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ABSTRACT 

Effective fault feature extraction is the key of fault diagnosis. 
In previous works, it is shown that some embedding methods 
and unsupervised deep learning methods have the ability to 
extract fault features from raw signals directly, such as PCA 
and deep autoencoder. Particularly, deep autoencoder has 
been shown in relevant research that it can effectively extract 
the hidden ‘trend’ associated with machinery health states 
which can be used directly for online anomaly detection and 
prediction. However, in practical online fault diagnosis, the 
discrimination between successive signals is small due to the 
slow degradation progress and the external noise. Therefore, 
it is important to optimize the feature extraction process to 
achieve better online fault tracking. In this paper, a 
regularized deep clustering algorithm is proposed to guide the 
optimization process of feature extraction which combines 
embedding method and semi-guided learning. A 
regularization term for the cluster center points is proposed 
to make the feature optimization converge in a monotonic 
linear trend. In order to verify the effectiveness of the 
method, an accelerated gearbox run-to-failure experiment is 
carried out. The result shows that the feature optimization 
method can optimize the fault features on the basis of the 
deep autoencoder algorithm in two aspects: a better 
distinction of the fault features in short term and a more 
consistent trend of the gear wear in the long term. 

1. INTRODUCTION 

Gears are widely used in mechanical power transmission, as 
one of the most important rotary machines. The research of 
gear fault diagnosis is a popular topic. Many different gear 
fault analysis methods have been researched and proposed in 

literature. In the past few, many research were focused on 
time frequency domain analysis and traditional signal 
processing methods. Several preeminent methods such as 
EMD(empirical mode decomposition), Wigner-Ville 
distribution, ICA (Independent Component Analysis), cyclic 
statistical processing, have been proved to be effective for 
processing gear signals, which are highly non-linear and 
nonstationary (Ricci et  al., 2012 and Žvokelj et al., 2016). 
However, in practice, the application of these methods often 
requires complex professional knowledge and is not 
conducive to the automation of gear fault diagnosis. 

In the past few years, many intelligent methods based on 
data-driven methods have been proposed, which only require 
data collection with sensors form different periods of 
machinery running stages. Those methods do not require the 
professional knowledge of the specific mechanical systems. 
Therefore, it is possible to achieve on-line health monitoring 
of gear status. Among the intelligent methods, deep learning 
methods have shown exceptional performance. Sun et al. 
(2018) utilized stack sparse autoencoders-based deep neural 
network for network establishing and then performed with a 
supervised fine-tuning process for classification of bearing 
faults. Similar types of methods with unsupervised network 
initialization and supervised fine-tune have been proved very 
successful in many fault diagnosis tasks (Chen et al., 2017; 
Lu et al., 2017). Shao et al. (2018) utilized deep autoencoder 
and proposed ensemble deep auto-encoders (EDAEs) for 
intelligent fault diagnosis of bearings.  It trained DAEs model 
with different activity functions and the learned features are 
fed into Softmax classifiers for accurate and stable fault 
classification based on a combination strategy. With the use 
of ensemble learning, the method was more effective and 
robust than the existing intelligent diagnosis methods. Yu et 
al. (2018) combined the merit of different activation 
functions in a joint learning fashion and propose a joint 
multiple reconstructions autoencoder (JMRAE) for fault 
diagnosis.  It was shown that more discriminative and robust 
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scale-specific feature representations at different scales were 
learned. All of the above researches used Autoencoder to get 
the feature representation and utilized classifiers for fault 
classification. Jiang et al. (2018) proposed an intelligent fault 
diagnosis method to automatically identify different health 
conditions of wind turbine gearbox. The method focused on 
the multiscale feature learning of complex vibration signals. 
Shao et al. (2018) proposed a convolutional deep belief 
network (CDBN) with Gaussian visible units to learn the 
representative features of bearing fault and utilized 
exponential moving average to improve the performance of 
the constructed model. Wen et al. (2018) proposed a new 
CNN based on LeNet-5, and applied the CNN model to the 
fault diagnosis. The proposed methods were tested on three 
datasets, including motor bearing dataset, self-priming  
centrifugal pump fault diagnosis dataset, and axial piston 
hydraulic pump fault diagnosis dataset. The results 
outperformed other DL and traditional methods. Pan et al. 
(2018) proposed a new network called LiftingNet for fault 
classification from raw mechanical data which also utilized 
CNN model. In addition to the CNN model, the application 
of RNN model is also popular in the field. Zhao et al. (2018) 
proposed local feature-based gated recurrent unit networks 
(LFGRU) for machine health monitoring. The method 
combined GRU network and Softmax/Regression Layer for 
bearing fault classification. Besides GRU, the LSTM 
network has also used in the relative researches (Li et al., 
2018; Hinchi & Tkiouat, 2018). In the above studies with 
CNN or RNN, the methods all belong to supervised deep 
learning method. Such methods usually require large number 
of training data for different systems and different types of 
faults. In many cases, the faulty historical data is hard to 
obtain. Moreover, supervised models generally have poor 
generalization capability. The model obtained by network 
training upon one dataset can hardly be useful for other 
dataset or other machines. Although transfer learning has also 
been studied for this purpose (Sun et al., 2019), the 
application is still quite limited. 

The study of gear condition detection and fault diagnosis is 
mainly divided into three parts: (1) Acquisition of condition 
information, (2) Feature extraction and feature representation, 
(3) Pattern recognition and classification. It is found that in 
the past research, the pattern recognition and classification is 
the main research direction, as shown in the above literature 
review. However, the application of supervised deep learning 
model is limited in practical situations. On the contrary, 
existing research on the other key point -- feature extraction 
are quite limited. In the paper, unsupervised feature learning 
method will be investigated and feature extraction is the main 
task in our work.  

It is proved in our previous work (Qu et al., 2019) that 
autoencoder has the ability to effectively extract the hidden 
‘trend’ associated with machinery health state which can be 
used directly for online anomaly detection and prediction. 
However, in practical online fault diagnosis, the 

discrimination between successive signals is subtle due to the 
slow evolving progress of the fault and the masking noise. 
Therefore, it is important to optimize the features extracting 
process to achieve online fault feature learning. Clustering is 
one of the major data mining methods.  It aims to measure the 
spatial distance between samples.  As an unsupervised 
method, it explores the intrinsic connection of data.  

In this paper, deep embedded clustering method (DEC) (Xie 
et al., 2016) is firstly used to extract and optimize gear fault 
features unsupervisedly and a regularization of the cluster 
center points is proposed to make the feature optimization 
process converge in certain trends. The intuitive of the 
proposed improved DEC method with a regularization term 
lies in that the fault deterioration should contain an intrinsic 
trend. Assuming the trend is linear, we can potentially use 
this information with unsupervised methods to learn a more 
accurate embeddings for the fault features, and therefore 
enable unsupervised online fault diagnosis and prognosis. 

The rest of the paper is organized as follows. Section 2 
introduces the method of DEC and the regularization method. 
Section 3 presents the experimental work. Section 4 gives the 
results and discussion. Section 5 concludes the paper. 

2. DEEP EMBEDDED CLUSTERING (DEC) 

For the purpose of completeness, we will give a brief review 
of the DEC method first. DEC is a method combining deep 
embedding and clustering. Embedding is a nonlinear 
mapping from high dimension space to low dimension space. 
In the embedding space, the relationship can be more obvious, 
which is the merit of using embedding method. In this paper 
stack Autoencoder is chosen as the embedding method, 
which is shown in Figure 1. In the DEC method (Xie et al., 
2016), the soft clustering and self-learning are the key points. 

 
Figure 1. The structure of Stack Autoencoder. 

2.1. Soft Clustering  

In the DEC method, K-means is opted as the clustering 
method. Soft clustering method, as its name implies, do not 
use hard label criteria, but allocated label according to 
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percentage probability (weight). K-means can also be used 
with soft clustering method. The essence is the Gaussian 
mixture model, and the method for its training process is EM 
(Expectation Maximization) algorithm. The distinct feature 
of soft clustering is that the distance between sample and each 
center point is calculated by a similarity method. It should 
also be pointed out that in deep clustering method, the 
clustering process is conducted on the embedded space, not 
on the original space. Embedded space belongs to low-
dimensional space. In low-dimensional space, t-distributed 
stochastic neighbor embedding (t-SNE) method proposed by 
Hinton et al. (2006) is used to measure the distance between 
points y, as shown in Eq. (1): 

 𝑞",$ =
(1 + ‖𝑦" − 𝑦$,

-)/0

∑ (1 + ‖𝑦2 − 𝑦3‖-)/0	253
 (1) 

Generally, the probability distribution of high-dimensional 
data is Gauss distribution, so the distance between points x in 
original space 𝑝",$  as in Eq. (2): 

 𝑝",$ =
exp	(−‖𝑥" − 𝑥$,

-/2𝜎-)
∑ exp	(−‖𝑥2 − 𝑥3‖-/2𝜎-)	253

 (2) 

In soft clustering, Eq. (1) is changed to Eq. (3) when t-SNE 
is used to calculate the distance between the embedding point 
and the center point. 

 𝑞",$ =
(1 + ‖𝑧" − 𝜇$,

-)/0

∑ (1 + ‖𝑧" − 𝜇$,
-)/0	$@

 (3) 

where 𝑧"  represents ith embedded space sample point, or 
mapping space sample point, 𝜇$ represents the jth clustering 
center. 

2.2. DEC Target and Training 

Another key point of DEC is the application of self-learning, 
and the focus of self-learning is to find a target distribution p, 
which is related to the current distribution q as in Eq. (3), 
optimize q according to p, and then re-calculate p, and 
continue to optimize until the termination condition is met, 
thus forming a self-learning method. According to the need, 
target p should achieve the following three goals: (1) the 
accuracy of clustering needs to be improved; (2) put more 
emphasis on data points assigned with high confidence; (3) 
making the probability sum of 1, that is to say, it needs to be 
normalized. Thus, the target distribution p is written as 
follows (Xie et al., 2016): 

 𝑝",$ =
𝑞",$- /𝑓$

∑ 𝑞",$B- /𝑓$B	$@
 (4) 

where 𝑓$ = ∑ 𝑞"$" . 

The Eq. (4) utilizes 𝑞",$-  square term, according to function 
property of quadratic function in range [0, 1], if 𝑞",$ is small, 

then 𝑞",$-  will be smaller, if 𝑞",$ is large, then 𝑞",$-  will be larger, 
and the larger 𝑞",$   lead the change of greatly, which can 
achieve the goal of improving the accuracy of clustering. 

Target distribution p is recalculated after each iteration of 
training, so termination conditions need to be set: iteration 
stops when less than l % of the points change the category. 
The Kullback-Leibler (KL) divergence is used to measure the 
loss function. The equation is as follows: 

 𝐿 = 𝐾𝐿(p‖𝑞) =EE𝑝"$
$"

𝑙𝑜𝑔
𝑝"$
𝑞"$

 (5) 

The structure of DEC is shown in Figure 2 (Xie et al., 2016): 

 
Figure 2. The structure of DEC. 

The whole network training process is divided into two parts: 
the first part is the initialization process of embedded layer 
parameters, which is initialized by stack autoencoder to form 
the embedded network; the second part is clustering 
optimization by using the self-learning method.  

Detailed illustration of the DEC method can be found in (Xie 
et al., 2016). 

2.3. Regularization of the Cluster Center Points 

The main purpose of DEC method is to improve the accuracy 
of clustering, by increasing the degree of discrimination 
between sample categories. It is often impossible to guarantee 
the original trend of features. However, unsupervised 
methods often need to extract features with a certain 
regularity for analysis, rather than just for differentiation. 
Therefore, adding regularization term could enforce the 
clustering optimization to be carried out in a certain direction. 
In this paper, a regularized constraint method for clustering 
center points is proposed, which is illustrated next. 

In the training process, if the clustering center can present a 
linear relationship, the embedding feature can show 
progressive relationship in at least some dimensions, because 
the clustering centers determine the general position of the 
sample points of each cluster it contains. It should be noted 
that if the dimension of the last embedded layer is too high, 
the network training might fail or be difficult to be 
constrained due to large number of constraints during 

Initialize parameters 
using SAE 

Clustering 

Target 
Distribution 

Update 
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training. In order to simplify the difficulty of constraints and 
prevent the failure of training network parameters, the 
dimension of the last layer in the autoencoder network layer 
is set to 2. The loss function of DEC is redefined as follows: 

 𝐿 = ∑ ∑ 𝑝"$$" 𝑙𝑜𝑔
IJK
LJK
+ 𝛼 ·C (6) 

 𝐶 = E(
𝜇"Q0,0
𝜇",0

−
𝜇"Q0,-
𝜇",-

)-
R/0

"S0

 (7) 

In Eq. (6), the first term is the loss function of the original 
DEC, the second term is the regularization term of the cluster 
center.	𝛼 is the regularization parameter of clustering center, 
N is the number of clustering clusters. By the regularization 
of the second term, the clustering center point can be trained 
toward a linear relationship. 

The gradient equations for the parameters of the training 
network is given below. The Stochastic Gradient Descent 
(SGD) is used for training. The first part is the optimization 
of DAE parameters, which is not discussed in details here. 
The second part is the process of clustering optimization. The 
parameters need to be initialized by a standard K-means 
clustering algorithm. The gradients of parameters (𝑧" and 𝜇$) 
are shown as follows: 

 

𝜕𝐿
𝜕𝑧"

=EU1 + ‖𝑧" − 𝜇$,
-
V
/0

$

 

· (𝑝"$ − 𝑞"$)(𝑧" − 𝜇$) 

(8) 

 

𝜕𝐿
𝜕𝜇$

= −EU1+ ‖𝑧" − 𝜇$,
-
V
/0

"

 

· W𝑝"$ − 𝑞"$XW𝑧" − 𝜇$X + 𝛼
𝜕𝐶
𝜕𝜇$

 

(9) 

The added constraint has no effect on Eq. (8) because it 
contains only the parameters of the central point, and in Eq. 
(9), 𝜇$ should be calculated. In the study, the deep learning 
framework of Python 3 + Keras is used. Keras can calculate 
and update gradient directly without manual calculation. 

3. EXPERIMENT SETUP 

In order to validate the improved DEC method, gear fatigue 
wear experiment was carried out. 

3.1. Experiment Test Rig 

The experiment was performed on the test rig shown in 
Figure 3. It consists of a single-stage gearbox and two 45Kw 
Siemens PH8 series motors. One motor is used as a driving 
motor and the other one is used as a load to form a closed-
loop experimental device, which is more efficient than the 
traditional open-loop gear experimental test rig. In the 
experiment, industrial lubricating oil was added into 
lubrication based cooling system. 

The transmission ratio of the gear system is 1.8:1, the key 
parameters of the gear are shown in Table 1 and the 3D figure 
of the gear is shown in Figure 4. 

 
 

Figure 3. The gearbox Test Gig. 

 
Figure 4. 3D model of the Gear. 

Table 1. The main parameters of gears 

Gear Parameter Driving Gear Driven Gear 
Tooth number 40 72 
Module  3mm 3mm 
Pitch diameter 120mm 120mm 
Base circle diameter 112.763mm 202.974mm 
Pressure angle 20° 20° 
Tooth width 85mm 85mm 

3.2. Fatigue Wear Experiment 

In the experiment, gearbox was run about 8 hours a day with 
44 days of data collection. We collected the gear vibration 
signals periodically. More frequent data collections were 
made in late period of the experiment. There are a total of 101 
data acquisition made. In order to speed up the wear properly, 
the total amount of lubricating oil was reduced by 1/3 in the 
gearbox, and experiment was carried out with an input speed 
of 1200 rpm and an output torque of 200Nm. The vibration 
signals were collected with a sampling rate of 20.48 KHz. 

For gear health state tracking, data acquisition and analysis 
are generally carried out in a  consecutive manner. Generally, 
when the fault is small, it is difficult to distinguish the data 
collected within short intervals. In practical application, 
intelligent diagnosis is needed to reduce human intervention. 
Therefore, this paper proposes to use DEC to learn features 
intelligently to gain insight into online fault trending. 

Motor 1 

Motor 2 

Gearbox 

Lubrication 
and cooling 

system 
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Throughout 44 days of experiment, it was obvious to observe 
the failure frequencies from the spectrum of the signals in the 
later stage of the experiment,. A selected 3  spectrums 
(acquisition No. 5, 38, and 61) of the z direction vibration 
signals were shown in Figure 5. It can be seen from the Figure 
5 that there is no significant change in the spectrums of the 
first two spectrums, but there are clear fault frequencies in the 
spectrum of acquisition #61, acquired on the 37th day. In 
order to validate the proposed method in early wear detection, 
four acquisitions were selected as test data with acquisition # 
18, 27, 30, 35, as shown in Table 2. The data acquisitions 
were made on 18th, 27th, 29th, 31st day, respectively. 

 

 

 
Figure 5. Spectrum of 3 acquisitions. 

Table 2. Details of acquisitions used in evaluation 
Time Acquisition # Total duration (unit: h) 
1 18 179 
2 27 274 
3 30 300 
4 35 328 

To enhance the performance of the unsupervised method, we 
use the frequency domain signals obtained by Fast Fourier 
Transform (FFT), to generate input samples for DEC, and 
each sample has1000 dimensions. 

4. RESULTS AND DISCUSSION 

4.1. Result Analysis 

In this session, we present the results of the improved DEC 
method as well as the shallow method PCA and the Deep 
Autoencoder method. The results for 4 selected data are 
marked as #1 to #4 in chronological order, each data 
including 670 samples. 

Figure 6 shows the result of PCA, with the first two principal 
components as the selected features. The proportion of the 

two principal components represent 27% of the full 
representations based on eigenvalues. It can be seen from 
Figure 6 that PC1 has a certain upward trend, but there is little 
difference between cases #1 and #2, while PC2 is a chaotic 
feature, which has no distinction for #1 to #4 cases. 

 
Figure 6. Two dimensions of features obtained from PCA. 

In the next test, a stacked autoencoder was designed  with 
structure of 1000-1000-20-2. Figure 7 shows the results of 
stacked autoencoder. Feature1 has an obvious grading 
regularity while Feature 2 has low differentiating degree on 
case #1 to #4.  

The result of the original DEC is shown in Figure 8. It can be 
seen that the features exacted from each cluster is generally 
more stable than sparse autoencoder (SAE), since it 
optimized toward clustering performance.   

The result of the improved DEC was shown in Figure 9, it 
can be seen that Feature 1 present a much cleaner feature 
compared with SAE and original DEC. If we look at the 
visual separation capability of case 1 and case 2 
(corresponding to sample number 1-670, and 671-1340, 
respectively), the trend obtained from improved DEC is 
better than that of the original DEC.  Samples from 4 different 
cases can be more clearly separated by looking at feature 1. 
While for Feature 2, DEC method also obtained an obvious 
trend for cases #1 to #4. In terms of fault level separation, 
cases #1 and cases #2 can be differentiated from cases #3 and 
cases #4, which have more severe wear faults.  Therefore, 
feature 2 could potentially help to achieve more robust fault 
diagnostic results. Quantitative results will be discussed later. 

It should be noted that the features extracted by the 
embedding algorithm are of no explicit physical meaning, 
they represent the evolving trend of some hidden features in 
the signals. While the machine operation condition remains 
the same, the time evolving trend indicate the health status of 
the machines. Therefore, although the features extracted from 
SAE and DEC generally show a downward trend, they still 
represent an increasing wear of gearbox components.  



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

6 

 
Figure 7. Features obtained from deep SAE. 

 
Figure 8. Features obtained from original DEC. 

 
Figure 9. Features obtained from improved DEC. 

Overall, the improved DEC method has a better performance 
on feature optimization than other unsupervised deep 
learning method. To further quantify the performance of DEC, 
the final results of K-means are shown in Table 3. A standard 
unsupervised evaluation metric – accuracy is used for the 
evaluation and comparison. The accuracy is defined as the 
follows (Ahmed & Khan, 2012): 

 𝐴𝐶𝐶 = max
\

∑ 1{𝑙" = 𝑚(𝑐")}a
"S0

𝑛  (5) 

where 𝑙" is the ground truth label, 𝑐" is the cluster assignment 
produced by the K-means, and m ranges over all possible 
one-to-one mappings between clusters and labels.  

Table 3 gives the average accuracy over 5 runs. It can be seen 
that the K-means accuracy on the original sample is low, 
which means the original datasets are hard to be distinguished. 
The result of PCA is 60.41%, while the accuracy of SAE is 
about 83%, which proves that the unsupervised deep learning 
method is superior to shallow network. The accuracy of 
original DEC is 85.14%, while the accuracy of DEC is over 
90%. Also, it is found the performance of the improved DEC 
is more stable over different runs, while the result of original 
DEC have slightly more fluctuations with regards to the 
accuracy.  

Table 3. K-means clustering results on 5 methods 

Methods K-
means 

PCA+ 

K-means 

AE+ 

K-means 

Original 

DEC 

Improved 

DEC 

ACC(%) 50.67 60.41 83.47 85.14 90.34 

4.2. Fault Discussion 

After the run-to-failure experiment, the gearbox was 
disassembled, it is found that the fault occurred on the bearing 
of the driving shaft, which is shown in Figure 10. Scattered 
ball wear and severe inner case wear can be observed after 
the experiment. 

 
Figure 10. The fault occurred on the bearing 

In fact, abnormal noise can be heard from the gearbox starting 
from around the 40th days. The system has been completely 
worn out by then. The experiment lasted until the 44th day. 
However, the fault type and fault information is assumed to 
be unknown and was not used in this paper.  

5. CONCLUSION 

It is important to monitor mechanical health status 
intelligently. In the field of intelligent manufacturing, it is 
necessary to detect the degree or trend of failure for the safe 
and effective operation of machinery. In this paper, an 
unsupervised deep embedded clustering method was used to 
extract and optimize gear fault features and a regularization 
of the cluster center points was proposed to make the feature 
optimization process converge in certain trends. An 
accelerated run-to-failure experiment on gearbox system was 
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conducted to verify the effectiveness of the method. The 
feature extracted from the optimized DEC method can better 
represent the degradation process compared with those from 
PCA and deep autoencoder. In practice, the extracted features 
which indicate the fault trend can be used directly for fault 
level diagnostics on real-time diagnostic system. It can also be 
used for health prediction and remaining useful life prediction. 
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