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ABSTRACT

We propose the application of unsupervised machine learn-
ing to automatically detect anomalous behavior on Com-
puter Numerically Controlled (CNC) machines. We achieve
this through an approach that utilizes Principal Compo-
nent Analysis (PCA), time series feature extraction with the
anomalous package in R, and Density Based Scanning of
Applications with Noise (DBSCAN). We call this method
AnomDB. Time series data collected from CNC machines
may benefit from this technique due to its ability to con-
solidate noisy, multivariate data from CNC machine con-
trols and detect anomalies without reliance on periodicity of
signal. We perform experiments on CNC machine control
data to demonstrate the effectiveness of this method in dis-
covering anomalies over other commonly used methods of
anomaly detection such as Interquartile Range (IQR) and k-
means clustering. We show the effectiveness of this method
through a case study of an actual machine anomaly, and then
on a series of real machining data with synthetic anomalies
injected.

1. INTRODUCTION

1.1. CNC Machine Control Data and The Anomaly De-
tection Problem

The integration of information technology in the discrete
manufacturing industry is an active topic of research for ap-
plications in reducing waste, tracking of equipment, and au-
tomating and increasing efficiency. CNC machine control
data is the in-process data collected during machine execu-
tion that can continually monitor work tasks, manufacturing
resources, and operational status. Research using CNC ma-
chine control data has been conducted in quality assurance
(Tiwari, Vergidis, Lloyd, & Cushen, 2008) (Ertekin, Kwon,
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& Tseng, 2003), improving and further automating process
control (Kumar, Nassehi, Newman, Allen, & Tiwari, 2007),
as well as tool condition monitoring and estimating remain-
ing useful life (RUL) (Duan, Makis, & Deng, 2019) (Chen &
Jen, 2000).

As the scale of Industrial Internet of Things (IIoT) applica-
tions in discrete manufacturing has exponentially expanded
over the past several years, there is a growing opportunity for
employing general-purpose diagnostic algorithms that can ro-
bustly operate on a wide variety of machines (vertical mills,
horizontal lathes, grinders, stamping machines, etc.) that are
manufacturing a wide variety of parts (Swiss turned parts
such as fasteners, connectors, gears, etc., medical devices,
aircraft components, firearm components, etc.). In particular,
the basic question of “Is the machine operating normally?” is
both universal and often of critical importance.

We therefore explore here, from a very general perspective,
the possibility of a machine- and part-agnostic algorithm for
anomaly detection using CNC machine control data. Such an
algorithm can become an important component in any num-
ber of diagnostic applications, including helping to predict or
categorize machine failures, flagging manufacturing defects,
and spotting corruption within the data stream itself. Our fo-
cus will be on automated classification of completed part cy-
cles as either “normal” or “anomalous,” based on the behavior
of other part cycles that occurred nearby in time.

Anomaly detection in time series data is not a new prob-
lem (Jinka, 2015). However, delineating “normal” versus
“anomalous” behavior from raw CNC machine control data
signals requires addressing a number of properties and con-
straints that, when taken in combination, become rather spe-
cific to this domain:

• Real-time operation. An ideal setup would alert opera-
tors to anomalous part cycles in (near) real-time for im-
mediate follow-up, based on the recent history of a given
machine. There may also be data storage limitations that
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prohibit offline analysis and computationally expensive
algorithms. Algorithms that minimize compute in the
form of conserving processor and memory overhead are
therefore preferred.

• Multidimensional. CNC machine control data can in-
clude quantities such as feed rate, tool positions, tool
loads, and spindle speeds. What specific quantities are
provided depend on the machine, and which quantities
might be relevant for anomaly detection can change de-
pending on the specific combination of machine and part
type.

• Repeated discrete periods of complicated activity. Under
ideal operation for a given manufacturing job, a CNC
machine produces copies of the same part over and over
through identically-repeated steps. This provides well-
delineated and nominally-identical time series that can
be compared across part cycles in the same job. The
time series for each individual part cycle will typically
follow a very complicated, erratic-looking path through
the space of control data variables.

• Irregularities between periods. In reality, CNC oper-
ations are subject to a large number of environmental
factors such as tool wear, small variations in materials,
lubrication levels, temperatures, etc. The resulting “nor-
mal” control data time-series therefore contain a lot of
part-to-part irregularities in quantities like the amount
of time to complete individual steps, the magnitudes of
torques, etc.

• Commonly under-sampled. A number of factors (dis-
cussed in more detail below) can limit the control data
sampling rate to the O(1 Hz) level, whereas changes in
the machine state often occur at rates> 1 kHz. This limi-
tation can heavily enhance the appearance of the intrinsic
part-to-part irregularities. For example, a short-duration
burst in spindle load might be sampled for one part cycle,
but not for the next one. Figure 1 provides a demonstra-
tion of this.

In particular, the last two effects compromise methods that
rely on signal periodicity or thresholds, as are commonly used
for time series data analysis in other domains (e.g., finance).

As a concrete example, we show in Figure 2 the time se-
ries for three control variables over five adjacent part cycles,
where the third part cycle exhibits a clear anomaly. In this
example, an extended period of a single value across all three
metrics in the third part signature can be seen. Although there
are slight differences between each part signature (the exact
timing of peak values, the duration and magnitude of load or
speed, etc.), part signatures 1, 2, 4, and 5 all share signal simi-
larities. Determining if any of these individual part cycle time

series are “anomalous” requires contending with this severe
distortion of the already-complicated underlying signals.

Figure 1. Aliasing occurring when high-frequency control
data, in black (1 kHz) is sampled at a low rate, in red (1-4
Hz). Each plot shows spindle load for a single part cycle,
which exhibits consistency in the high-frequency domain but
irregularity in the low-frequency domain. Note the second
part cycle, which samples a load spike while the other part
cycles do not recognize it.

The under-sampling issue can arise for several practical rea-
sons. A basic one is the cost overhead in high-rate data
acquisition and cloud computing. These costs accrue from
establishing high-speed network infrastructure through pur-
chasing data processing and storage resources. There are also
concerns that high-frequency data collection from the CNC
machines’ computers can interfere with operations on some
models (H. Atluru & Deshpande, 2009).1

1

CNC controls are designed for motion control and coordination,
and for holding tight tolerances over long service lives. Di-
verting excessive compute power away from core functions and
to data acquisition can, in extreme cases, disrupt the core mo-
tion control function of a CNC. This ’data starvation’ condition
creates stuttering, jerky, or slowed motion and is also common
when trying to run large part programs on older machines with
insufficient RAM. If data collection is causing the starvation, it
can be resolved by re-configuring to a reduced polling interval
or sample rate.

—Russell Waddell, Managing Director MTConnect Institute, July 17,
2019
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An effective, truly general-purpose and economical part cycle
anomaly detection algorithm for CNC machines will there-
fore need to rapidly and adaptively identify relevant part-to-
part variations in the multivariate control data space while
robustly dealing with sizable, erratic artifacts from environ-
mental factors and limited sampling rate.

1.2. Overview of Our Approach

We structure the problem of anomaly detection for CNC ma-
chines in the context of unsupervised machine learning. Us-
ing such an approach allows for a high degree of flexibility by
automating the identification of regular structures in a data set
without explicit labels or strong assumptions about the data’s
content.

Unsupervised machine learning has many impressive appli-
cations within ecology, medical imaging (Solan, Horn, Rup-
pin, & Edelman, 2005), language processing, etc. (Litjens
et al., 2017). It is also an attractive approach to organiz-
ing multivariate time series data, especially in the realm of
anomaly detection (Zhang et al., 2018). For example, unsu-
pervised machine learning for automated detection of anoma-
lies in multivariate time series data has been used for predict-
ing cyber attacks and ecological anomalies (Recknagel, 2001)
(Kang, Hyndman, & Smith-Miles, 2017).

Our proposed algorithm for anomaly detection in CNC ma-
chine part cycles constitutes a sequence of feature extrac-
tion/transformation steps on the raw part cycle time series,
followed by clustering of the higher-level features. Outliers
from the identified clusters are classified as “anomalous,” and
all other part cycles as “normal.” This approach derives from
and modifies the strategy introduced in (Hyndman, Wang, &
Laptev, 2015), where time series feature extraction and out-
lier identification were applied to identify unusual Yahoo mail
server activity.

The specific tools that we employ include dimensionality
reduction via Principal Component Analysis (PCA), time-
series feature extraction using the anomalous package
(Hyndman, Wang, & Laptev, 2019), and Density Based Scan-
ning of Applications with Noise (DBSCAN) (Hahsler &
Piekenbrock, 2018). In outline, the steps are:

• Selection of an ensemble of part cycles from the same
job for comparison, ideally nearby in time (such as the
most recent O(10–100)).

• PCA dimensionality reduction in the space of (normal-
ized) control data variables, using the full set of instan-
taneous readings from all of the considered part cycles.
Each part cycle’s time series is then reduced to one di-
mension by projecting into the first principal component.

• Extraction of several higher-level features (spectral en-
tropy, autocorrelation, etc) from each part cycle’s time
series using anomalous.

Figure 2. Examples of raw signal of C position, servo load
and servo speed on a CNC machine (horizontal lathe), seg-
mented into individual part cycles. An anomalous part cycle
can be seen in orange (see main text). However, the signals
exhibit significant variability between part cycles even during
normal operating conditions. Methods of anomaly detection
that rely on thresholds or periodic signals would face signifi-
cant challenges in this context.
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• A second PCA dimensionality reduction in the space of
these (normalized) higher-level features, over the ensem-
ble of part cycles.

• DBSCAN clustering of the retained principal compo-
nent higher-level features over the ensemble of part cy-
cles. Outlier points in the clustering are then identified
as “anomalous” part cycles.

Taken together, these steps constitute the AnomDB algorithm.

Besides the change in domain of application (and especially
the application to erratic and under-sampled time series),
some new aspects that we explore beyond the original work
of (Hyndman et al., 2015) include high dimensionality of the
raw time series feature space and a density-based definition
of outliers.

A review of the tools used in the algorithm, as well as some
alternative tools, are given in Section 2. Specifics of the
demonstration data set and parameter settings for the algo-
rithm are then detailed in Section 3. AnomDB’s performance
on a real data anomaly and in a variety of simulated anomaly
scenarios is evaluated in Section 4. Finally, Section 5 con-
tains concluding discussions.

2. REVIEW OF TOOLS

2.1. Dimensionality Reduction via PCA

Principal Component Analysis (PCA) is used on multidimen-
sional data sets to capture an orthogonal set of statistically
uncorrelated coordinates in the feature space. It allows for
dimensionality reduction while retaining the dominant varia-
tions within a data set by projecting away all but the highest-
variance coordinate directions (Hotelling, 1933) (Hyndman
et al., 2015). The number of dimensions retained is a free
parameter that can be specified depending on the problem.

For approximately periodic multivariate time series data, each
sampled instant in time can be treated as an independent data
point in the PCA computation. For the CNC machine con-
trol data, AnomDB uses the full set of instantaneous readings
from all of the considered part cycles. Upon computing the
highest-variance directions within the space of control vari-
ables, the part cycle time series values are then all projected
into the subspace spanned by those directions.

The first step of PCA is the formation of a covariance matrix
over all of the features. Since CNC machine control variables
can be measured across a variety of conceptually distinct
quantities with completely different units, each is scaled to
unit variance. This is a common method for “standardizing”
PCA. Eigenvalues and orthogonal eigenvectors of this matrix
are then computed, and the eigenvalues ranked from high-
est to lowest. Smaller eigenvalues can be indicators of cor-
relations between the (scaled) features, and their associated
eigenvectors are therefore more likely to be associated with

redundant information. Subsequently projecting out those di-
rections reduces possible confusions in downstream machine
learning pipelines and also reduces their computational over-
head.

In addition to this PCA dimensionality reduction on the raw
control data time series, AnomDB also includes a second PCA
dimensionality reduction step in the space of higher-level
time series features extracted using the anomalous package
(discussed in the next subsection). The inclusion of this ad-
ditional step was advocated for in (Hyndman et al., 2015). It
not only further contains the complexity of the learning prob-
lem and helps avoid the “curse of dimensionality” (where all
data points may appear in sparsely-populated regions when
the number of features is large), but it also allows for great
flexibility in what specific features are to be included. De-
termining the most relevant combinations of higher-level fea-
tures then itself becomes part of the automated learning prob-
lem.

2.2. Time Series Feature Extraction via anomalous

Extraction of higher-level features is an important step in the
processing of time series data. Even after the initial PCA
step in the control variable space, each part cycle time series
typically consists of hundreds of individual, highly-correlated
but noisy measurements. For facilitating effective machine
learning, the goal is to compute a handful of (mostly) non-
redundant metrics that characterize the original signal data
while aggregating redundant information and averaging-out
noise effects. Such procedures effectively function as another
layer of dimensionality reduction.

For AnomDB, we utilize the anomalous time series anal-
ysis package for R (Hyndman et al., 2019). This package
provides computations of a number of higher-level features
suggested in (Hyndman et al., 2015), ranging from simple
mean and variance to more complicated features like spec-
tral entropy. Not all of these are necessarily useful for detec-
tion of the types of anomalies encountered in CNC machine
control data, and there may be other variables not included
in anomalous that might also prove useful. For the present
introductory study, we simply select a subset of anomalous
variables based on empirical results (see Table 1), though in-
clusion of other features in AnomDB could be useful to ex-
plore.

2.3. Density Based Scanning for Outlier Detection

Density Based Scanning of Applications with Noise (DB-
SCAN) is a well-known clustering algorithm that pro-
duces arbitrarily-shaped clusters formed by maximal sets
of density-connected points (Ester, Kriegel, Sander, & Xu,
1996) (Louhichi, Gzara, & Abdallah, 2014). DBSCAN can
reveal possible latent classes within a dataset given user-
specified parameters for the minimum number of objects in
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a cluster (minPts) and the maximum separation between
objects in a cluster (ε). It also identifies points in low-density
regions that fall outside of any cluster, which turns it into a
useful anomaly-detection tool.

As a preliminary step, DBSCAN performs a classification of
points as either core, border, or outlier. This classification is
determined using the ε-neighborhood of each point: the set
of all points within a Euclidean distance ε, including itself.
Core points are those whose ε-neighborhood contains at least
minPts points. Border points are non-core points whose ε-
neighborhood contains a core point. Outliers are non-core
points whose ε-neighborhood does not contain a core point.

DBSCAN subsequently identifies distinct clusters composed
of core and border points, based upon a mutual density-
reachable criterion. The outliers are otherwise set aside and
not incorporated into clusters. For our anomaly-detection
problem, we are only interested in identifying the outliers,
and not the detailed cluster partitioning of the core and bor-
der points.

Note that the use of DBSCAN represents a departure from
the corresponding anomaly-detection step in (Hyndman et al.,
2015). There, methods were employed that function roughly
as multidimensional generalizations of percentiles, allowing
for identification of the “most outlying N points” or “most
outlying X% of points”. These require pre-specifying that
a certain amount of the data will be categorized as “anoma-
lous.” With the density-based DBSCAN method, by contrast,
anomalies may or may not be found in any given data set.
This is more appropriate to a dynamic manufacturing envi-
ronment, where anomalies are genuinely rare events of un-
known frequency across different jobs.

Naive multidimensional generalizations of outlier detection
based on interquartile range (IQR) could also be considered.
In that approach, the data is iteratively projected onto each
retained principal component feature. The IQR is computed
as the distance between the 25% and 75% quartiles. Outliers
are then identified as any points that lie O(1)× IQR below
or above these quartiles, respectively, along any of the prin-
cipal components. The method has the virtue of simplicity,
but, unlike DBSCAN, its behavior is not necessarily robust to
arbitrarily-shaped distributions of the data.2

2.4. Alternative Methods

Our focus here is on the chained application of PCA, time
series feature extraction, and DBSCAN steps, which we
have found to produce a powerful general-purpose anomaly-
detector within the domain of CNC machine control data.
However, several alternative methods were considered, some

2For example, DBSCAN also has additional robustness to operating on mix-
tures of part types, in situations where information on part type is not avail-
able.

of which we use for comparisons in Section 4. We briefly
outline these methods here.

Perhaps one of the simplest and most commonly-used
anomaly detection methods for time series data is to set
upper and lower thresholds on the raw signal based on the in-
terquartile range (IQR). As noted in the previous subsection,
for multivariate data this could be implemented by setting
thresholds in each individual feature, though again some care
needs to be taken when working in a high number of dimen-
sions. (This is another place where PCA can be helpful.) For
time series that cover a large range of values under “normal”
conditions, windowing in time can also be employed. For
periodic processes like repetitive part production, ideally
we could instead compare different part cycles at the same
moment of progress toward part completion. Throughout this
paper, we employ IQR as defined by the anomalize pack-
age in R (Dancho & Vaughan, 2018) using default settings,
which conducts IQR on the residuals of the input signal after
Seasonal and Trend decomposition after LOESS (STL).

A major difficulty of the IQR approach with CNC machine
control data traces back to the issues discussed in Section 1.1,
namely the presence of high-frequency jumps, irregularities,
and perturbations in step completion times, combined with
the limitation of low-frequency sampling. This results in an
uneven or choppy signal that can easily be confused with
anomalous behavior based on simple thresholds. The prob-
lem is common both to comparing across different times for
a given part cycle and to comparing across different part cy-
cles at the “same” progress time. Another basic limitation
is that anomalous machine behavior can include (quite fre-
quently, in fact) long pauses or stops in the part cycle, which
if within tolerances could be classified as “normal.”

Another popular machine learning method that can be
adapted for anomaly detection is k-means clustering. In
a broad sense, k-means clustering differs from DBSCAN in
that it is based on a global criterion of number of clusters
k, rather than local criteria related to density. In (Chawla
& Gionis, 2013), a generalization of k-means was proposed
wherein also a given number ` of the data points are to be
excluded from the clustering as outliers. These ` outliers
are then identified dynamically via an optimization routine
called k-means-- (which has been implemented in R as
kmodR (Howe, 2015)). The entire set of part cycle time
series can be decomposed into their individual multivariate
control data measurements, and k-means-- applied to this
aggregated set of measurements without regard to time-
ordering. Individual instants in time for individual part cycle
are then flagged as outliers, and any part cycle containing an
outlier measurement as “anomalous.” Appropriate values for
k and ` can be determined algorithmically, for example using
the method described in (Ray & Turi, 1999), which is based
on finding “elbows” in the intra-cluster variation. Unlike
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IQR, the k-means-- approach can adapt to muti-modal data,
which is more characteristic of CNC machine controls.

A final method that we considered was Sequence Motif Dis-
covery. Sequence motifs are conserved sequences of simi-
lar or identical patterns that reveal themselves in time series
(Das & Dai, 2007). We found that sequence motifs were not
able to perform at adequately low latencies for use in a live
anomaly detection application, often taking 10-100x longer
than AnomDB to surface anomalies. Thus, we do not include
this in our comparison of methods.

In general, many other advanced tools for signal processing
might be considered for anomaly detection in the context of
highly erratic CNC machine part cycles. Their absence from
this study should not be taken to constitute a judgement of
their efficacy. However, we take the relative simplicity, speed,
and performance of AnomDB as establishing a good baseline
approach for this complicated domain-specific problem.

3. METHODOLOGY

3.1. Data Collection

For the development and evaluation of AnomDB, we have
used a data set collected from approximately 600 CNC ma-
chines operating between June 2018 and June 2019. Control
data was sampled at 1–4 Hz, depending on the machine. Con-
trol data was extracted with proprietary adapters as developed
by MachineMetrics, Inc.

AnomDB has also been implemented in a production environ-
ment since June of 2018 (with settings as in the next sub-
section). The algorithm is run by machine on streaming data
using all part cycles of common part type collected over the
previous 4-24 hours. Typically, this involves approximately
10–500 part cycles, each containing several hundred instan-
taneous observations of O(10’s) of control variables.3 We
present a case study of one example anomalous part cycle
drawn from this data set in Section 4.1. A small subset of the
production data is also used for algorithm performance eval-
uations and comparisons in Section 4.2, via the injection of
synthetic anomalies.

3.2. AnomDB Parameter Settings and Feature Selection

AnomDB involves a number of steps and higher-level feature
definitions that require choosing parameter values. Which
features to use from anomalous must also be decided. We
summarize here the choices and motivations made for the
present study.

For the initial stage of PCA, used to reduce the dimensional-

33,117 anomalies were caught over 600 machines in this time (5.1/ma-
chine/year), resulting in dozens of customer-reported preventions or early-
indications of machine failure. The actual number of failures prevented is
difficult to measure because robust data collection methods for feedback
have not been established.

ity of the raw CNC machine control data variables, we have
found that taking the first principal component suffices to
achieve good performance while dramatically reducing pro-
cessing time. On average, the time it takes to run AnomDB re-
taining all principal components is 16 times longer than when
retaining only one. Generally, adding more control data prin-
cipal components into the analysis degrades performance in
the evaluations of Section 4.2.

For the feature set chosen from anomalous, we selected
seven features that either appear to correlate well with human-
tagged anomalies, that appear to vary significantly between
different part types, or that empirically improve discrimina-
tion of known anomalies. We list these features with some
basic descriptions in Table 1.

Table 1. Higher-level time series features extracted using
anomalous. Unless otherwise indicated, we use default
package parameters, where relevant.

Spectral En-
tropy

Describes the complexity of a sig-
nal in terms of its Shannon entropy
−
∑

i pi ln pi, where pi represents the
normalized power of a signal’s discrete
Fourier components

First-Order
Autocorre-
lation

Measures the correlation between a time
series and its one-step lagged series

Level Shift Partitioning the time series into ten equal-
sized blocks, compute the maximum abso-
lute difference in mean between consecu-
tive blocks

Variance
Change

Partitioning the time series into ten equal-
sized blocks, compute the maximum ab-
solute difference in variance between con-
secutive blocks

Curvature Strength of curvature determined from a
global quadratic fit

Spikiness Smoothing the signal with LOESS, com-
pute the set of leave-one-out variances
amongst the residuals, and then take the
variance of those variance estimates

Flat Spots Discretizing the observation variable into
(at most) ten equal-sized intervals, the
maximum number of consecutive observa-
tions within any one of those intervals

Two of the chosen features (Level Shift and Variance Change)
require partitioning the time series into blocks and measuring
changes between the blocks. For these, we take ten blocks as
a default. We have verified that performance is only weakly
sensitive to this choice. Otherwise, we use anomalous
package defaults for any other parameters needed in the fea-
ture calculations.

The second stage of PCA operates within the space of these
anomalous features. We choose the first two principal
components as our default. We have found that adding more
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principal components can potentially further improve per-
formance, but for the algorithm’s development and for the
present studies we have restricted to two in order to aid in
visualizations.

Finally, the anomaly-detection stage using DBSCAN has two
free parameters: minPts and ε. Our goal with this step is to
identify the “bulk” of the data as one or a few clusters, and
identify outliers as points that are isolated from both these
main clusters and from other points. To achieve this behav-
ior, we choose an ε that is of order the intrinsic spread of the
data in the principal component dimensions, and minPts ∼>
1. For the former, we parameterize ε ≡ nσσPCA1, where
σPCA1 is the standard deviation of the first (dominant) princi-
pal component. The value of nσ has a strong effect on which
points are to be classified as anomalies, and will be scanned
below. However, in production we have found that nσ = 3
works well. ForminPts, we fix a value of five. Since anoma-
lies are anyway to be associated with sparse regions of feature
space, the results are not very sensitive to the specific value
of minPt.4

4. RESULTS

4.1. Case Study

We provide here a representative example of the method
drawn from live streaming data. The control data was col-
lected from a horizontal lathe producing the same part contin-
uously over a four hour period, and with twelve control vari-
ables including feedrate, position, load magnitude, and spin-
dle speed. This data actually precedes (by several minutes) a
catastrophic tool failure, and includes a number of “anoma-
lous” part cycles identified by AnomDB that are nearby in
time. For illustration, we focus on only one of these.

A handful of control variable time series for this illustrative
part cycle, as well as some nearby “normal” part cycles, ap-
peared already in this paper in Figure 2 in the Introduction.
The first stage of the AnomDB pipeline is to project out only
the first principal component of these control variables, which
we now show in Figure 3. Even restricting to just this one lin-
ear combination of control variables clearly exhibits unusual
behavior in this part cycle.

The anomaly-detection stage then proceeds over the space of
anomalous feature variables, projected into their first two
principal components. The data for this collection of part cy-
cles, as represented in this feature space, is shown in Figure 4.
The “anomalous” part cycles identified as DBSCAN outliers
(with minPts = 5 and nσ = 3) are indicated in green, and
the chosen illustrative “anomalous” part cycle in red.

4Note that these parameters could require some additional tuning in very
high-dimensional principal component spaces.

Figure 3. Principal Components for the anomaly shown in
Figure 2 divided into individual part signatures.

Figure 4. Clustered time series containing the anomaly of
Figure 2 shown in red and other anomalies detected within
the period sampled shown in green. The anomaly highlighted
in red was the most recent anomaly before machine failure,
and the one illustrated in the case study. The clustered points
that represent normal part cycles are shown in blue.
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4.2. Performance on Synthetic Anomalies

Because production anomalies are by definition rare events,
the statistics for evaluating the performance of AnomDB on
real data are small. The forms and contexts of individual
anomalies are also highly heterogeneous. To make a more
statistically meaningful and controlled evaluation, we have
generated data sets containing synthetic anomalies.

To do this, we start with a small subset of the real machine
data discussed in Section 3.1. We consider three specific ma-
chines: a horizontal lathe, a vertical mill, and a Swiss CNC
machine. From each of these, 50 part cycles that appear “nor-
mal” by eye have been selected.

Synthetic anomalies of three types are considered, which can
be used to replace a random 1/4 of an existing part cycle’s
time series across all control variables simultaneously:

• A ‘drop’ in the signal value to zero

• A flatline ’stop’ in the signal

• A linear ramp ’hike’ in the signal value from the mini-
mum to the maximum within the replaced cycle segment.

These classes of anomalies were chosen based on our visual
inspection of human-tagged production anomalies in the full
data set. An example of the synthetic anomaly insertion for
these three classes is shown in Figure 5.

For a given machine type and anomaly type, we choose a
single random part cycle in which to introduce anomalies,
and correspondingly a random time segment to replace. We
construct sets of trials by repeating this procedure 50 times.
In evaluating anomaly-detection performance using statistical
metrics such as precision, etc., we average over the trials.

Figure 5. Example of three types of synthetic anomalies in-
serted into a non-anomalous streaming time series metric.

We use this clean set of synthetic anomalies to perform

some evaluations of AnomDB and to compare it against two
other time series anomaly-detection methods discussed in
Section 2.4: IQR and k-means--. Each of these alternative
anomaly-detection algorithms is also run on the control data
time series projected onto their first principal component in
order to make the comparisons more direct.

To evaluate and compare the three approaches, we gener-
ate ROC curves for true-positive versus false-positive rates
for detection of our synthetic anomalies, scanning over re-
spective algorithm parameters that strongly correlate with
anomaly detection thresholds.5 For AnomDB, this is the scale
of the DBSCAN ε. For IQR, it is the number of IQR lengths
(a real number) below/above the first/third quartile. For k-
means--, this is the number of instantaneous outliers, but we
also optimize over k ∼ O(1).

Comparison of the relative performance of AnomDB on the
time series data from different machine types, as well as for
the different classes of synthetic anomalies are shown in Fig-
ures 6, 7, and 8.

Figure 6. ROC Curve comparing the classifiers AnomDB, k-
means--, and IQR, averaged over considered machine types
and anomalies.

5We emphasize that anomaly detection is not a uniquely-defined problem,
and that true-positive/false-positive rates are not universally well-defined
concepts in this regard. Nor is the identification of anomalies generally to
be thought of as a labeled learning problem. Our purpose here is to evaluate
the algorithms’ ability to flag certain classes of known anomalous patterns,
not to “learn” these specific patterns from one data set and “predict” them
in another.
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Figure 7. ROC Curve for AnomDB performing on different
types of anomalies, averaged over considered machine types.

Figure 8. ROC Curve for AnomDB performing on different
CNC machine types, averaged over considered anomalies.

Figure 10. ROC Curve comparing the classifiers AnomDB,
k-means--, and IQR on ‘stop’ synthetic anomalies.

Figure 9. ROC Curve comparing the classifiers AnomDB, k-
means--, and IQR on ’drop’ synthetic anomalies.

Figure 11. ROC Curve comparing the classifiers AnomDB,
k-means--, and IQR on ’hike’ synthetic anomalies.

In the ROC curve showing the performance of AnomDB at
categorizing synthetic anomalies on different machine types
8, the curves for horizontal lathes and Swiss CNCs closely
adhere to the left hand border and top border which can be
interpreted as evidence of AnomDB’s high performance for
these machine types. Figure 7 also indicates that AnomDB
has a high discrimination for time series containing drop syn-
thetic anomalies. Using the Area Under the Curve (AUC)
as a measure of diagnostic accuracy, AnomDB overall out-
performs k-means-- and IQR with an AUC of 86.92 %, as
compared with k-means-- with an AUC of 61.65 % and IQR
with an AUC of 64.34 %.

We further show that across different types of machines and
synthetic anomalies, AnomDB outperforms other methods
significantly and has a more consistent ROC curve. This is
important in demonstrating its power as a general-purpose

9
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Figure 12. ROC Curve comparing the classifiers AnomDB,
k-means--, and IQR on horizontal lathe time series.

Figure 13. ROC Curve comparing the classifiers AnomDB,
k-means--, and IQR on vertical mill time series.

Figure 14. ROC Curve comparing the classifiers AnomDB,
k-means--, and IQR on Swiss CNC time series.

anomaly-detection algorithm on CNC machine control data.
These ROC curves can be seen in Figures 9–14. Particu-
larly in the cases of ‘stop’ synthetic anomalies, k-means-- and
IQR as shown in Figure 6 come close to the diagonal line in
the ROC space, indicating a lower overall accuracy that per-
forms comparably with random selection, whereas AnomDB
has significantly higher discrimination ability.

5. DISCUSSION

We propose AnomDB as a novel algorithm for detection of
anomalous part cycles in CNC machines using their native
control data in a live production setting. This approach, in-
spired by (Hyndman et al., 2015), can effectively determine
certain broad classes of anomalous machine behavior us-
ing a density-based outlier strategy, while eliminating many
of the false positives associated with simple alternative ap-
proaches that we explored based on IQR and k-means clus-
tering. Specifically, time series patterns typical of CNC ma-
chines may benefit from this technique due to its ability to
combine distinct, noisy, and possibly under-sampled control
data streams.

Our initial work toward this goal leaves a number of inter-
esting open issues. A major one is in how anomalous part
signatures identified by AnomDB correlate with specific ma-
chine events or can provide information about tool/machine
issues or data stream issues. Further studies along these lines
will facilitate the transformation of online condition moni-
toring into actionable information for intelligent preventative
maintenance.
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