C1
2  made from C1

1  is estimated 

SOH sequence. 𝑢𝑡
2 is input vector of the column 2 at the cycle 

t and can be written as: 

𝑢𝑡
2 = [𝑆𝑡−𝑘2−1, ⋯ , 𝑆𝑡]

𝑇
(8) 

where 𝑘2 is an input sequence length of C1
2. The output ℎ2

𝑙  of 

the LSTM layer 𝑙 in the second column is added to the output 

of the LSTM layer 𝑙  in C1
1  multiplied with the lateral 

connection weight. This result is used as an input to the next 

layer via ReLU function. Through this process, knowledge of 

C1
1 , which estimates 𝑆𝑡  from the battery measurement data 

including the compensated index, is used to predict the future 

SOH sequence in C1
2. The output 𝑜𝑡

2 is: 

𝑜𝑡
2 = [𝑆�̅� , ⋯ , 𝑆�̅�+𝑚2−1

]
𝑇

(9) 

where 𝑆�̅�  is predicted SOH at cycle 𝑡 and 𝑚2 is a length of 

prediction in C1
2. 

The third column (𝐂𝟏
𝟑)   predicts a SOH sequence with 

longer time-length than an output of C1
2 . Estimated SOH 

sequence from C1
1 and 𝑜𝑡

2 are concatenated and given as input 

vector 𝑢𝑡
3 as follows: 

𝑢𝑡
3 = [𝑆𝑡−𝑘3−𝑚2

, ⋯ , 𝑆𝑡−1, 𝑆�̅� , ⋯ , 𝑆�̅�+𝑚2−1]
𝑇

(10) 

Figure 2. P-LSTM for SOH and RUL 
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where 𝑘3 is an input sequence length of C1
3. Structure of C1

3 

have same structure with C1
2. Outputs from the layer 𝑙 in C1

1 

and C1
2are transferred to C1

3 via the lateral connection. A SOH 

sequence with longer time can be predicted based on the 

knowledge to estimate 𝑆𝑡 from C1
1 and to predict future SOH 

sequences from C1
2 . Predicted SOH sequence with 𝑚3  as 

length of prediction in C1
3 can be written as: 

𝑜𝑡
3 = [𝑆�̿� , ⋯ , 𝑆�̿�+𝑚3−1]

𝑇
(11) 

where 𝑆̿ is predicted SOH in C1
3. 

3.2.2. P-LSTM for RUL 

The second P-LSTM network's goal is to predict the SOH 

sequence from a certain point in time, which we call the 

starting point, to the EOL. The second P-LSTM network 

consists of a network column C2
1  with LSTM layers and 

LSTM estimator. C2
1 predicts a SOH sequence whose length 

is 𝑚4 from input vector with 𝑘4 of length repeatedly. C2
1 has 

the input vector 𝑣𝑡
1  which concatenates 𝑜𝑡

3  and estimated 

SOH values from C1
1 . After predicted SOH sequences are 

larger than 𝑘4, 𝑣𝑡
1 comes from results of C2

1 only. 

For example, EOL is 510 cycle when the starting point is 

300th cycle, 𝑚4 is 40 and 𝑘4 is 100, the predicting process in 

C2
1 from starting point is written as: 

{
 
 

 
 

{𝑆2̿40, ⋯ , 𝑆3̿39} → {�̂�340, ⋯ , �̂�379}

{𝑆2̿80, ⋯ , �̂�379} → {�̂�380, ⋯ , �̂�419}

{𝑆3̿20, ⋯ , �̂�419} → {�̂�420, ⋯ , �̂�459}

⋮
{�̂�400, ⋯ , �̂�499} → {�̂�500, ⋯ , �̂�𝐸𝑂𝐿 , ⋯ , �̂�539}

(12) 

where �̂�𝑡 is predicted SOH from C2
1. Some experiments are 

conducted to determine model parameters like sequence 

lengths and output lengths. 

4. EXPERIMENTS AND RESULTS 

4.1. Datasets 

Experiments to evaluate the performance of proposed model 

used data from the battery aging experiments provided by the 

CALCE Battery Research group at the University of 

Maryland (He, Williard, Osterman, & Pecht, 2011). The 

dataset was created by repeatedly charging and discharging 

the battery over several months. The battery named CS2 used 

in the experiment is a lithium-ion battery with 1.1Ah of rated 

capacity. We use 6 experimental datasets conducted with CS2, 

i.e. CS2_33, CS2_34, CS2_35, CS2_36, CS2_37 and 

CS2_38. These cases are divided into two types based on 

discharge current. CS2_33 and CS2_34 cycled at constant 

discharge current of 0.5C while others cycled at constant 

discharge current of 1C. Figure 3 shows the degeneration 

curves of test cases. 

Figure 3. Degeneration curves to the vicinity of EOL from 

CS2 dataset. EOL is the point where curve reaches at 80% 

of rated capacity (dashed horizontal line). 

 

The maximum capacity of the battery is lower as the battery 

operates repeatedly. EOL is where the degeneration curve 

reaches at a grey dashed line of 80% of rated capacity in 

figure 3. The raw degeneration curve is a signal with frequent 

change in short period. However, this variation can interfere 

with estimation of SOH and RUL for test data. Therefore, a 

gaussian filter defined in 1-D is applied to raw degeneration 

curves. Filtered signals are used as label data in training data 

for RUL prediction. 

4.2. Model Configuration 

We conducted experiments to evaluate our method in terms 

of efficient estimation and prediction of the battery SOH. The 

training dataset includes CS2_33, CS2_34, CS2_35, CS2_37. 

CS2_38 and CS2_36 are used as the validation dataset and 

the testing dataset, respectively. Training procedure is as 

follows: 

1. Design the P-LSTM model with the specified parameters. 

The input vector is composed of the calculated time 

compensated entropy index, current and voltage 

distribution. At this time, the bin number of the voltage 

distribution is smaller than the size used in calculating 

the entropy index in order to prevent dimension of the 

input vector from becoming too large. 

2. Train P-LSTM for SOH. First C1
1, which estimates SOH 

as an input vector, is learned. Second, C1
2 is trained by 

inputting the result of C1
1. The weight of C1

1 freezes while 

learning training C1
2. At last train C1

3  in freeze state of 

weights of C1
1 and C1

2. 

3. Train P-LSTM for RUL. Capacity data which is label 

data for training P-LSTM for SOH used as training data 

in this step. 
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The optimizer for model learning uses AdamOptimizer 

(Kingma & Ba, 2015). The parameters for the P-LSTM 

configuration is listed in Table 1. Parameters selection, such 

as sequence lengths, determines the performance of the 

model. But for most applications the parameters are 

determined by empirical methods. To determine parameters 

in P-LSTM, we conduct a simple experiment through one 

column used in P-LSTM to efficiently determine the seq 

length and prediction cycle. The average and variance of the 

error according to the input sequence length and prediction 

length are applied to choose parameters.  

The experiment was performed on the same model as C2
1 with 

size of hidden states is 32. Three experiments were performed 

in which the prediction cycle was fixed at 80 cycles and the 

sequence length was changed to 80, 100 and 120. The 

networks learn from training datasets and evaluate the 

accuracy with prediction at several cycles from 100 to 400 at 

50 intervals with the test datasets.  The results are listed in the 

Table 2.  

 

Table 1. Parameters. 

 

Parameter Value 

𝑘1, 𝑘2 20 

𝑘3 40 

𝑘4 80 

𝑚2 20 

𝑚3 40 

𝑚4 40 

hidden state size at C1
1 5 

hidden state size at C1
2 10 

hidden state size at C1
3 10 

hidden state size at C2
1 32 

 

 

(a) sequence length: 80 (b) sequence length: 100 (c) sequence length: 120 

(d) sequence length: 80 (e) sequence length: 100 (f) sequence length: 120 

Figure 4. The average of errors on each prediction points are described in the first row. The distributions of error (d), (e) 

and (f) widen according to increasing of prediction length. Optimal sequence length is 80, which shows good 

performance in terms of error and variance. 
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𝐸𝑎𝑙𝑙  is the mean of (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡)2 of all cycles in 

prediction coverage while 𝐸[0:40] is error of 40 cycles. Both 

errors are lowest if the sequence length is 80. Figure 4 

describes results including error per each prediction points 

and variance per 10 cycles. In all conditions, the error 

increases as the point far from the starting point is predicted; 

see the figure 4 (a), (b) and (c). The distribution of errors also 

gets bigger and bigger; see the figure 4 (d), (e) and (f). In 

figure 4 (a) and (b), the error increase rapidly after the 

prediction point 40. It means prediction results in a column is 

more accurate until 40 cycles. Therefore, we determine the 

sequence length and prediction cycle in P-LSTM for RUL as 

80 and 40, respectively. 

4.3. Results 

4.3.1. Time Compensated Entropy Index 

Figure 5 shows the time compensated entropy index in 

CS2_38 according to the battery operating cycles. To 

simplify, one cycle per each experiment that were performed 

on different days is considered. Time compensated entropy 

indices of battery are calculated based on voltage distribution 

in Eq. (4). Figure 5 (a) describes discharging voltage 

distributions based on histogram which has 16 bins in 

different experiment dates. The distribution has a uniform 

distribution as the experiment continues. The wider 

distribution means, the more uncertain in expected 

measurement voltage. The uncertainty makes information 

entropy increase. In figure 5 (b), discharging time 

compensated entropy index (DE) from distributions in figure 

5 (a) change as time goes by. Eq. (4) is used to calculate DE 

with α = 50 . DE increases over time as the variance of 

voltage distribution increases. The change in time 

compensated entropy index until the maximum charge 

capacity reaches about 0.2 is shown in figure 5 (c). In figure 

5 (c) we consider the variation in entropy indices depending 

on whether compensated or not about every cycle in CS2_38. 

When entropy index is obtained from Eq. (4) with a time 

compensated term, the tendency to increase with aging 

becomes more pronounced than without compensated term 

like in Eq. (3). As chargeable capacity decreases, time 

compensated entropy index in charging and discharging have 

drastic growth. 

4.3.2. Estimation SOH and RUL based on P-LSTM 

Through the designed P-LSTM for SOH and RUL, 

experiment to estimate the SOH per cycle and predict the 

future SOH sequence is conducted. The results of estimation 

of SOH in C1
1 from battery discharging information including 

entropy are described in the figure 6. CS2_36 dataset is used 

as test dataset. Predicting SOH based on battery measurement 

data can be done by SOH estimating column network and 

time compensated entropy indices. An additional experiment 

was conducted to estimate SOH using CS2_33 discharged 

with 0.5C current. In this case, CS2_34, CS2_36, CS2_37, 

CS2_38 are training datasets and C2_35 is used as a 

validation dataset. For predicting near future SOH, estimated 

Table 2. The results of error variation according to the 

sequence lengths and prediction cycles. 

 

Sequence 

Length 

Prediction 

Cycle 
𝐸[0:40] 𝐸𝑎𝑙𝑙  

80 80 0.001197 0.000879 

100 80 0.001750 0.001315 

120 80 0.004682 0.003705 

 

Figure 5. (a): Change of discharging voltage distribution of CS2_38. As the battery gets older, the distribution becomes 

wider.  (b): The discharging time compensated entropy indices from (a). (c): The capacity degeneration curves and the 

entropy curves at discharging (circular mark) and charging (triangular mark) whether compensated or not. 

 

(b) (c) (a) 
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SOH values from C1
1  and C1

2  are utilized. The results from 

two experiments with P-LSTM for SOH are in the table 3. 

 

 

Figure 6. SOH estimation results with CS2_36. 

 

 

Due to imbalance in datasets which have 4 datasets with 1C 

and 2 datasets with 0.5C, RMSE results vary depending on 

the discharge current value. The result shows, for 1C 

discharging current datasets which are relatively abundant, 

the accuracy is relatively high while bad performance where 

0.5C charging current dataset is used as the test dataset. The 

additional experiment, *CS2_33 on a table, is predicting 

SOH of battery discharged by 0.5C with the network trained 

by datasets only with discharging current of 1C. Our method 

can be applied to several discharge currents through the 

current compensated term in Eq. (5). The result of the 

experiment under limited conditions shows that the proposed 

time compensated entropy index can be applied in an 

environment where the discharge current varies at each cycle. 

A more accurate estimation method and its application in a 

changing current environment during one operating cycle 

will be performed in future studies.  

SOH prediction until EOL is generated from C2
1. Obtained 

near future SOH from  C1
3  is followed by predicted SOH 

sequences. After a single prediction with 𝑚4  length is 

performed, the prediction is utilized as an input to make 

repeated prediction. Two predictions are conducted in two 

cases. When CS2_36 is used as a test dataset, actual target 

EOL (EOL𝑙) is at 504th cycle and predicted EOL (EOL𝑝) is at 

544th cycle. In the experiments with CS2_33, EOL𝑙 is at 544 

and EOL𝑝 is at 530th cycle. The difference between EOL𝑙 and 

EOL𝑝 at each case is 9 and 14, respectively. In the proposed 

P-LSTM structure, based on the experience obtained from C1
1, 

the model predicts near future SOH from C1
3 through C1

2. The 

RUL prediction is performed without prior learning before 

the prediction point as well as using not the actual SOH but 

estimated SOH. In Table 4, we can compare our results with 

from (Liu, Zhao, Peng, & Hu, 2017) which conduct 

experiments with same battery dataset used in this paper. 

Proposed P-LSTM model uses estimated SOH to predict 

RUL while Liu et al. (2017) assumes label SOH is given as 

input data. Nevertheless, our model can predict EOL quite 

well. 

 

 

Prediction on short-term SOH is critical factor in long-term 

RUL forecast. The prediction from the start point of the 

prediction to the EOL is performed independently without the 

help of the other columns, hence it is inevitably affected by 

Table 3. The results of SOH estimation from 

P-LSTM for SOH. 

 

Test Case 

(Discharge) 
Column 

Prediction 

Target 
RMSE 

CS2_36 

(1C) 

C1
1 SOHt 0.0067 

C1
2 SOHt:20 0.0077 

C1
3 SOHt:40 0.0098 

CS2_33 

(0.5C) 

C1
1 SOHt 0.0211 

C1
2 SOHt:20 0.0147 

C1
3 SOHt:40 0.0209 

*CS2_33 

(0.5C) 

C1
1 SOHt 0.0201 

C1
2 SOHt:20 0.0267 

C1
3 SOHt:40 0.0295 

 

(a) (b) 

Figure 7. The results from P-LSTM for SOH and RUL. (a) 

and (b) are the results according to test datasets 0.5C and 

1C, respectively. 

 

Table 4. RUL prediction results. 

 

Methods 
Test Case 

(Discharge) 

Start 

from 

Error 

(cycle) 

Proposed P-LSTM 

CS2_33 

(0.5C) 
250 14 

CS2_36 

(1C) 
250 9 

LSTM 

from Liu et al. (2017) 

CS2_36 322 1 

CS2_36 422 21 
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the result of C1
3. In order to assure the influence of short-term 

SOH prediction results on RUL prediction, two prediction 

was conducted by using different C1
2  inputs in the same 

network. The input vector of C1
2 includes 1) the output from 

C1
1 (C1

1 only) and 2) the outputs from C1
1 and C1

3 (C1
3 with C1

1). 

Figure 8 shows the results of two predictions. Figure 8 and 

Table 5 show predicted near-future SOH from P-LSTM for 

SOH helps RUL prediction from P-LSTM for RUL get 

accuracy. 

 

Figure 8. Prediction graph from 200th cycle of P-LSTM for 

RUL according to whether short-term future prediction 

results are included in input. red-cross mark: prediction 

with output of C1
1 only. green line: prediction with outputs 

from C1
3 with C1

1. 

 

 

5. CONCLUSION 

Estimating the aging information of lithium-ion batteries is 

an important research topic because degeneration of lithium 

ion batteries degrades system performance and lower 

reliability. However, lithium-ion batteries have difficulty in 

estimating the aging state due to the operation environment 

and internal complexity. 

In this paper, we propose a time compensated entropy index 

that represents degree of aging by the concept of entropy. The 

time compensated entropy index confirm that the value 

increased according to degree of aging and can be used as an 

indicator to show the degradation phenomenon. We also 

proposed a P-LSTM structure that can predict battery SOH 

and RUL together using them. The proposed structure has the 

advantage of being able to perform two tasks in a single 

structure, away from the traditional SOH estimation and RUL 

prediction approaches. The accurate SOH estimation which 

is a preemptive condition of RUL prediction is performed 

with the time compensated entropy index and enable accurate 

SOH prediction of passing knowledge acquired to the SOH 

prediction column. The proposed model is able to predict 

SOH until EOL without any additional training with test data.  

We used the battery datasets from the CALCE battery to 

demonstrate that the structure can estimate and predicting 

SOH. 

The current research requires demonstration and 

improvement for experiments in complex discharge 

conditions. Therefore, the future issues are the application in 

more diverse environments and more investigation on 

optimization the number of SOH input and the RUL 

prediction sequences for the optimal parameter selections. 
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