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ABSTRACT 

Accurate pipe material strength estimation is critical for the 

integrity and risk assessment of aging pipeline infrastructure 

systems. To predict the strength without interrupting the 

serviceability of the pipeline, inference methods are used 

through the relationship between the bulk yield tensile 

strength and surface material properties from nondestructive 

testing, such as chemical composition, microstructure 

images, and hardness testing. In order to make the best of 

information provided by multimodality surface 

measurements, Bayesian model averaging (BMA) method is 

used in this paper to integrate the information from various 

types of surface measurements for a more accurate bulk 

strength estimation. The models being considered are 

constructed by randomly combining the multimodality 

surface measurements and each case of linear combinations 

is included. The models considered are assessed by assigning 

different weights based on the posterior model probability. 

Markov Chain Monte Carlo sampling provides an effective 

way for numerically computing the marginal likelihoods, 

which are essential for obtaining the posterior model 

probabilities. To avoid the risk of overfitting, BMA is 

implemented to account for model uncertainty. The 

predictive performance of a single model and BMA are 

compared by logarithmic scoring rule. The data collected 

from industry are used for demonstration and model 

predictive performance assessment. It is shown that the 

Bayesian model averaging approach can provide more 

reliable results in predicting the strength of the aging 

pipelines.  

1. INTRODUCTION 

For the pipelines installed decades ago, the mechanical 

properties decrease with time, such as yield and tensile 

strength. Failures may occur when these properties are below 

the critical levels. It is not an easy job to measure the 

mechanical properties onsite without disturbing the normal 

operations. In order to measure the mechanical properties of 

the pipelines, nondestructive testing is needed without 

destroying the serviceability of the pipeline part or system. 

Some indirect methods are proposed through the relationship 

between the yield strength and surface material properties 

such as chemical composition, microstructure volume 

fraction and hardness (Dahire, Tahir, Jiao, & Liu, 2018). 

Several models are proposed based on different material 

measurements (Bramfitt, 1998; Hashemi, 2011; Z. Li, 

Schmauder, & Dong, 1999). Each type of measurement 

contains certain amount of valuable information for pipe 

strength estimation. Also, they are all associated with 

different amount of uncertainties. Relying on a single model 

often leads to predictions that have good performance in 

some situations, but not others (Duan, Ajami, Gao, & 

Sorooshian, 2007). Therefore, it is highly needed to fuse 

multimodality information in a statistical meaningful way for 

more accurate estimation. 

The general method for ensemble of multiple models is to 

linearly combine individual model predictions according to 

different weighting strategies (Duan et al., 2007). The 

weights can be equal for all models in the simplest case. Also, 

they can be determined through certain regression-based 

methods. In this way the weights obtained are actually 

regression coefficients and hard to interpret since they take 

on arbitrary positive or negative values and cannot represent 

the performance of each model (A. E. Raftery, Gneiting, 

Balabdaoui, & Polakowski, 2005). Another method to 

calculate the weights of models is based on information 

criterion, for example, Akaike information criterion (AIC, 

AICc) and Bayesian information criterion (BIC). However, 

different information criterion may generate different 

preference ranks among models since the best model selected 

by either AIC or BIC can be distinctly different (Burnham & 

Anderson, 2004). Attention should be carefully paid for the 

choice of information criterion. Recently, Bayesian Model 

Averaging (BMA) has gained popularity in diverse fields, 

such as management science, medicine, and meteorology 
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(Duan et al., 2007; Guan, Jha, & Liu, 2011; G. Li & Shi, 

2010). BMA is an extension of the common Bayesian 

inference methods in which both parameter uncertainty and 

model uncertainty are estimated through obtaining posterior 

parameters and model posteriors using Bayes theorem. Thus, 

BMA allows for direct model selection, combined estimation 

and prediction (Fragoso, Bertoli, & Louzada, 2018). The 

BMA weights, all positive and summing up to one, reflect 

relative model performance due to the fact that they are the 

probabilistic likelihood measure of a model being correct 

given the observations. 

This study explores the use of BMA for strength predictions 

by fusing surface information of the aging pipelines. The 

models being considered are constructed by randomly 

combining the multimodality surface measurements from the 

nondestructive testing and each case of linear combinations 

is included. The weight assigned to each single model is 

achieved by Bayesian model regression and model posterior 

probability calculation. An ensemble model is obtained by 

averaging the candidate models. The predicted averaged 

strength distributions are compared with those of single 

models and the performance of BMA is evaluated. The paper 

is organized as follows. First, experimental data collected 

from industry are introduced. Candidate models are 

generated based on random combination of linear variables. 

Next, Bayesian model averaging approach is introduced. 

Several difficulties of implementing BMA in practice are 

illustrated in the context of strength estimation. Following 

that, the overall method is demonstrated using the models and 

data for aged pipelines. The usefulness of different surface 

information are analyzed. The advantages of the BMA are 

discussed based on the results. 

2. DATA AND MODELS 

2.1. Data 

Data are collected from a number of 20 existing aging gas 

pipes. The data of each pipe fall into 5 categories (Figure 1): 

yield strength, chemical composition, grain size, hardness 

and volume fraction. The yield strengths are measured from 

both surface indentation technique and tensile testing. The 

strengths from the surface measurements are close the 

experimental strengths but with some deviations. The 

chemical composition are measured in weight percentage 

using a portable spectrometer after 0.003 to 0.005 inches of 

surface grinding for phosphorus (P), chromium (Cr), copper 

(Cu), and silicon (Si). The grain sizes are measured at about 

0.005 inches from the surface and in mm. The Knoop 

hardness values are taken at 0.005 inches from the surface. 

The volume fraction is represented by percentage pearlite 

estimated by the lever rule using the carbon content at the 

surface. 

 

Figure 1. Data categories. 

 

2.2. Models 

In Ref. (Bramfitt, 1998), the yield strength of steel is 

expressed as the linear combination of chemical composition 

and grain size to the power -1/2. Ref. (Z. Li et al., 1999) 

predicts the yield strengths of two-phase steel by a linear 

model of volume fraction. Similarly, a linear prediction 

model of yield strength with hardness is proposed in Ref. 

(Hashemi, 2011). Based on these existing studies, a general 

model is proposed as 

 
1/2( , , , )T SYS YS f CC GS HD VF−− = , (1) 

where YST and YSS are yield strength measured by tensile 

testing and surface indentation technique, respectively, CC is 

chemical composition, GS is grain size, HD is hardness, and 

VF is volume fraction of pearlite. The function f (‧) is a linear 

model. Since YSS is close to YST, YSS is used as a reference 

for prediction of YST and the deviation between them is 

modeled as a function of CC, GS-1/2, HD, and VF. A total of 

7 variables exist in Eq. (1).  

Eq. (1) is a full model which contains all the variables but 

may not be the best model supported by the data. This is 

because simpler explanations are to be preferred unless there 

is sufficient evidence in favor of more complicated 

explanations (Gregory, 2005). Therefore, a class of models to 

be considered is the collection of all the counterparts of Eq. 

(1). These models are the reduced models of the full model 

together with the Eq. (1). In another words, the models 

considered are linear models of any variable CC (P, Cr, Cu, 

Si), GS-1/2, HD, and VF or any linear combination of these 

variables. 
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3. THEORY AND IMPLEMENTATION 

3.1. Bayesian model averaging 

Suppose there is a set of “reasonable” models M1, … , Mk for 

estimating a quantity μ from the set of data y. Instead of using 

one single model for reaching inference for μ, Bayesian 

model averaging constructs the posterior density of μ given 

data, π (μ | y), not conditional on any model. This is arrived 

at via the Bayes formula (Claeskens & Hjort, 2008; G. Li & 

Shi, 2010; Madigan & Raftery, 1994; A. E. Raftery et al., 

2005). 

With the prior information on parameter given the model, the 

integrated likelihood or marginal likelihood λn, j (y) for model 

Mj is expressed as 

 , ( ) ( | , ) ( | )n j j j j j jy f y M M d    =  , (2) 

where f (y | Mj, θj) is the likelihood of data given the model 

Mj and its parameters θj, π (θj | Mj) is the prior densities for 

parameters θj of model Mj. The marginal likelihood is larger 

for a model if more of its parameter space is likely and 

smaller for a model with large areas in its parameter space 

having low likelihood values. Thus, a simpler model with 

compact parameter space will have a larger likelihood than a 

more complicated model, unless the latter is significantly 

better explaining the data (van Haasteren, 2014). 

Using the Bayes theorem, the posterior density of the model 

is obtained as 

 

,
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where P (Mj) is prior probabilities for models M1, … , Mk 

under consideration. After computing the posterior density π 

(μ | Mj, y) of μ for each model assuming that Mj is true, the 

averaged posterior distributions weighted by posterior model 

probability is given by 

 
1

( | ) ( | ) ( | , )
k

j j

j

y P M y M y   
=

= . (4) 

Eq. (4) shows that the posterior density π (μ | y) is a weighted 

average and mixture of the conditional posterior densities, 

where the weights are the posterior probability of each model. 

By not conditioning on any given model, BMA avoids the 

mistake of ignoring model uncertainties. The BMA 

predictions receive higher weights from better performing 

models since the likelihood of a model is essentially a 

measure of the agreement between the model predictions and 

the observations. 

Before implementing BMA theory for model averaging, there 

exist the following difficulties and some points worthy of 

attention in practice: 

The marginal model likelihood λn, j (y) calculated according 

to Eq. (2) may be analytically intractable. In many cases, no 

closed form integral is available (Hoeting, Madigan, Raftery, 

& Volinsky, 1999; G. Li & Shi, 2010). Markov Chain Monte 

Carlo approach provides a way to overcome this problem. By 

drawing samples from the required distribution, the integrals 

in Eq. (2) can be evaluated. 

Another issue for BMA is the implementation of averaging 

according to Eq. (4) in practice. After a class of models is 

chosen, how to practically implement BMA shown in Eq. (4) 

remained unsolved. In this paper, the model averaging is 

achieved through the idea of mixture distributions (Claeskens 

& Hjort, 2008; Nguefack-Tsague & Zucchini, 2016).  

To judge the efficacy of BMA, a metric is needed for 

assessing and comparing the performance of BMA and the 

single models. The purpose of this study to predict the 

strength of aging pipes. Thus, the predictive performance can 

be used as a meaningful metric to assess a modeling strategy. 

The logarithmic scoring rule provides a measurement for the 

predictive ability. This rule compares the probabilities each 

model assigns to the events that actually occur (Hoeting et 

al., 1999; Madigan & Raftery, 1994; Piironen, Vehtari, & 

Computing, 2017; A. Raftery, Madigan, & T. Volinsky, 

2000). 

The above issues are discussed in the following parts of this 

section.   

3.2. Marginal likelihood calculation 

The integrals in Eq. (2) can in general be hard to compute. 

The MCMC method provides a stochastic method of 

obtaining samples which simulates a Markov chain 

converging to the posterior distributions. After some 

interaction steps, the chain converges and its state can then 

be used as samples from the desired distribution. Among 

many available MCMC algorithms, the Metropolis-Hastings 

algorithm is one of the popular methods (G. Li & Shi, 2010). 

For a basic introduction to Metropolis-Hastings algorithm, 

see Ref. (Chib & Greenberg, 1995). 

Once the samples of model parameters are drawn from their 

posterior distributions, the marginal likelihood can then be 

calculated. The following equations (Newton & Raftery, 

1994) are adopted in this paper 
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,1/ [ ( ) (1 ) ( | , )]n j j jiA y f y M  = + − , 

(5) 

where θji (i = 1, …, N) are randomly sampled from the 

posterior density π (θj | Mj, y) via MCMC sampling, N is the 

total number of samples θji drawn from the posterior 
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distribution for model Mj, δ is a small number (0.01 for 

example). 

3.3. BMA Implementation  

After the MCMC sampling, a set of parameters θji (i = 1, …, 

N)  are sampled from the posterior distributions of parameters 

of model Mj. Here N is the number of random samples from 

the posterior distribution of each parameter. Substituting each 

θji into the model, the distribution π (μ | Mj, y) of quantity of 

interest μ is obtained with the known values of variables. 

Next, Bayesian model averaging is performed by Eq. (4). The 

posterior density π (μ | y) for the averaged model is the 

mixture distribution of the single conditional posterior 

density π (μ | Mj, y). The mixture distribution based on the 

weight of each single model is achieved by the following 

steps.  

1. The distributions π (μ | Mj, y) form the columns of  a 

matrix A with dimension of N × k where k is the 

number of models considered. 

2. Taking a sample of the size N, b = (b1, …, bN), from 

the elements of vector (1, 2, …, k) randomly 

according to the probability weight. This series of 

sample b serves as the indexes for mixture 

distribution. 

3. The mixture distribution is obtained by drawing 

samples from matrix A according to the indexes 

from Step 2. The ith sample of π (μ | y) is extracted 

from the ith sample of π (μ | Mbi, y). 

 

An example of the above algorithm is given by a mixture of 

two normal distributions, N1 (0, 8) and N2 (20, 5). The 

weights for distributions N1 and N2 are 0.7 and 0.3 

respectively. Figure 2 shows the two single distributions and 

the mixture distribution. 

 

Figure 2. Mixture of two normal distributions. 

3.4. Predictive Performance 

 A primary purpose of statistical analysis is to make forecasts 

(A. Raftery et al., 2000). Thus, measuring how well a model 

predicts future observations is one way to judge the efficacy 

of the BMA strategy. For probabilistic predictions, there exist 

two types of discrepancies between observed and predicted 

values: predictive bias and lack of calibration (Claeskens & 

Hjort, 2008). The predictive bias shows a systematic 

tendency to predict on the low side or the high side. The lack 

of calibration shows a systematic tendency to over- or 

understate predictive accuracy. One measure of predictive 

ability is the logarithmic scoring rule (Piironen et al., 2017) 

which is a combined measure of bias and calibration. The 

smaller the predictive log score for a given model or model 

average is, the better the predictive performance is. 

 

The data are randomly split into two sets: build data (yB) 

which is used for Bayesian model regression and averaging, 

and test data (yT) used to measure the model performance. 

The predictive log score is related with expectation of 

posterior predictive distribution and expressed as (Madigan 

& Raftery, 1994) 

 
log [ ( | , )]

T

B
j

d y

E d M y


−  
(6) 

for each single model, and 

 
log [ ( | )]

T

B
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−  
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for BMA, where d is one of test data, π (d | Mj, yB) and π (d | 

yB) are the posterior predictive distribution for model Mj and 

BMA, respectively. For a single model, π (d | Mj, yB) can be 

obtained by (Hoff, 2009) 
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where f (d | Mj, θj) is the likelihood of the test data, and π (θj 

| Mj, yB) is the posterior density of θj given model Mj. After 

sampling θj1, θj2, … , θjN from π (θj | Mj, yB) through MCMC 

approximations, 
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Next, the log score is calculated by Eq. (6). For BMA, π (d | 

yB) is obtained by applying the method of mixture distribution 

in Section 3.3. Following that, the log sore of BMA is 

calculated from Eq. (7). 
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4. RESULTS AND DISCUSSION 

4.1. Results for full data 

The full data of 20 aging pipes for the chemical 

composition, grain size, hardness and volume fraction 

are used for the Bayesian model selection, averaging and 

variable analysis. The results are shown in 

Table 1. A total of 127 models are linearly constructed 

from the 7 variables (P, Cr, Cu, Si, GS-1/2, HD, and VF). 

Table 1 shows the top 10 models ranked by posterior 

model probability. The rankings are listed in the first 

column of 

Table 1. The best model YST - YSS = f (Cu, HD) with the 

posterior model probability of 0.169 accounts for 16.9% 

of the total probability, which is more than 3 times 

higher than that of the second best model. Another 

commonly used model selection method is Bayes 

information criterion (BIC) (Kuha, 2004; Schwarz, 

1978) based on the maximum likelihood estimation. For 

the best model, BIC selects the same model as the one 

with the highest posterior model probability. The BIC 

ranks are also listed in 

Table 1. 

Table 1. Model ranks and posterior probabilities for the full data. 

Model 

rank 
P Cr Cu Si GS-1/2 HD VF 

P 

(Mj|y) 

BIC 

rank 

1   •   •  0.169 1 

2  • • •  • • 0.056 30 

3  • • • • •  0.053 34 

4  • •  • • • 0.052 35 

5  •  • • • • 0.049 40 

6  • • •  •  0.044 11 

7 • •  •  • • 0.042 50 

8 •  •     0.038 3 

9 • • •   • • 0.036 54 

10 •  •   •  0.034 4 

Pr (Ai≠0) 0.34 0.66 0.83 0.42 0.33 0.84 0.39   

In 

Table 1, Pr (Ai≠0) is the probability that the coefficient Ai 

of a variable is non-zero. This is calculated by summing 

all the posterior probabilities of models which contains 

this variable. Pr (Ai≠0) is used as a metric of evaluating 

the usefulness of a variable. The variable with a higher 

probability tends to be more useful. From the bottom 

row of 

Table 1 it can be observed that the variables of best model 

(Cu and HD) have the highest probabilities that their 

coefficients are non-zero and show relatively strong 

predictive usefulness. The results provide positive evidence 

for Cr and indecisive evidence for P, Si, GS-1/2, and VF. 

4.2. Predictive performance 

The performance of BMA for predictions of pipe strength is 

assessed by randomly splitting the data from a total of 20 

aging pipes into two sets: build data (15 pipes) and test data 

(5 pipes). The log score serves as the measurement of 

prediction performance.  

  shows the results of models selection and averaging for a 

specific case of data splitting. The models listed in   are the 

top 10 models ranked by posterior model probability. The 

best model selected by both posterior model probability and 

BIC is the YST - YSS = f (Cr, Cu). The probability of the 

coefficients to be non-zero also show positive evidence for 

Cr and Cu. It should be noted that the model M2 which 

performs the best using the full data is ranked as the second 

(the third by BIC). This is because both in the subset and full 

set data case, there is no model showing paramount evidence 

based on the posterior model probabilities and thus 

substantial model uncertainty retains. 

Predictive log score are shown in  . BMA shows better 

predictive performance than the best model. The 

improvement can be understood in the following way. The 

log score of BMA is 0.4 less than that of the best. There are 

5 data in the test data set. Therefore the predictive probability 

of what is actually observed is [exp(0.4/5) -1] × 100% = 8.3% 
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larger for BMA than for best model M1. However, the model 

ranked as the second which is the best model for the full data 

performs better than the best model and BMA from the 

predictive point of view.  

In addition, Figure 3 shows intuitively the comparison of 

predicitve performances of the direct surface indentation 

technique, lowest BIC model, highest posterior probability 

model, and BMA. The error bars represent the 95% credible 

intervals. The dots with different shapes are the expectations 

of different models. On average, the error of each model is 

less than that of the sureface indentation technique. BMA 

shows better performance than the lowest BIC model and 

highest posterior probability model.  

To better compare and analyze the credible interval shown in 

Figure 3, the predictive distribution of each model is 

illustrated by taking the data with the largest strength in 

Figure 3 as an example and shown in Figure 4. It can be seen 

that the predictive distribution of BMA is wider than that of 

single best model selcted by BIC or posterior model 

probability. This is beacause that conditioning on a signle 

selected model ingnores model uncertainty. The best model 

in   accounting for only 18.9% of the total posterior 

probability, which shows that model unceratinty is 

substantial. Ingnoring model unceratinty can lead to the 

underestimation of standard deviation which makes decisions 

riskier (Hoeting et al., 1999; A. Raftery et al., 2000).  

In order to check that the above results are not due to the 

particular split used, the full data are randomly split for 100 

times and the average results are analyzed. Among the 

repeated experiments of 100 times, BMA have better 

predictive ability for 71 times. The average predictive log 

sores are 15.07 and 14.26 for the highest posterior probability 

model and BMA, respectively. On average BMA can predict 

the strength with an improvement of 17.6%.  

Table 2 . Model ranks and posterior probabilities for the split dada. 

Model 

rank 
P Cr Cu Si GS-1/2 HD VF 

P 

(Mj|y) 

Log 

score 

BIC 

rank 

1  • •     0.189 12.9 1 

2   •   •  0.065 11.8 3 

3  •      0.049 12.6 2 

4  •  • • • • 0.046 12.6 46 

5  • • •  •  0.044 12.3 16 

6  •  •    0.043 12.6 11 

7  •  •  • • 0.040 12.2 29 

8  •     • 0.038 13.1 10 

9  • • • • •  0.034 12.5 43 

10 •  •     0.032 11.8 13 

Pr (Ai≠0) 0.25 0.78 0.69 0.34 0.20 0.27 0.41  12.5  

 

 

Figure 3. Predictive performance comparison. 
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Figure 4. Predictive distributions. 

5. CONCLUSIONS 

Bayesian model averaging method is used for multimodality 

information fusion to estimate the probabilistic aging pipe 

strength. The basic theory and practical implementation of 

BMA are introduced. Each model considered to be averaged 

is assigned a weight according to its posterior model 

probability. BMA is implemented through distribution 

mixing. The predictive performance of BMA and the single 

model are evaluated and compared according to logarithmic 

scoring rule. Based on the current study, the following 

conclusions can be drawn. 

1. From the analysis of full data, the best model YST - YSS = f 

(Cu, HD) have the highest probabilities. The probabilities of 

coefficients being non-zero show relatively strong predictive 

usefulness for Cu and hardness, positive evidence for Cr and 

indecisive evidence for P, Si, grain size, and volume fraction. 

2. In the case of insufficient data, Bayesian model averaging 

has the advantages of improving the predictive ability by 

considering model uncertainty.  

Future work may concentrate on the other forms of model 

uncertainties. This paper considers model uncertainty due to 

variable selection by constructing linear models. BMA may 

extent to consider model uncertainties from the functional 

forms. Also, the likelihood for the data is assumed to be 

Gaussian distribution. The influence of different likelihood 

distributions can be further studied. 
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