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ABSTRACT 

The design of energy systems usually requires technical, 

economical and environmental analysis. However, the 

growth of systems failure due to unpredictable low-

probability external events makes the consideration of 

resilience in this design also important. Although there is no 

standard metric for resilience quantification yet, it is known 

that it should consider system configuration, operation time 

and total or partial energy generation during and after the 

event, as well as the components repair probability and time. 
A proposal for resilience quantification in four cogeneration 

plants was previously developed based on components 

stochastic failures and verification of their consequences in 

the plant energy generation. The present work aims to 

continue the development of this metric by including in its 

calculation the repair probability of the components, their 

repairing time and the plant downtime during the repair, 

essential parameters for resilience quantification. Two new 

metrics are proposed and simulations with 0, 50% and 75% 

of repair probability of the components are made in software 

CLIPS. One of the metrics is able to evaluate the influence of 
repairment in system resilience, while the other one predicts 

plant downtime during operation. The metrics point to S#2 as 

the most resilient system and S#3 as the most affect by 

repairing. 

1. INTRODUCTION 

The development of actual society is fully dependent on 

energy, which has its demand continuously increased over 

time. Energy systems have been studied technically and 

structurally, in order to enhance power supply and increase 

both efficiency and reliability. 

Regarding technical aspects, the design of energy systems 
usually considers energy balance, as well as economical and 

environmental analysis. In this context, power plants working 

with cogeneration technology stand out due to their high 

conversion efficiency and capacity to generate power and 
useful thermal energy (cooling or heating) simultaneously 

from a single fuel source (Silva, Matelli and Bazzo, 2014). 

Additionally, these systems have flexibility to operate in 

several places such as industries, residential buildings and 

hospitals (Isa, Tan and Yatim, 2018). Although many 

equipment can be used as prime movers, internal combustion 

engines and gas turbines are currently the most attractive, 

since they have commercial advantages when compared to 

other components (Matelli & Goebel, 2018). 

Structural analyses of energy systems depend mainly on 

reliability concepts, which consider expected events to 
predict failure of components and, consequently, of the whole 

plant. However, the growth of failures due to unpredictable 

low-probability high-impact external events in the last years 

increased the structural vulnerability of these systems (Shen, 

Gut and Zhao, 2019). To evaluate the consequences of such 

events, a recent approach focused on resilience has been 

introduced.  

Resilience can be defined as the ability of the system to 

operate totally or partially at some functional level under 

scenarios before, during and after low-probability high-

impact events. It also includes its capacity to withstand and 

recover quickly from unexpected disruptions (Sandia 

National Laboratories, 2014). 

According to Hickford, Blainey, Hortelano and Pant (2018) 

and Francis and Bekera (2014), a resilient system must be 

able to absorb, adapt and recover from unpredictable 

situations. The absorptivity is related with the impact that the 

system can withstand before its partial or total disruption, as 

long as the recovery capacity is related to how rapidly the 

system can return to its partial or total functional operation 

after the event. The adaptation is the ability of the system to 

change some features in its structure in response to an adverse 

situation caused by an event, in order to continue its operation 

at some functional level. 
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As a relative new concept, there is no standard measurement 

framework for resilience in energy systems (Lin & Bie, 

2016). Some authors proposed metrics focused either on 

estimate resilience value, compare this parameter for 

different configurations and analyze the consequence of 
system disruption. As examples, Mehrpouyan, Haley, Dong, 

Tumer and Hoyle (2015) developed a comparative model 

with focus on features of components and the system; Yodo 

and Wang (2016) proposed a metric based on analytical 

methods taking into account characteristics of the disruption 

and system reliability; Martisauskas, Augutis and 

Krikstolaitis (2018) analyzed conditions since before the 

event, like threats and possible disruptions, until 

consequences in energy cost and supply to propose an 

security coefficient; Hossain, Jaradat, Hosseini, 

Marufuzzaman and Buchanan (2019) quantified absorptive, 

adaptive and restorative capacities in a Bayesian network and 
compared with a recovered lost production capacity to 

estimate system resilience. 

A previously framework was developed by Matelli and 

Goebel (2018), on which five resilience metrics were 

proposed through simulation of stochastic failures within a 

Monte Carlo-based assessment approach for four different 

configurations of cogeneration systems. Their results pointed 

to a convergence of all metrics to the same sequence of 

systems’ higher values of resilience. However, some 

characteristics related to repair probability of the components 

are also important to this quantification, as stated in Sandia 
Report (Sandia National Laboratories, 2014). The aim of the 

present work is to continue the development of this method 

of resilience quantification by considering the repair 

probability of the components, their repairing time and the 

plant downtime during the repair. We hypothesize that those 

parameters are strongly related to the system recovery 

capacity. Therefore, the contribution of this work is to 
propose new resilient metrics that should reflect this 

condition. 

2. METHODOLOGY 

2.1. Systems description 

As described by Matelli and Goebel (2018), four 

cogeneration systems (S#) were previously generated by a 

knowledge-based system (KBS) developed by Silva et al. 

(2014). The considerations required for this development are 

expressed in Table 1; Figures 1-4 illustrate the proposed 

plants. 

Table 1. Considerations required for systems development 

Parameter Value 

Local average temperature [ºC] 18 

Local altitude [m] 670 
Maximum power demand [kW] 1500 

Minimum power demand [kW] 900 

Electrical energy consumption [MWh] 28 

Chilled water demand [kW] 1407 

Daily operation [h/day] 24 

Weekly operation [days/week] 7 

Electric connection scheme Tied to the grid 

Chilled water storage No 

 

Figure 1. S#1: system based on one internal combustion engine generation 
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Figure 2. S#2: system based on two internal combustion engine generation 

As it can be seen, the capital difference between S#1 and S#2 

is the number of internal combustion engines (E) coupled to 

the respective generator (G), which is connected to a bus bar 

along with the external grid, meeting the previously requested 

power load. A heat exchanger (HEX) is used to produce hot 

water from the heat associated to the engine jacket water. The 

produced hot water feeds a single effect absorption chiller 

(HWAC), in order to produce enough chilled water as 

demanded. A radiator (R) is connected to the engine to keep 

it operating when the HWAC is off. A mechanical-driven 

chiller (MDC) can suit as supplement or backup. Lastly, a 

cooling tower (CT) rejects the heat released from both 

chillers. 

 

 

Figure 3. S#3: system based on one gas turbine generation 
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Figure 4. S#4: system based on two gas turbines generation 

 

As in the internal combustion engine-based systems, S#3 and 

S#4 also differ by the number of prime movers, in these cases 

a gas turbine (GT). GT is coupled to a generator (G), which 

feeds the bus bar along with the external grid, in order to meet 

the specified power load. GT exhaust gases reject heat in a 

heat recovery steam generator (HRSG), where steam is 

produced to feed a double effect absorption chiller (SAC), in 

order to meet the requested chilled water demand. A 

mechanical-driven chiller (MDC) can suit as backup. Finally, 
a cooling tower (CT) rejects the heat released from both 

chillers. 

Information about systems thermal performances can be 

found in Silva et al. (2014). 

2.2. Simulation framework 

The four cogeneration plants are modeled in software ‘C’ 

Language Integrated Production System (CLIPS), 

specifically designed to develop knowledge-based systems. 

Simulations of stochastic failure of components are 

performed with Monte Carlo approach, i.e., with several 

repetitions at the same conditions in order to verify standard 

operation responses for each configuration. 

The simulations proceed as follows: a non-failed component 

i is randomly chosen as a candidate to fail. A failure 

probability (pb) is randomly assigned and compared to a 

known probability of component normal operation (pi). If pb 

> pi, the component i fails, otherwise a new choice is made. 

In case of failure, all the components connected to the 

component i and to the propagated failed components are 

checked, in order to verify the failure propagation throughout 

the system. Failure propagation rule is illustrated in Figure 5. 

 

Figure 5. Failure propagation rule 

 

Once the failure propagation is verified, a repair probability 
(pcr) is randomly assigned and compared to a known non-

viability repair probability (pcnr). If pcr > pcnr, component i 

starts the repair process, otherwise it keeps failed until the 

end of the simulation. In repairing processes, the time spent 

in repair (ts) increases in a unity every hour of plant operation 

until it reaches the repair time (rt). Then, the component i and 

all the components that failed by propagation return to their 

non-failed condition. 

Considering all scenarios of failure throughout the 

simulation, the functional state of the system can be classified 

in three ways: 

• Normal: the system has no failed components and, 
therefore, meet power and chilled water demand 

completely; 
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• Resilient: the system has failed components, but it is still 

able to meet partially at least one of the demands; 

• Failed: the system can no longer generate power and 

chilled water. 

Based on these functional states, four time counters are 

proposed: 

• Normal time (nt): time in which the system operates in 

its normal state. It indicates operation with no failures 

when nt = T; 

• Resilient time (r): time counting for system resilient 

operation. It points to instantaneously system failure or 

normal operation when r = 0 and to resilient operation 

when 0 < r < t; 

• Downtime (d): time in which the system is failed and has 

repairing components. When a component is completely 

repaired and it consequently leads to a return to normal 

or resilient operation, d stops being counted. It indicates 

system with uninterrupted operation until failure or 

lifetime reach without repairment when d = 0; 

• Simulation time (t): System total operation time, 

including resilient, normal and downtime. System failure 

occurs when t < T and lifetime reach occurs when t = T. 

In order to illustrate the methodology proposed in this work, 

with all the time counters and processes described above, Fig. 

6 presents a flow chart of the simulation steps. 

 

 

Fig 6. Flow chart of proposed methodology 
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The simulation requires two parameters to start: system 

expected operation time, T, and number of simulations, N.  

The proposed modeling considers the following assumptions: 

• T = 8760 h, simulating a whole year of uninterrupted 

operation, and N is fixed in 3000 simulations, enough to 
stabilize the coefficient of variation (Matelli & Goebel, 

2018); 

• All the components have constants and time-

independent pi and pcnr; 

• Each component repairing time follows the values 

assumed in Table 2; 

• Failure propagation considers all the components 

connected to original failed one, regardless of the nature 

of the connection, with constant and time-independent 

propagation probability equal to 1; 

• Component functional state is either failed or normal, 

with no partial operation admitted. 

The value of pi is assumed to be 0.9995 as in Matelli and 

Goebel (2018), focusing on results comparison, as long as it 

was assigned three different values to pcnr: 1, 0.50 and 0.25. 

The first value is assigned to keep the simulation with no 

repair probability, in order to compare the results with the 

previously work; the second one intends to keep the 

component repairing at chance (i.e., the repairing success is 

no better than a flip coin); the third value leads to greater 

repair probability, which provides clearer information about 

the influence of the repairing success in the system resilience. 

Repair times shown in Table 2 were assumed considering 
components function in order to standardize proportional 

values. 

Table 2. Components repairing time 

Function 
Repairing 

time (h) 
Component 

Shaft work generation 100 
Turbine 

Engine 

Power generation 80 Generator 

Heat exchange 60 

Hot water absorption chiller 

Mechanical chiller 

Heat exchanger 

Steam absorption chiller 

Heat recovery steam generator 

Cooling tower 

Radiator 

Feeding 40 

Chilled water pump 

Hot water chiller pump 

Jacket water pump 

Cooling tower pump 

Condensate pump 

Structural 40 

Grid 

Bus 

Power load 

Chilled water load 

Gas line 

Water line 

Storage 30 Condensate tank 

2.3. Metrics for resilience quantification 

Considering the simulation framework previously described, 

two new metrics (vi and vii) are proposed in this work to 

complement the five metrics (i-v) developed by Matelli and 

Goebel (2018). 

i. Fraction of simulations with resilient operation (pr): ratio 

between the number of simulations k in which tk = T and 

0 < r < tk (Nr) and the total number of simulations N. It 

can be interpreted as the probability of the system to 

operate at resilient functional state. The higher pr, the 

higher the system resilience. 

 
lim r

r
N

N
p

N→

 
=  

 
 (1) 

ii. Resilient operating time ( r ): weighted average of the 

resilient operating time r for all Nr simulations, in which 

tk = T and 0 < r < tk. It indicates which system can operate 

in a resilient condition for longer periods. 

 

1

rN

r

k

kr

p
r r

N =

=   (2) 

iii. Time until failure ( f ): average time for all simulations 

k in which tk < T and rk < tk, i.e., all simulations that result 

in a total system failure before admitted lifetime (Nf). 

Higher value of this parameter indicate system with 

enhanced resilience. 

 

1

1 fN

k

kf

f t
N =

=   (3) 

iv. Fraction of simulations with completely failed operation 

(pf): relation between the number of simulations k in 

which tk < T and rk < tk (Nf) and the total number of 

simulations N. It can be interpreted as the probability of 

the system to fail. Systems with lower resilience exhibit 

high pf. 

 
lim

f

f
N

N
p

N→

 
=  

 
 (4) 

v. Normalized resilience index (ρ): an average operating 

time ( t ) is firstly calculated considering the system 

failure probability (pf) and its complementary value, as 

expressed in Eq. 5. Therefore, the parameter t  is a 

weighted average between the time in simulations in 

which the system fails completely and the time in 

simulations that result in operation until its admitted 

lifetime. Then, t  is normalized regarding T (Eq. 6). 

 (1 )f ft p f p T= + −  (5) 
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 t

T
 =  (6) 

The closer ρ is to the unity, the higher the system 

resilience. 

vi. Fraction of simulation with system recovery (pd): ratio 
between the number of simulations k in which tk = T and 

dk > 0 (Nd) and the total number of simulations N.  

 
lim d

d
N

N
p

N→

 
=  

 
 (7) 

A higher number of k simulations that result in system 

failure with recuperation (Nd) indicates a higher number 

of failures during the operation, but with high rate of 

successful repairs. In the limit case where all repairing 

actions are unsuccessful, the value of pd gets closer to pf 

when no repairing actions are taken, i.e., 𝑝𝑑 ≈ 𝑝𝑓 . 

Therefore, the higher the difference 𝑝𝑓 −pd, the higher 

the impact of repairing actions on the system resilience. 

vii. System downtime ( D ): weighted average of the plant 

downtime d for all k simulations with tk = T and dk > 0 
that result in system failure with recovery (Nd). It 

indicates how long the system remains failed before 

return to normal operation. Therefore, the lower this 

parameter, the higher system resilience.  

 

1

dN

d

k

kd

p
D d

N =

=   (8) 

3. RESULTS AND DISCUSSION 

Although thermal performance and system costs are not 

discussed herein, Silva et al. (2014) found that from that 

perspective, the preferred system choice would be S#1, 

followed by S#2, S#3 and S#4, respectively. Regarding 

initially proposed resilience metrics, the numerical results 

that Matelli and Goebel (2018) (represented in Table 3 as 

M&G) found in their work with simulations considering no 

repairing actions are compared with the results of this work 

considering pcnr = 1, i.e., also with no repairment. The 

comparisons are represented in Table 3. 

 

Table 3. Comparisons of results from Matelli and Goebel 

(2018) with this work with no repairing. 

Parameter/System S#1 S#2 S#3 S#4 

pr (M&G) 0.516 0.654 0.456 0.568 

pr 0.490 0.638 0.453 0.581 

r (M&G) 3188 4245 2890 3619 

r  3013 4097 2722 3635 

f  (M&G) 5057 5198 4849 5116 

f  5038 5317 4908 5049 

pf (M&G) 0.461 0.328 0.526 0.414 

pf 0.482 0.338 0.525 0.396 

ρ (M&G) 0.805 0.867 0.765 0.828 

ρ 0.795 0.867 0.769 0.832 

 

As it can be noted in Table 3, all the metrics in both works 

point to system S#2 as the most resilient, followed by S#4, 

S#1 and S#3, respectively. With no repairing actions, it is 

clear that redundancy is the most impactful factor in 

resilience value. 

The results of the seven metrics proposed in this work with 
pcnr = 0.25, 0.5 and 1 are shown in Figures 7-13. Compared 

to results represented in Table 3, values presented in these 

figures indicate that repairing actions increase system 

resilience, as expected. 

 

Fig 7. Variation of pr with different pcnr values 

 

Fig 8. Variation of r  with different pcnr values 
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Fig 9. Variation of f  with different pcnr values 

 

 

Fig 10. Variation of pf with different pcnr values 

 

 

Fig 11. Variation of ρ with different pcnr values 

 

 

Fig 12. Variation of pd with different pcnr values 

 

 

Fig 13. Variation of D  with different pcnr values 

 

All the configurations enhanced their probability of resilient 

operation, resilient operation time and resilience index with 

the addition of repair actions. It can be noted a decrease in 

probability of failure as well. It can also be observed a smaller 

difference between the maximum and minimum values of 

each parameter for all the proposed configurations. Resilient 

operating time, for example, exhibited variation of 46.9% and 

50.5% for results in previously work and this work, 

respectively, as shown in Table 3, while the variation of the 
same parameter in Figure 8 is 5.7%. It indicates that in 

addition to enhance the resilience of all configurations, 

repairing actions also improved proportionally more the 

systems with lower resilience, i.e., with no redundancies. It 

becomes clearer when metric vi is applied. The values of pf – 

pd are, in ascending order for pcnr = 0.5: 0.242 for S#2, 0.270 

for S#4, 0.359 for S#1 and 0.371 for S#3. It can be observed 

that the S#3 is the most affected system when repairing 

actions are taken, while S#2 is the least one. 

As the systems with redundancies presented greater 

resilience when repairing actions are disregarded, the 
improvement of resilience results in more simulations 

reaching tk = T, i.e., until system lifetime. On the other hand, 

systems with no redundancies are expected to enhance their 
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time until failure, although they do not reach their lifetime so 

often, once the lack of redundancy is a factor that has high 

influence in system performance. This can explain the fact 

that S#2 and S#4 had their time until failure hardly decreased, 

while S#1 almost suffered no oscillation and S#3 increased 

its value. 

With the increase of repair probability, there was an increase 

in the number of simulations with resilient operation, since 

component repairing success is more likely. It is also 

observed the improvement of resilience index and system 

downtime, although the last parameter do not present 

significant changes in S#3, which point to a system with no 

apparent resilience improvement. As the system with lowest 

resilience, S#3 seemed to reach its maximum with repair 

actions. 

Regarding resilient operating time, systems S#1, S#3 and S#4 

have this parameter increased. However, S#2 decreased its 
value with increasing repair probability, which can indicate a 

more normal time operation. This conclusion is also 

confirmed by the time until failure, which has increased, 

pointing to a system with more operating time. As S#2 is the 

most resilient one, it is expected that instead of enhancing its 

resilient operation time, the higher repair probability tends to 

increase its normal operation time. 

Different from the results of simulations without repair, there 

is no convergence on which system is the most resilient 

according to data exhibited in Figures 7-13. With pcnr = 0.5, 

metris i, iv, v and vii point to the same sequence from the 
most to the least resilient system as found by Matelli and 

Goebel (2018): S#2 -> S#4 -> S#1 -> S#3. Metric ii confirms 

that the systems with redundancies have greater resilience 

values, although it was affected by the higher proportional 

improvement of systems with lower resilience when no 

repairing actions are taken. 

However, iii diverges from the other metrics as it points to 

S#3 and S#1 as the most resilient ones, followed by S#4 and 

S#2, respectively. As discussed before, this can be caused by 

the increase of the number of simulations of systems with 

redundancies that reached lifetime. 

When pcnr = 0.25, metrics i, iv and v continued to point 
sequence S#2 -> S#4 -> S#1 -> S#3. Metric ii exhibited S#4 

as the most resilient, once S#2 decreased its resilient 

operation time, as previously discussed. Metric iii indicated 

S#3 as the one with highest resilience. The new metric vii 

pointed to S#2 as the most resilient and S#1 as the least 

resilient. The difference pf – pd proposed by metric vi showed 

smaller values compared to when pcnr = 0.5, although S#3 

seemed to be stabilized. This fact points to a high initial 

impact in resilience when repairing actions are taken, 

followed by a reduced impact when repair probability is 

enhanced. This difference showed that S#3 is the most 
affected system by repairing actions, followed by S#1, S#4 

and S#2, respectively. 

4. CONCLUSIONS 

Four cogeneration systems were developed via CLIPS and 

seven metrics for resilience quantification were proposed 

herein, with two of them considering components repairing 

time, a new analysis in this methodology. 

With no repairment, the first five metrics pointed to the same 

sequence of the most to the least resilient system. Four of the 

seven metrics in first simulation with repair pointed to S#2 as 

the most resilient system and S#3 as the least resilient one. In 

last simulation condition, with higher repair probability, there 

were also four metrics considering S#2 with higher resilience 

value and four of them pointing S#3 with the lowest.  

It became clear the importance of repairing in resilience of 

these systems. With repair actions, all the systems enhanced 

their resilience, being the higher proportional increases in 

those with lower resilience. In systems with no redundancy, 

repairment hardly improved all the values of the metrics, 
indicating to be a good alternative for resilience actions. This 

fact could be reiterated with application of metric vi, which 

pointed to S#3 and S#1 as those who suffered more impact in 

their resilience with the addition of repairment. 

Although S#1 exhibited higher thermal efficiency, S#2 

presented higher resilience in almost all metrics, therefore 

being the most resilient one. Any project that considers 

resilience as an important factor must focus on redundancy 

and repair actions, as it can be concluded by this work. 

ACKNOWLEDGEMENT 

To FAPESP – São Paulo Research Foundation, for financing 

through process 2018/02079-7. 

REFERENCES 

Francis, R., Bekera, B. (2014) A metric and frameworks for 

resilience analysis of engineered and infrastructure 

systems. Reliability Engineering and System Safety, vol. 

121, pp. 90-103. doi: 

https://doi.org/10.1016/j.ress.2013.07.004 

Hickford, A. J., Blainey, S. P., Hortelano, A. O., Pant, R. 

(2018). Resilience engineering: theory and practice in 

interdependent infrastructure systems. Environment 

Systems and Decisions, vol. 38, pp. 278-291. doi: 

https://doi.org/10.1007/s10669-018-9707-4 
Hossain, N. U. I., Jaradat, R., Hosseini, S., Marufuzzaman, 

M., Buchanan, R. K. (2019). A framework for modeling 

and assessing system resilience using a Bayesian 

network: a case study of an interdependent electrical 

infrastructure system. International Journal of Critical 

Infrastructure Protection, vol. 25, pp. 62-83. doi: 

https://doi.org/10.1016/j.ijcip.2019.02.002 

Isa, N. M., Tan, C. W., Yatim, A. H. M. (2018). A 

comprehensive review of cogeneration system in a 

microgrid: A perspective from architecture and 

operating system. Renewable and Sustainable Energy 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

10 

Reviews, vol. 81, pp. 2236-2263. doi: 

https://doi.org/10.1016/j.rser.2017.06.034 

Lin, Y., Bie, Z. (2016). Study on the resilience of the 

integrated energy system. Energy Procedia, vol. 103, pp. 

171-176. doi: 10.1016/j.egypro.2016.11.268 
Matelli, J. A., Goebel, K. (2018) Conceptual design of 

cogeneration plants under a resilient design perspective: 

Resilience metrics and case study. Applied Energy, vol. 

215, pp. 736-750. doi: 

https://doi.org/10.1016/j.apenergy.2018.02.081 

Martisauskas, L., Augutis, J., Krikstolaitis, R. (2018). 

Methodology for energy security assessment considering 

energy system resilience to disruptions. Energy Strategy 

Reviews, vol. 22, pp. 106-118. doi: 

https://doi.org/10.1016/j.esr.2018.08.007 

Mehrpouyan, H., Haley, B., Dong, A., Tumer, I. Y., Hoyle, 

C. (2015). Resiliency analysis for complex engineered 
system design. Artificial intelligence for engineering 

design, analysis and manufacturing, vol. 29, pp. 93-108. 

doi: 10.1017/S0890060414000663 

Sandia National Laboratories (2014). Conceptual framework 

for developing resilience metrics for the electricity, oil, 

and gas sectors in the United States. Sandia Report. 

Springfield, United States of America: Sandia National 

Laboratories. 

Shen, Y., Gu, C., Zhao, P. (2019). Structural vulnerability 

assessment of multi-energy system using a PageRank 

algorithm. Energy Procedia, vol. 158, pp. 6466-6471. 
doi: https://doi.org/10.1016/j.egypro.2019.01.132 

Silva, J. C., Matelli, J. A., Bazzo, E. (2014). Development of 

a knowledge-based system for cogeneration plant 

design: Verification, validation and lessons learned. 

Knowledge-Based Systems, vol. 67, pp. 230-243. doi: 

https://doi.org/10.1016/j.knosys.2014.05.002 

Yodo, N., Wang, P. (2016) Resilience allocation for early 

stage design of complex engineered systems. Journal of 

Mechanical Design, vol. 138, pp. 1-10. doi: 

10.1115/1.4033990 

Biographies  

Fellipe Sartori da Silva is a second-year 

PhD student in mechanical engineering 
with focus on energy transmission and 

conversion. He obtained a bachelor degree 

(2015) and a master degree (2018) in 

mechanical engineering from São Paulo 

State University (UNESP) in 

Guaratinguetá, Brazil. He covered molten 

carbonate fuel cell in his master thesis and are currently 

studying resilience in energy systems in his doctoral 

dissertation. He taught transport phenomena in undergrad 

(2017).  

José Alexandre Matelli is an associate professor at São 

Paulo State Universisty (UNESP), Brazil, since 2010. He 
obtained a bachelor degree in mechanical engineering (1998), 

a master degree in engineering and thermal sciences (2001, 

sandwich with KTH, Sweden) and a PhD, also in engineering 

and thermal sciences (2008), all from Federal University of 

Santa Catarina, Brazil. At UNESP, he is former deputy 

(2013-2015) and former head (2015-2017) of the Department 

of Energy; currently, he is member of the Board of Trustees. 

He teaches heat transfer, cogeneration and alternative energy 

sources for mechanical engineering (undergrad) and 

knowledge-based systems and heat transfer for grad students. 

His main research interest is the application of AI in the 
design of thermal systems, focusing in cogeneration, fuel 

cells, exergy analysis, system optimization and, more 

recently, resilient design. In 2017, he has been a visiting 

scientist at NASA Ames/TI/DaSH, where he developed a 

framework for resilient design of complex engineering 

systems. 

 


