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ABSTRACT 
Multivariate sensor data collected from manufacturing and 

process industries represents actual operational behavior 

and can be used for predictive maintenance of the plants. 

Anomaly detection and diagnosis, that forms an integral 

part of predictive maintenance, in industrial systems is 

however challenging due to their complex behavior, 

interactions among sensors, corrective actions of control 

systems and variability in anomalous behavior. Several 

statistical techniques for anomaly detection have been in 

use for a long time and are applied for anomaly detection 

in continuous as well as batch industrial systems.  Further, 

various machine learning and deep learning techniques for 

anomaly detection gained significant interest in the recent 

years. However, anomaly diagnosis that involves 

localization of the faults did not receive much attention. In 

this work, we compare the anomaly detection and diagnosis 

capabilities, in semi-supervised mode, of several statistical, 

machine learning and deep learning techniques on two 

systems viz. the interacting quadruple tank (IQT) system 

and the continuous stirred tank reactor (CSTR) system both 

of which are representative of the complexity of large 

industrial systems. The techniques studied include 

principal component analysis (PCA), Mahalanobis distance 

(MD), one-class support vector machine (OCSVM), 

isolation forest, elliptic envelope, dense auto-encoder and 

long short term memory auto-encoder (LSTM AE). The 

study revealed that MD and LSTM-AE have the highest 

anomaly detection capability, followed closely by PCA and 

OCSVM. The above techniques also exhibited good 

diagnosis capability. The study indicates that statistical 

techniques in spite of their simplicity could be as powerful 

as machine learning and deep learning techniques, and may 

be   considered for anomaly detection and diagnosis in 

manufacturing systems.  

 

1. INTRODUCTION  

Manufacturing and process industries such as iron & steel, 

power, oil & gas, refineries, pharmaceuticals, cement, 

paper, fine chemicals, etc. comprise of multiple operations 

and processes that take place in a sequential or parallel 

manner. These operations involve a wide range of 

industrial equipment such as furnaces, chemical reactors, 

steam turbines, gas turbines, bio-reactors, heat exchangers, 

boilers, condensers, compressors, blowers, fans, pumps, 

valves, etc. Extensive instrumentation of these industries 

led to the generation of massive amounts of data from 

various processes and equipment sensors, mobile and 

wireless logs, software logs, cameras, microphones and 

wireless sensor networks at a high frequency (Qin, 2014). 

This multivariate sensor data represents the true behavior 

of industrial plants under various operational states such as 

steady state operation, unsteady state operation, and 

different operational regimes. For this reason, industrial 

data can be used to perform predictive maintenance (or 

condition based maintenance or just-in-time maintenance) 

of industrial processes and equipment wherein 

maintenance is scheduled only when the health of the 

process or equipment falls below a certain threshold, 

leading to lower cost of inventory and maintenance.  

Predictive maintenance involves the following key steps – 

continuous monitoring of process/equipment using 

multivariate sensor data, anomaly detection & diagnosis 

(ADD), estimation of remaining useful life (RUL) of the 

anomalous unit or component in the plant, and scheduling 

of maintenance activities based on RULs of anomalous 

units or components. Anomaly detection refers to 

identification of atypical patterns in data that do not 

conform to a notion of normal behavior of a process or 

equipment. Anomaly diagnosis, also known as fault 

localization, aims to identify sensors contributing to the 

detected anomaly and to pinpoint the root cause of the 

anomaly (Chandola, Banerjee & Kumar, 2009).  

Anomalies in industrial data can be categorized into two 

types viz. ‘point anomalies’ and ‘contextual anomalies’. 

Point anomalies are those that can be considered 

anomalous with respect to the rest of the data (e.g. bias in 

sensor readings) whereas ‘contextual anomalies’ are those 

that are anomalous in a specific context but not otherwise 

(e.g. slow buildup of material in an equipment) (Chandola 

et al, 2009). Anomaly detection and diagnosis for industrial 

systems is a challenging task due to the complex behavior 

of processes and equipment, interactions among sensors, 
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corrective actions of control systems and variability in 

anomalous behavior.  

A number of data-driven techniques for anomaly detection 

in industrial data exist in literature. Chandola et al, (2009), 

surveyed different anomaly detection techniques based on 

underlying approach adopted by each technique and 

assessed the effectiveness of these techniques. A similar 

study by Goldstein and Uchida (2016) evaluated the 

efficacy of unsupervised anomaly detection algorithms for 

multivariate data. Qin (2009) applied principal component 

analysis (PCA) and its variants to identify faults in complex 

industrial processes and analyzed faults using Hoteling's T2 

and Q statistics.  Mujica, Rodellar, Fernandez, and Guem 

(2010) used PCA for damage assessment in aircraft 

structures.  Chen, Zang, Yuri, Shardt, Ding, Yang, Yang, 

and Peng (2017) compared the T2 and Q statistics for fault 

detection and process monitoring. Soylemezoglu and 

Jagannathan (2011) proposed Mahalanobis Taguchi 

System (MTS) based on Mahalanobis Distance (MD) for 

centrifugal pump failures wherein a fault detection, 

isolation, and prognostics scheme is presented. They 

generated fault clusters based on MD values and performed 

anomaly detection based on thresholds derived from 

clustering.   

Among machine learning techniques, one class support 

vector machine (OCSVM) is used for detecting anomalies 

in time-series data by projecting time-series data vectors on 

to phase spaces (Junshui & Perkins, 2003). Amer, 

Goldstein, and Abdennadher (2013) proposed OCSVM 

variants called robust OCSVM and eta-OCSVM that are 

particularly suited for unsupervised anomaly detection. De 

Souza, Granzotto, de Almeida, and Oliveira-Lopes (2014) 

used support vector machine (SVM) for classification and 

regression, and performed fault detection and diagnosis of 

a reactor of cyclopentenol production and non-isothermal 

continuous stirred tank reactor (CSTR) process. 

Samanazari, Ramezani, Rajabi and Chaibakhsh (2015) 

used OCSVM for fault detection in a power plant Once-

Through Benson Boiler. Liu, Ting, and Zhou (2012) 

investigated the capability of isolation forest (IF) to handle 

extremely large data size and high dimensional problems 

with a large number of irrelevant attributes, and how 

isolation forest can be used for detection of scattered and 

clustered anomalies.  

Deep learning techniques, especially autoencoders (AE), 

also demonstrated their effectiveness in unsupervised 

anomaly detection.  Sakurada and Yairi (2014) used a deep 

autoencoder for feature learning and reconstruction of 

nonlinear multidimensional data for anomaly detection. 

Tagawa, Tadokoro, and Yairi (2014) used structured 

denoising autoencoder for anomaly detection and 

performed contribution analysis of variables in anomalies. 

Yan and Yu (2015) used denoising autoencoder for 

unsupervised representation learning and detected 

abnormalities in a gas turbine combustor. LSTM 

autoencoder is also used for anomaly detection in time 

series data, leveraging its ability to memorize temporal 

patters in sensory data (Malhotra, Vig, Shroff & Agarwal, 

2015).   

While there exist plenty of techniques for anomaly 

detection, techniques for anomaly diagnosis are very 

limited. Alcala and Qin (2011) analyzed the diagnosability 

of five PCA-based diagnosis techniques, and proposed and 

demonstrated the efficacy of ‘relative contributions’ for 

better diagnosis on simulated data. Identification of sensors 

or variables contributing to a detected anomaly is easier 

than explaining the root causes of anomalies, which usually 

requires inputs from domain experts. This could be reason 

for limited attention received by data-driven anomaly 

diagnosis techniques.  

The anomaly detection techniques discussed above have 

their own distinctive approach to detecting anomalies, and 

strengths & weaknesses. Statistical techniques such as PCA 

& MD can handle hundreds of variables but assume linear 

relationships among variables and are not specifically 

designed to handle contextual anomalies that occur in 

temporal industrial data. Machine learning techniques, on 

the other hand, can model complex nonlinear behaviors but 

cannot handle too many variables due to their higher 

computational requirement. Further, deep learning 

techniques can model relationships that are even more 

complex and detect contextual anomalies but are 

computationally intensive for large number of variables.  

Each of these techniques is, however, applied to a wide 

variety of industrial systems and there is no literature, to 

the authors’ knowledge, where the capability of these 

techniques is compared on an equal footing by using them 

for anomaly detection on the same system. This motivated 

us to compare the applicability and capability of data-

driven statistical, machine learning and deep learning 

methods for anomaly detection and diagnosis on the same 

industrial system. The techniques chosen for the study 

include PCA, MD, OCSVM, IF, Elliptic Envelope (EE), 

Dense Autoencoder (Dense-AE) and Long Short Term 

Memory Autoencoder (LSTM-AE). These techniques are 

evaluated on two systems viz. the interacting quadruple 

tank (IQT) and the continuous stirred tank reactor (CSTR), 

both of which are representative of the complexity of large 

scale industrial systems.  

The rest of the paper is organized as follows. Section 2 

describes both the industrial systems and data generation 

from the same. Section 3 explains the techniques used and 

the approach adopted for anomaly detection and diagnosis. 

Results from the experiments are discussed Section 4 and 

the conclusion is presented in Section 5. 

2. INDUSTRIAL SYSTEMS  

2.1 Interacting Quadruple Tank (IQT) 

The interacting quadruple tank is a well-known benchmark 

multi-input multi-output (MIMO) system that consists of 

four interconnected tanks with two pumps and a reservoir 
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as shown in Figure. 1 (Ozkan, Kara & Arici, 2017). The 

objective of this process is to maintain the level of the 

bottom two tanks (Tanks 1 & 2) at desired set points by 

manipulating the voltage input to both pumps. The inputs 

to the IQT system are the voltage supply to the pumps, the 

outputs are the level measurements from the bottom two 

tanks, and measured variables are the level measurements 

of all four tanks and input voltage to the system. It is an 

interacting system where effect of one input is reflected on 

all other variables. The system has multiple operating 

points and corresponding responses.  

 
Figure 1. Schematic layout of IQT system 
 

𝐴1
𝑑ℎ1

𝑑𝑡
=  −𝑎1√2𝑔ℎ1 + 𝑎3√2𝑔ℎ3 + 𝛶1𝑘1𝑣1               (1) 

𝐴2
𝑑ℎ2

𝑑𝑡
=  −𝑎2√2𝑔ℎ2 + 𝑎4√2𝑔ℎ4 + 𝛶2𝑘2𝑣2              (2) 

𝐴3
𝑑ℎ3

𝑑𝑡
=  − 𝑎3√2𝑔ℎ3 + (1 − 𝛶2)𝑘2𝑣2                      (3) 

𝐴4
𝑑ℎ4

𝑑𝑡
=  − 𝑎4√2𝑔ℎ4 + (1 − 𝛶1)𝑘1𝑣1                      (4) 

where,  

Ai: cross-sectional area of ith tank  

hi: water level of ith tank  

ai: cross-sectional area of the outlet pipes of ith tank  

𝛶i: value ratio of ith valve position  

ki: pump constant of ith pump 

 

 
Figure 2. Trends of variables in IQT system showing 

normal & faulty operation 

 

For this study, the model equations of the IQT system (Eqs. 

1 to 4) are simulated using Xcos (Scilab), an open source 

software environment used for modelling & simulation, to 

generate operational data. Frictional losses in the IQT 

system are considered to be negligible. Normal operation 

(consisting of start-up, set point up and down, shut down) 

as well as faulty operation of the system are simulated. 

A total of 11 different process operations were simulated 

and corresponding data consisting of 8 variables is 

recorded at sampling frequency of 1/sec for a duration of 3 

hours. The response time of the IQT system is ~1.5 secs 

and the sampling frequency of 1/sec is sufficient to capture 

the system dynamics in both normal and faulty operation. 

Out of the 11 scenarios, three correspond to faulty 

operation while eight correspond to normal operation. 

Normal operation includes operation at various normal 

modes/regimes that occur due to changing set points. The 

faults introduced in the system include clogging of valves 

and leakage in one of the tanks.  Figure. 2 shows the trends 

of scaled data from the IQT variables for a period of 3 

hours. V1 and V2 are the input voltages of Pump1 and 

Pump2 respectively. H1, H2, H3 and H4 are the levels of four 

tanks, and F1 and F2 are the water flow rates. ‘Labels’ 

indicates the type of operation with ‘0’ and ‘1’ referring to 

normal and faulty operation respectively.  

 2.2 Continuous Stirred Tank Reactor (CSTR) 

The continuous stirred reactor system (Martin, 1995), 

forms an integral part of several manufacturing and 

chemical process industries such as oil and gas, fine 

chemicals, etc. The system studied here comprises of a 

CSTR in which a generalized catalytic first order 

exothermic reaction A → B takes place.  The process is 

non-isothermal and the temperature in the reactor is 

maintained by indirect heat exchange with cool water 

flowing through a cooling coil. The system has one input 

feed stream, which is a mixture of solute (FA) and solvent 

(FS), one output stream emanating from the reactor and one 

water stream (FC) as shown in Figure. 3 (Yoon & 

MacGregor, 2001).  

This system is also a MIMO system with highly nonlinear 

system dynamics. From a control perspective, the objective 

of the process is to maintain the composition and 

temperature of the reactor outlet stream. The outlet stream 

composition and temperature can be maintained by 

modulating the manipulated variables viz. FC and FA 

respectively. A conventional PID control strategy is used 

to control the yield and temperature of the system. Both the 

control loops interact with one another, making the system 

more difficult to control.  The system also has several 

measured disturbances such as solute concentration (CAA), 

solvent composition (CAS), solute flow rate (FS), 

temperature of the reactor inlet stream (T0) and temperature 

of inlet water flow rate (TC) as well as unmeasured 

disturbances such as poisoning of the catalyst and fouling 

of the cooling coil. 
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Figure 3. Schematic layout of CSTR with feedback 

control system 

 

For this study, the model equations of CSTR system (Eqs. 

5 to 6) are simulated using Xcos for 14 different operating 

regimes and corresponding data consisting of 7 variables is 

generated with a sampling frequency of 1/sec  for a total 

duration of 2.5 hours. The response time of the IQT system 

is ~ 1 sec and the sampling frequency of 1/sec is sufficient 

to capture the system dynamics in both normal and faulty 

operation. Data is generated for normal operation as well 

as faulty operation. While normal operation consists of 

start-up, shut down, and set point change by the operator, 

faulty operation consists of initiation and propagation of 

faults such as bias in outlet temperature sensor 

measurement (F#1), bias in inlet temperature sensor 

measurement (F#2), bias in inlet reactant concentration 

(F#3), catalyst poisoning (F#4) and cooling coil fouling 

(F#5).  

 
𝑑𝐶𝐴

𝑑𝑡
=  

𝐹

𝑉
𝐶𝐴0 −  

𝐹

𝑉
𝐶𝐴 − 𝑘0𝑒−

𝐸

𝑅𝑇𝐶𝐴                                (5) 

 

𝑉𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
=  𝜌𝑐𝑝𝐹(𝑇0 − 𝑇) −  

𝑎𝐹𝑐
𝑏+1

𝐹𝑐+
𝑎𝐹𝑐

𝑏

2𝜌𝑐𝑐𝑝𝑐

(𝑇 − 𝑇𝑐,𝑖𝑛) +

(−𝛥𝐻𝑟𝑥𝑛)𝑉𝑘0𝑒−
𝐸

𝑅𝑇𝐶𝐴                         (6) 

 

where,  

CA, CA0: outlet and inlet concentrations of the species ‘A’ 

F, Fc: molar flow rates of inlet stream and coolant 

V: volume of the reaction mixture in the tank 

k0: pre-exponential rate kinetics constant 

E: activation energy of the reaction 

R: universal gas constant 

T, Tc,in: reaction and coolant temperatures 

𝜌, 𝜌c: densities of the mixture and coolant  

 cp, cpc: specific heat capacities of the reaction mixture and 

coolant 

𝛥𝐻𝑟𝑥𝑛: heat of reaction 

 

Figure. 4 shows the trends of scaled data from the CSTR 

variables for a period of 2.5 hrs. Cin and Cout are measured 

inlet and outlet concentrations, Tin and Tout are inlet and 

outlet temperatures, Tc is coolant (water) temperature, Fs is 

flow rate of solute A and Fc is flow rate of water.  

 
Figure 4. Trends of variables in CSTR system showing 

normal & faulty operation 

 
3. ANOMALY DETECTION & DIAGNOSIS  
As mentioned in Section 1, seven techniques viz. PCA, 

MD, OCSVM, IF, EE, Dense-AE and LSTM-AE are used 

for anomaly detection in this study. Each of the techniques 

is used in a semi-supervised mode, i.e. the technique is used 

to model only the normal behavior of the system, where it 

has worked smoothly without any faults, to obtain an 

‘anomaly detection model’. This model is then used to test 

if any other operational data falls within or outside the 

threshold of normal behavior by means of an anomaly 

score. Anomaly diagnosis, i.e. identification of sensors 

contributing to the anomaly is carried out only for 

anomalous operational data. Diagnosis is performed using 

three of the techniques viz. PCA, MD & LSTM-AE. For 

each technique, the score used for detecting anomalies and 

the method used for diagnosing the anomalies are shown in 

Table 1.  

 

Table 1. Anomaly Scores and Diagnosis Methods 

Technique 
Score used for 

Anomaly Detection 

Anomaly Diagnosis 

Method 

PCA Hoteling's T2 
Complete decomposition 

contributions (CDC) to T2 

MD MD 
One-variable substitution 

method 

OCSVM 
Distance to separating 

hyperplane 
- 

IF 
Average path length 

from root node 
- 

EE 
Negative Mahalanobis 

Distance 
- 

Dense-AE 
Reconstruction Error 

(RE) 
- 

LSTM-AE RE RE of individual sensor 

 
For PCA technique, the Hoteling’s T2 statistic is used as the 

anomaly score and the complete decomposition 

contributions (CDC) to T2 are used for anomaly diagnosis 

(Alcala & Qin, 2011). For MD technique, the Mahalanobis 

distance itself is used as the anomaly score. A novel method 

of substituting each variable from the anomalous instance 
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into the nearest normal instance, recalculating the MD and 

identifying the variables with the highest substituted MD 

as ‘contributors to the anomaly’ is used for anomaly 

diagnosis.  

The OCSVM technique maps the original data into a high 

dimensional space and learns a decision function to 

represent the normal data. A hyperplane in the mapped 

space separates the majority of the data from the origin and 

points that lie on the other side of the hyperplane are 

identified to be anomalous. OCSVM therefore uses the 

distance of each point to the hyperplane as the anomaly 

score.  

IF is an isolation-based method and works differently from 

methods that employ distance or density based metrics. It 

isolates instances by randomly selecting a feature and split 

value between the range of selected feature. Path length is 

the number of splits required to isolate a sample from root 

node to leaf node. This path length is shorter for anomalous 

data compared to that for normal data. Hence, when a forest 

of random trees collectively produces shorter path lengths 

for particular samples, they are classified as anomalies. 

Average of path lengths of an input vector from root node 

in all trees in the forest is used as the anomaly score (Liu et 

al, 2012).  

The EE technique assumes that the data follows a known 

distribution (e.g. Gaussian distribution). It finds the 

possible covariance between feature dimensions in 

multivariate data and fits an ellipse to the central data 

points. The data points far enough from the fitted ellipse 

are classified as anomalies. Negative Mahalanobis distance 

of input vector from ellipse boundary is used as the 

anomaly score (Rousseeuw and Driessen, 1999).  

Autoencoder is an artificial neural network composed of 

two feed-forward neural networks known as encoder and 

decoder where the input layer of encoder and output layer 

of decoder have the same dimension. While the encoder 

learns the encodings of input data and transforms it into a 

latent space, the decoder brings back data from the latent 

space to the original data space. This procedure is known 

as reconstruction of input data. Long short-term memory 

networks are special type of recurrent neural networks 

(RNNs) widely used for time series data. A traditional 

neural network considers all instances of input data to be 

independent of each other and cannot make use of 

sequential information. LSTMs have an edge over 

conventional feed-forward neural networks in 

remembering long term dependencies in data by making 

use of previous hidden state information in addition to the 

current input provided through input layer.  In LSTM, the 

information flows through a mechanism known as cell 

states. The flow of information in memory cell is regulated 

by input, output and forget gates.  

In the Dense-AE technique, regular neurons are used in the 

autoencoder while in the LSTM-AE technique, LSTM cells 

are used in the autoencoder. In both the autoencoders, 

reconstruction error (RE) of input data, i.e., squared 

difference between reconstructed data and original data is 

used as the anomaly score. For anomaly diagnosis, the 

reconstruction error of individual sensors is compared 

against the corresponding thresholds. Sensors whose RE 

exceeds their corresponding thresholds are identified as 

anomalous sensors (Zope, Nistala & Runkana, 2018). The 

anomaly detection and diagnosis approach in this work 

consists of two phases viz. training phase and testing phase.  

3.1 Training Phase 

The sequence of steps followed in the training phase are 

shown in Figure. 5.  

 

 

Figure 5. Sequence of steps in the training phase 

 

Selection of Data 

For both the systems, normal data where the system has 

worked smoothly without any anomalies is considered as 

training data to build the anomaly detection model. 20% of 

training data is used as validation data for determining of 

thresholds of the anomaly scores. The data apart from 

training data is designated as test data. The training data is 

first subjected to data pre-processing, where start-up and 

shutdown periods are removed, and sensor measurements 

are z-normalized using the mean and standard deviation of 

the training data. For the IQT system, the number of 

training instances is 4900, and test data consists of 5400 

normal instances and 1200 faulty instances. For the CSTR 

system, the number of training instances is 4500, and test 

data consists of 4500 normal instances and 1000 faulty 

instances.  

Development of Anomaly Detection Model 

As mentioned earlier, the normal operational data from 

each system is used for building the anomaly detection 

models. These models are of the form 

𝑌𝑖 = 𝑓𝑘(𝑋𝑖)                                   (7) 

where  

Yi is the anomaly score 

Xi is the input data vector 

fk is the functional form linking to Xi to Yi for the kth 

anomaly detection technique 

Hyper-parameter tuning is performed for the techniques to 

obtain optimal values of hyper-parameters and the best 

possible anomaly detection models. For PCA, the number 

of principal components explaining 95% of variance is 

considered. For OCSVM, RBF kernel was used. 

Parameters, gamma & nu are tuned in the ranges 1-9 to 13 

and 0.01 to 0.2 (incremented by a factor of 10) respectively. 

In IF, the number of base estimators is tuned in the range 

80 to 200 in increments by 10; the proportion of outliers 

(contamination) in the dataset was optimized in the range 
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0.1 to 0.20. For EE, the proportion of outliers 

(contamination) is optimized in the range 0.05 to 0.30.  

In the Dense-AE, three dense layers are stacked in the 

encoder and the decoder. Similarly, in the LSTM-AE, three 

LSTM layers are stacked in the encoder and the decoder. 

Learning rate, batch size and window size (for LSTM-AE 

only) are the hyper-parameters considered while tuning AE 

models. Learning rate represents the rate at which weights 

in the network are updated. Learning rates of 10-2, 10-3, 10-

4, 10-5 are used. Considering the dynamics of the systems 

and data size, batch sizes are set at 32, 100 and 250, and the 

window size (number of time steps in each window) is set 

at 4, 10, 20 and 30 for LSTM autoencoder. Batch size is 

number of instances used at once for weight updation. Each 

AE model is trained for a maximum of 300 epochs. The 

mean squared error of reconstruction is computed after 

each epoch and training is terminated if the mean squared 

error did not improve for certain number of epochs (early 

stopping) to prevent overfitting on training data. The 

optimal values of hyper-parameters obtained for various 

anomaly detection models are shown in Table. 2.  

Table 2.Optimal hyper-parameters for anomaly detection 

models 

Technique 
Optimal Hyper-parameters 

IQT System CSTR System 

PCA # of PCs: 7 # of PCs: 6 

MD None None 

OCSVM 
Gamma: 0.1 

Nu: 0.11 

Gamma: 0.1 

Nu: 0.01 

IF 
# of estimators: 90 

Contamination: 0.15 

# of estimators: 80 

Contamination: 0.15 

EE Contamination: 0.1 Contamination: 0.05 

Dense-AE 
Batch size: 32 

# of neurons: 4 

Batch size: 32 

# of neurons: 2 

LSTM-AE 

Window size: 4 

Batch size: 32 

# of LSTM cells: 250, 128 

Window size: 30 

Batch size: 32 

# of LSTM cells: 250, 250 

 

Identification of Anomaly Score Thresholds  

For the PCA technique, the threshold for T2 statistic is 

obtained from the Chi2 test. For MD, OCSVM, IF, EE, 

Dense-AE and LSTM-AE techniques, the thresholds for 

anomaly scores are estimated as µ + kσ where µ and σ are 

the mean and standard deviation of anomaly score for the 

validation data, and k is a real number chosen such that 

anomaly scores for 99% of validation data is within µ + kσ.  

3.2 Testing Phase 

The sequence of steps followed in the testing phase are 

shown in Figure 6.  

 

 

Figure. 6 Sequence of steps in the testing phase 
 

Anomaly Detection 

The anomaly detection models built during the training 

phase are used for detecting anomalies in the test data that 

consists of normal as well as anomalous data instances. For 

each technique, the anomaly score obtained for each 

instance is compared against the corresponding anomaly 

score threshold. Instances for which the anomaly scores 

exceeds the corresponding threshold are categorized as 

‘anomalous’.  

 

Anomaly Diagnosis 

Anomaly diagnosis is performed for each anomalous 

instance to identify the subset of sensors contributing to the 

anomaly. The methods shown in Table 1 are used to 

conduct anomaly diagnosis using PCA, MD and LSTM-AE 

techniques. Results from anomaly diagnosis are compared 

against the known ‘ground truth’ to evaluate the efficacy of 

various diagnosis methods.  

 

4. RESULTS & DISCUSSION  

For both the IQT and CSTR systems, receiver operating 

characteristic (ROC) curves for each anomaly detection 

technique are obtained by varying the anomaly score 

thresholds and computing the true positive rate (TPR) and 

false positive rate (FPR) on the test data. Each point on the 

ROC curve represents a classifier (i.e. anomaly detection 

model with a specific anomaly score threshold) with the 

corresponding TPR & FPR values; the classifier 

corresponding to TPR ~ 1 and FPR ~ 0 (top left corner) is 

the perfect classifier. The area under the ROC curve (AUC) 

is a measure of the efficacy of classification performance 

(in this case, anomaly detection performance). The AUC is 

higher for the ROC curves approaching the perfect 

classifier.  

The ROC curves for the IQT and CSTR systems are shown 

in Figure. 7 & 8 respectively. The AUC values (expressed 

as a percentage) for each anomaly detection technique and 

both the systems are shown in Table 3. From Figure. 7 and 

Table 3, it can be observed that for the IQT system, LSTM-

AE demonstrated the highest anomaly detection capability 

followed by PCA, MD and OCSVM with almost similar 

AUC values. From Figure. 8 and Table 3, it can be 

observed that for the CSTR system, MD & EE 

demonstrated the highest anomaly detection capability, 

followed closely by LSTM-AE and OCSVM.  

 

 
Figure. 7 ROC curves for anomaly detection techniques 

for IQT system 
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Figure. 8 ROC curves for anomaly detection techniques 

for CSTR system 

 

Table 3. AUC Scores 

System PCA MD OCSVM IF EE 
Dense-

AE 

LSTM-

AE 

IQT 94.8 94.2 94.6 89.8 93.1 91.3 98.3 

CSTR 89.5 98.0 96.4 93.4 97.5 95.3 97.1 

 
Color Code: Highest AUC, 2nd Highest AUC, 3rd Highest AUC, 4th Highest AUC 

 

Various anomaly detection metrics viz. accuracy, 

precision, recall, F1-score, false positive rate and missed 

detection rate (MDR) for the anomaly detection models 

built during the training phase are shown in Tables 4 and 5 

for IQT and CSTR systems respectively. MDR and FPR 

are key metrics for industrial anomaly detection models. 

MDR refers to the number of actual faults that are not 

detected and should be as low as possible, particularly for 

industrial systems that need to be tightly controlled or 

prone to runaway faults with serious consequences. Here, 

it may be noted that MDR = 1 – TPR (or 1 – Recall). FPR 

refers to faults that are detected but do not exist (i.e. false 

alarms). Higher FPR mandates operators to take corrective 

action when it is not needed that may drive the system in 

an undesirable direction. Therefore, FPR should also be as 

low as possible (Tien, Lim & Jun, 2004). Other metrics 

such as accuracy, precision, recall and F1-score should be 

as high as possible.  

 

Table 4. Anomaly detection metrics for IQT system 

Technique Accuracy P R  
F1-

score 
FPR MDR 

PCA 0.92 0.77 0.78 0.78 0.05 0.22 

MD 0.90 0.59 0.83 0.69 0.09 0.17 

OCSVM 0.93 0.74 0.83 0.78 0.06 0.17 

IF 0.83 0.78 0.52 0.63 0.05 0.48 

EE 0.84 0.91 0.53 0.67 0.02 0.47 

Dense-AE 0.89 0.50 0.85 0.63 0.10 0.15 

LSTM-AE 0.86 0.26 0.93 0.41 0.14 0.07 

P: Precision, R: Recall (or TPR), MDR: Missed Detection Rate (= 1 – TPR) 

Color Code: Best value of metric, 2nd best value of metric, 3rd best value of metric 

 

From Table 4, it can be observed that for the IQT system, 

LSTM-AE has the lowest MDR, followed by Dense-AE, 

MD and OCSVM, while IF and EE have highest MDR. In 

terms of FPR, EE has the lowest value, followed by IF, 

PCA and OCSVM. Figure. 9 depicts the MDR values for 

the 7 techniques plotted against the corresponding FPR 

values. From the figure, it can be observed that MD, 

OCSVM and Dense-AE techniques fall in the quadrant 

with acceptable MDR (< 0.2) & FDR (< 0.1) thresholds. It 

may noted that the three techniques have high values of 

accuracy and F1-score and reasonable values of precision.  

 

 
 

Figure. 9 MDR vs FPR for IQT system (yellow box 

indicates quadrant with acceptable thresholds) 

 

For the CSTR system, it can be observed from Table 5 that 

Dense-AE has the lowest MDR followed by LSTM-AE, 

OCSVM and MD while IF and EE once again have the 

highest MDR. In terms of FPR, EE and MD have the lowest 

values followed by OCSVM. Fig. 10 depicts the MDR 

values for the 7 techniques plotted against the 

corresponding FPR values for this system. It can be 

observed from the figure that MD, PCA, OCSVM, Dense-

AE and LSTM-AE fall in the quadrant with acceptable 

MDR (< 0.2) & FDR (< 0.06) thresholds. Further, these 

techniques have high values of accuracy, F1-score and 

precision.  

Table 5. Anomaly detection metrics for CSTR system 

Technique Accuracy P R  
F1-

score 
FPR MDR 

PCA 0.92 0.76 0.81 0.78 0.05 0.19 

MD 0.96 0.96 0.85 0.90 0.01 0.15 

OCSVM 0.96 0.85 0.93 0.89 0.03 0.07 

IF 0.86 0.81 0.59 0.68 0.05 0.41 

EE 0.85 0.97 0.55 0.70 0.01 0.45 

Dense-AE 0.95 0.77 0.95 0.85 0.05 0.05 

LSTM-AE 0.95 0.80 0.93 0.86 0.05 0.07 

P: Precision, R: Recall (or TPR), MDR: Missed Detection Rate (= 1 – TPR) 

Color Code: Best value of metric, 2nd best value of metric, 3rd best value of metric 

 

 
Figure. 10 MDR vs FPR for CSTR system (yellow box 

indicates quadrant with acceptable thresholds) 
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The trend of anomaly scores obtained from the anomaly 

detection models from each of the techniques for the IQT 

and CSTR systems are shown in Fig. 11 & 12 respectively. 

The ‘Labels’ plot in Fig. 9 & 10 indicates the ground truth 

where the label value of ‘0’ indicates normal data and the 

label value of ‘1’ indicates anomalous data. 

 
Figure. 11 Trend of anomaly scores from different 

anomaly detection techniques for IQT system (dotted 

lines indicates anomaly score thresholds) 

 

 
Figure. 12 Trend of anomaly scores from different 

anomaly detection techniques for CSTR system (dotted 

lines indicates anomaly score thresholds) 

 
From Fig. 11, it can be observed that the anomaly scores 

from all the techniques crossed their respective thresholds 

at the anomalous events around time periods of 3000, 6000 

and 9000. This indicates that all the techniques are able to 

identify the anomalies introduced in the IQT system. It 

should, however, be noted that the separation between 

scores for normal & faulty instances and number of false 

positives (score crossing the threshold even for normal 

instances) are different for different techniques. On similar 

lines, it can be observed from Fig. 12 that the anomaly 

scores from almost all the techniques crossed their 

respective thresholds at the anomalous events around time 

periods of 3200, 5000, 6700 and 8200. This indicates that 

the techniques are able to identify the anomalies introduced 

into the CSTR system. However, in this case as well, the 

separation between scores for normal & faulty instances 

and number of false positives is different for different 

techniques. 

 

The performance of anomaly diagnosis methods associated 

with PCA, MD and LSTM-AE techniques for IQT and 

CSTR systems is summarized in Tables 6 & 7 respectively. 

From Table 6, it can be observed that for each fault in the 

IQT system, the key variables (top 2 or top 3 variables) 

identified to be responsible from the three techniques are in 

line with the ground truth. It should be noted that apart from 

the variables actually responsible for the anomaly, the 

diagnosis techniques identified few additional variables. 

This may be attributed to the interactions among the 

variables due to which the effect of original faulty variables 

gets reflected in various other variables. Similarly, from 

Table 7, it can be observed that the three diagnosis methods 

correctly identified the key variables responsible for each 

of the faults introduced in the CSTR system. This indicates 

that the three techniques have strong diagnosis capability 

w.r.t faults in industrial systems.  

Table 6. Diagnosis of faults in IQT system 

Fault 
Period of 

fault 

Variables 

indicative of 

fault (Ground 

Truth) 

Anomaly Diagnosis 

Technique 
Variables 

identified 

Clogging 

of Valve 1 

2700 to 

3100 
V1 

PCA V1, (F1)* 

MD V1, (F1) 

LSTM-RE V1, (F1) 

Clogging 

of Valve 2 

5800 to 

6200 
V2 

PCA V2, (F2) 

MD V2, (F2) 

LSTM-RE V2, (F2) 

Leakage 

in Tank 1 

8900 to 

9300 
V1, V2 

PCA 

V1, V2, 

(F1, F2, 

H4) 

MD 
V1, V2, 

(F1, F2, 

H4) 

LSTM-RE 
V1, V2, 

(F2) 
*Variables shown within ( ) are additional variables in which fault signature is 

reflected 

Table 7. Diagnosis of faults in CSTR system 

Fault 
Period of 

fault 

Variables 

indicative 

of fault 

(Ground 

Truth) 

Anomaly Diagnosis 

Technique 
Variables 

identified 

Bias in Outlet 

Temperature 

1500 to 

1700 
Fc 

PCA Fc, (Tout) 

MD Fc, (Tout) 

LSTM-AE Fc, (Tout) 

Bias in Inlet 

Temperature 

3200 to 

3400 
Tin 

PCA Tin, (Cout) 

MD Tin, (Cout) 

LSTM-AE Tin 

Bias in Inlet 

Concentration 

4900 to 

5100 
Cin 

PCA Cin, (Cout) 

MD Cin, (Cout) 
LSTM-AE Cin 

Catalyst 

Poisoning 
6600 to 

6800 
Fc, Fs 

PCA Fc, Fs, (Tout) 
MD Fc, Fs, (Tout) 

LSTM-AE Fc, Fs, (Tout) 

Cooling Coil 

Fouling 
8300 to 

8500 
Fc, Tout 

PCA Fc, Tout 
MD Fc, Tout 

LSTM-AE Fc, Tout 
*Variables shown within ( ) are additional variables in which fault signature is 

reflected 
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The comparative study of statistical, machine learning and 

deep learning based anomaly detection techniques revealed 

that there is no single best technique for all industrial 

systems. This is understood given the fact that industrial 

systems exhibit a wide range of operational behavior and 

experience simple as well as complex anomalies. Further, 

the efficacy of anomaly detection depends, other than the 

chosen technique, on the number and location of sensors 

used, the quality of training data, the severity of anomalies 

and the extent of corrective control action on the system. 

However, by applying all the anomaly detection techniques 

on the same systems, it is identified that simpler statistical 

techniques such as MD possess comparable anomaly 

detection capability as that of machine learning techniques 

(e.g. OCSVM) and deep learning techniques (e.g. LSTM-

AE). This is the key outcome of this study. Further, 

anomaly diagnosis methods based on MD, PCA and 

LSTM-AE provided similar results. It should be noted here 

that none of the techniques, except LSTM, explicitly learnt 

the temporal patterns (i.e. the techniques consider the data 

points to be unrelated in time) and yet are able to 

successfully detect contextual anomalies in the two 

systems considered in this study. The ability of these 

techniques to detect and diagnose contextual anomalies 

needs to be tested further using other complex industrial 

systems, possibly involving multiple operating regimes.  

Statistical anomaly detection models (e.g. MD or PCA-

based models) can be developed with little computational 

effort. They can be built using limited data as well as large 

amounts of data, and are highly scalable (i.e. they can be 

easily extended to hundreds of variables). However, such 

techniques typically assume linear relationships among 

variables (though there are nonlinear variants of PCA) and 

may not perform well when applied to industrial systems 

involving highly nonlinear dynamics. On the other hand, 

ML/DL based anomaly detection models (tree, kernel or 

neural network-based models) can be used to learn 

nonlinear behavior of industrial systems. However, they 

require considerable computational effort and resources 

(e.g. GPUs for training deep learning models). They also 

necessitate large amounts of data to prevent overfitting and 

for learning hyper-parameters. Majority of the time, more 

data leads to improved generalizability of ML/DL models. 

Further, ML/DL models do not scale easily as large number 

of variables lead to large computational time.  

In this context, it may be advantageous to combine the 

strengths of statistical techniques with those of ML/DL 

techniques for anomaly detection and diagnosis in 

manufacturing and process industries that involve large 

number of variables and exhibit nonlinear behavior. 

Statistical techniques can be used either to corroborate the 

results from other complex techniques or in conjunction 

with ML/DL techniques in an ‘ensemble’ anomaly 

detection and diagnosis framework.  

5. CONCLUSION 

In this work, we compared the capabilities of various 

statistical, machine learning and deep learning techniques 

for anomaly detection and diagnosis on an interacting 

quadruple tank system and a continuous stirred tank reactor 

system. We studied the anomaly detection performance of 

PCA, MD, OCSVM, IF, EE, Dense-AE and LSTM-AE in 

semi-supervised mode. Empirical studies on two industrial 

datasets demonstrated that MD and LSTM-AE have the 

highest anomaly detection capability, followed by PCA and 

OCSVM. For detected anomalies, variables responsible for 

each of the anomalies are diagnosed using PCA, MD and 

LSTM-AE techniques. All three techniques provide very 

similar diagnosis results on both datasets. This study helped 

conclude that statistical anomaly detection and diagnosis 

techniques deliver results comparable to more complex 

ML/DL techniques, and may be therefore considered 

alongside ML/DL techniques for anomaly detection and 

diagnosis in manufacturing and process industries.  
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