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ABSTRACT 

Despite intensive research, it is still at its early stage to 

prevent breakdown of construction machine, leading to a 

need to develop an autonomous and robust solution that 

minimizes equipment downtime and ensures the rigidity of 

equipment through predictive diagnostics. In particular, 

engine failure is critical because it causes the entire system to 

stop, highlighting the importance of determining and 

predicting the symptoms before failure occurs. However, at 

present, specific indicators based on domain knowledge 

should be set in order to judge a failure. This paper proposes 

an anomaly detection model for a 2.4L diesel engine, and 

verifies the model for two main faults. The proposed method 

based on deep learning extracts 130 feature parameters with 

autoencoder and distinguishes between normal and abnormal 

states by one-class support vector machine (OCSVM). An 

autoencoder can automatically extract useful features from 

multiple sensors on an excavator engine, and a variational 

autoencoder (VAE) extracts latent values from its input 

variables to generate new information. In this paper, a VAE 

is applied to extracting feature vector from the vibration 

signal for robust modeling, and OCSVM detects abnormal 

state and distinguishes between the two different faults and 

unknown factors. The experimental results show the accuracy 

of about 73%, and the false alarm related to the reliability of 

the model can be minimized to about 17%. Finally, to resolve 

the issues of reliability and interpretability of the model based 

on the deep learning, the Local Interpretable Model-agnostic 

Explanations (LIME) analysis is applied to listing the sensor 

data that affect the determination of the abnormal state. We 

intend to improve the accuracy of the model by adding expert 

knowledge to the data-driven model, because experts can 

easily make professional judgments about abnormal 

conditions and build a model with a continuously increasing 

sets of known data about faults and symptoms.  

1. INTRODUCTION 

The excavator is normally used at large construction sites, 

such as mines, quarries and other construction sites. 

Performance failure of an excavator directly affects the 

productivity, resulting in a great loss to the customer. 

Identifying such failures in advance and minimizing 

downtime are critical for both the manufacturer and the 

customer. The fault diagnosis approach can be categorized 

into three sub-approaches: model-based, data-based, and 

hybrid. Recently, data-driven approach has emerged as a way 

to solve many of the previously unexplained issues or to 

allow an even more efficient implementation. For example, 

in hidden Markov model (HMM) (Soualhi, Razik, Clerc and  

Dong Doan, 2014), data-driven approach (Yin, Ding, Xie and 

Luo, 2014; Erfani, Baktashmotlagh, Rajasegarar, 

Karunasekera and Leckie, 2015; Zimek, Schubert, Kriegel, 

2012) and hybrid approach combine multiple models (Gao, 

Cecati and Ding, 2015). 

Recently, with advancement in computer science, machine 

learning-based methods are gaining popularity. There are 

several models using deep learning technology (Jia, Lei, Lin, 

Zhou and Lu, 2016; Kim, Bu and Cho 2018) and the hybrid 

method (Lei, Jia, Lin, Xing and Ding, 2016). There have been 

several attempts to apply these methods in many fields: Using 

the correlation between sensors of small power generator to 

improve the performance compared to a single sensor feature 

(Zhao, et al., 2017); using data such as PHM08 to analyze 

with LSTM in order to prove the suitability of LSTM in 

predicting RUL (Remaining Useful Life) (Zheng, Ristovski, 

Farahat & Gupta, 2017); and comparing decision tree (DT), 

support vector machine (SVM) (Pal and Foody, 2010; Ruff, 

et al., 2018), k-nearest neighbor (kNN), and random forest 

against each other to prove the superiority of SVM and kNN 

to analyze data for prognostics (Shafi, Safi, Shahid, Ziauddin 

and Saleem, 2018). 

The performance of many of these data-driven proactive 

diagnostics relies heavily on the degraded data to be applied. 

However, an engine has many sensors, which have different 

sensitivity to degraded engine performance. As some sensors 
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are more sensitive, it is necessary to choose appropriate 

sensor parameters with data more sensitive to engine failure 

tendencies, when selecting a set of training data for 

diagnostic prediction. In addition, it is not easy to obtain data 

on failure, and most of the failure data show only the 

information of the state after a failure has occurred, with no 

information about symptoms. Therefore, we come up with 

anomaly detection as critical in failure diagnosis. 

If a training data set contains unusual data, detection of 

abnormal data may become difficult. In this paper, 

autoencoder is used to extract proper features and diagnose 

abnormality from the data measured in a real equipment. As 

one of the deep learning methods, autoencoder restores the 

most similar data to the input data based on encoder and 

decoder. We use a feature of the intermediate node, named 

latent space, as the feature for the whole data. In addition, 

OCSVM is used as an anomaly detection model. Since the 

degree of imbalance between the abnormal and normal data 

is significant, the normal data are grouped into one class 

while the effectiveness of anomaly detection is verified 

through outlier verification of two failure cases. 

Finally, analysis is required to prove the reliability of the 

results obtained from the machine learning method. In 

machine learning, this is called explainable AI. We have 

applied LIME (Local Interpretable Mode-Agnostic 

Explanations) to provide the information of key sensors that 

have the biggest impact on the judgment, in order to facilitate 

the analysis of experts. 

2. BACKGROUNDS 

Recently, there are many detection methods including 

OCSVM-based, clustering-based and reconfigurable error-

based methods. OCSVM uses kernel tricks to project input 

functions into high dimensional geometry space to separate 

normal and new data from each other. In other words, OC-

SVM is used to find the farthest origin, data points, and 

decision boundaries that regard the closest point to the origin 

as a novelty. However, SVM is actually memory-intensive 

and time-consuming, and the complexity increases seriously 

with the number of data. 

2.1. Static Data Feature Selection 

This section explains the feature extraction. It is difficult to 

extract features from raw data in the case of high-dimensional, 

time-series data with various environmental variables, such 

as engine operating data (Niennattrakul, Keogh and 

Ratanamahatana, 2010). To reduce the dimensionality of data, 

a high-level representation is built where a set of significant 

features are calculated. These features provide an 

approximation of the original raw data. Many statistical 

features are calculated for each time series variable 𝑋 =

{𝑥1, 𝑥2,…,𝑥𝑛}, 𝑖 = 1,2 … , 𝑁. Figure 1 shows the main groups 

of feature selection methodologies for static data, and 

explains the details of these measures. 

 

Figure 1. Approaches of the static data conversion. 

Statistic conversion is used as a preprocessing method for 

feature extraction. Median, standard deviation, skewness, and 

kurtosis for each window size are found. This also improves 

the performance by learning secondary and tertiary 

conversion values, not the primary conversion. Each 

statistical value is defined as follows: 

1. Mean is the estimated central value, and best known as 

the mean of the values 𝑥1, … . . , 𝑥𝑁 , 

�̅� =
1

𝑁
∑ 𝑥𝑗

𝑁
𝑗=1 .                 (1) 

2. With a central value of a distribution being characterized, 

“width” and “variability” around the central value can be 

conveniently characterized. Here, more than one 

measurement is possible: Most commonly the variance, 

𝑉𝐴𝑅(𝑥1 … 𝑥𝑁) =
1

𝑁−1
∑ (𝑥𝑗 − �̅�)2𝑁

𝑗=1           (2) 

and its square root, the standard deviation, 

𝜎(𝑥1 … 𝑥𝑁) = √𝑉𝐴𝑅(𝑥1 … 𝑥𝑁) .      (3) 

3. Skewness is a measure of symmetry, or more precisely, 

the lack of symmetry. A distribution, or a data set, is 

symmetric if it looks the same on the left and the right of 

the center point. The usual definition is 

Skew(𝑥1 … 𝑥𝑁) =
1

𝑁
∑ [

𝑥𝑗−�̅�

𝜎
]

3
𝑁
𝑗=1           (4) 

where σ is the standard deviation in Eq. (3).  

4. Kurtosis is a measure of whether the data are heavy-

tailed or light-tailed when compared to the normal 

distribution. That is, data sets with high kurtosis tend to 

have heavy tails, or outliers. Data sets with low kurtosis 

tend to have light tails, or less outliers. A uniform 

distribution would be an extremely rare case. The 

conventional definition of kurtosis is 

Kurt(𝑥1 … 𝑥𝑁) = {
1

𝑁
∑ [

𝑥𝑗−�̅�

𝜎
]

4
𝑁
𝑗=1 } − 3          (5) 

where the −3 term makes the value zero for a normal 

distribution. 
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These values represent statistical values of raw data and are 

used to extract the features not recognized in raw data. 

2.2. Autoencoder 

Autoencoder has been introduced as one kind of artificial 

neural network (Liou, Cheng, Liou and Liou, 2014), 

unsupervised algorithm for learning how to decode its own 

input (𝑥1, 𝑥2, … , 𝑥𝑛)  to its output (𝑦1, 𝑦2 , … , 𝑦𝑛)  based on 

(𝑥𝑖 = 𝑦𝑖) , which becomes possible by reducing the gap 

between the inputs and the outputs (Guo, et al., 2016). 

 

Figure 2. Autoencoder model architecture. 

As shown in Figure 2, the input and output neurons for 

autoencoder are the same, and the hidden layer is a 

compressed or learned latent value. In general, autoencoder 

has a structure of a neural network with at least one hidden 

layer and learned the hidden layer (latent space) to minimize 

the reconstruction error. 

Reconfigurable error in autoencoder is defined as follows to 

learn to minimize the reconstruction error through model 

learning. 

𝐸(𝑋, 𝑌) = ‖𝑋 − 𝜑(∅(𝑋)‖2
2 = ∑ (𝑥𝑖 − 𝑦𝑖)2𝑚

𝑖=1  .    (6) 

2.3. One-Class SVM 

OCSVM for unsupervised anomaly detection has expanded 

the idea of SVM largely applied in classification (Schoelkopf 

and Smola, 2002). The classic SVM aims to maximize the 

margins between the data points by looking for hyperplanes, 

whereas in OCSVM, hyperplanes learn to best distinguish 

data points from the origin. SVMs can usually capture 

nonlinearities using the kernel. The kernel method maps the 

data points from the input feature space of ℝ𝑑 in the higher 

dimensional space of ℝ𝐷  (where D is potentially infinite), 

where the data become linearly separable by transformation 

ℝ𝑑 → ℝ𝐷. 

The most commonly used kernel is radial basis function 

(RBF), defined by the similarity mapping between any two 

points x and x0 of the input feature space and 𝐾(𝑥, 𝑥′) =

exp (−
‖𝑥−𝑥′‖

2

2𝜎2 ), where σ is the kernel bandwidth. Here, w and 

ρ are the vectors representing all the weights of all 

dimensions in the kernel space, and the offset parameter 

determines the distance from the origin to the hyperplane. 

The objective of the OCSVM is to isolate all data points from 

the origin with the maximum margins in relation to some 

constraint mitigation, and this can be written in a quadratic 

program as follows: 

{
𝑚𝑖𝑛

1

2
𝑤2 +

1

𝑣𝑁
∑ 𝜉𝑖 − 𝜌𝑁

𝑖=1                 

𝑠. 𝑡. (𝑤 × 𝜓(𝑧)) ≫ 𝜌 − 𝜉𝑖 ,   𝜉𝑖 ≥ 0
              (7) 

where ξ𝑖  is a slack variable and v is the regularization 

parameter. Theoretically, v is the upper bound of the fraction 

of anomalies in the data, and the main tuning parameter for 

OCSVM. Additionally, by replacing ξ𝑖 with the hinge loss, 

unconstrained objective function becomes 

min
𝑤,𝜌

1

2
‖𝑤‖2 − 𝜌 +

1

𝑣𝑁
∑ max (0, 𝜌 − 𝑤𝑇∅(𝑥𝑖))𝑁

𝑖=1 . (8) 

Let 𝑔(𝑥) = 𝑤∅(𝑥𝑖) − 𝜌 , and the decision function of 

OCSVM is 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑔(𝑥)) = {
1           𝑖𝑓 𝑔(𝑥) ≥ 0

−1       𝑖𝑓 𝑔(𝑥) < 0
        (9) 

The optimization problem of SVM in Eq. (8) uses Lagrangian 

multiplier to solve convex optimization problem in double 

space, thereby reducing complexity and enhancing feasibility. 

However, solving SVM in dual space can affect the size of 

the data due to 𝑂(𝑛2)  complexity, and the function K 

between each pair of data sets must be computed and stored 

in a matrix. Here, n is the size of the data set. 

3. METHODOLOGY 

This section illustrates the use of deep learning in 

autoencoding reconstruction error to describe novel detection 

of unlabeled data. The proposed method has two basic 

functions: dimension reduction and novelty identification. 

General architecture of the proposed method is shown in 

Figure 3. 

 

Figure 3. Architecture of the proposed model. 
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In this paper, the OCSVM is used as an anomaly detection 

model. In addition, the model is designed to make judgment 

of abnormal data more conveniently when experts use known 

information and explanation from LIME. The ultimate 

objective of the learning model is to constantly update the 

expansion of the known area, allowing for more precise 

judgment of failures. 

3.1. Analysis of the Input Data 

Data was collected from 123 different sensor values 

measured in 0.1 sec of actual equipment for 12 days, and two 

different failure cases such as PCR (Pressure control 

regulator) and SmkLim (Smoke Limitation) failure, were 

labelled in the working log. Table 1 shows the summarized 

list of sensors.  

 

Characteristics of these measured data are summarized as 

follows: 

• 12 non-consecutive days of operation including one PCR 

and one SmkLim day. 

• Each day consisted of 130 attributes and 80,000+ tuples 

where data were gathered in every 100 milliseconds. 

• Depending on the operation condition, different sensors 

were activated; some sensors were binary, but others 

were not. 

• Some were seemingly useful when detecting a fault and 

its previous alarms. 

The result of correlation analysis between 123 sensors with 

each day as class confirmed that there were positive and 

negative correlation intermingled as Figure 4. However, a 

correlation specifically with the fault data was not found 

because most types of faults or symptoms occurred in the 

form of point failures. Therefore, the anomaly detection 

model conducted data preprocessing and model learning in 

order to combine several sensors to perform fault diagnosis 

and condition diagnosis. 

 

Figure 4. Correlation between each day with 123 sensor. 

3.2. Feature Selection with Autoencoder  

The principal component analysis (PCA) or autoencoder (AE) 

is applied to reduce the dimension of multi variable 

dimensional sensor data for performance improvement of the 

model. However, raw value cannot be applied to autoencoder 

because of the large learning dimension of 369K. Therefore, 

statistical values is used instead, and they include median, 

variance, skewness, quantiles, and deciles, which are mainly 

used in statistical view of probability for autoencoder.  

Conversion of raw data into statistical values during the pre-

processing stage makes it possible to reduce the 

dimensionality and express the characteristics of the data 

more prominently. As we transform the data into six statistic 

value types and compare the results of each conversion, we 

find that effective results have been obtained when the deciles 

are used. This leads us to reduce the learning dimension to 

3.3K, and the representation of the two failure cases becomes 

more abundant. The summarized result of conversion is 

shown in Figure 5. 

 

Figure 5. Analysis results according to data type for 

application to autoencoder model. 

Table 1. Measured Sensor List. 

 

Variable Unit 

Engine speed rpm 

Sensed fresh air mass flow Kg/h 

Temperature down stream of 

charged air cooler ℃ 

Desired EGR ratio Kg/h 

Charge state of the DPF - 

Desired air mass Kg/h 

Gas mass flow at throttle valve Voltage 

Standardized accelerator pedal 

position % 

Battery voltage Voltage 
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We also compare the feature extraction performance for a 

fault using two methods. Compared to PCA, autoencoder is 

not only better at distinguishing both faults, but also requires 

less features to be extracted. PCA can only distinguish PCR, 

and requires 10 features to be extracted. In Figure 6, the blue 

shaded area indicates the area of real failure detection. 

However, the PCA-applied data do not find any particular 

differences in the area. 

 

Figure 6. Multi-dimensional PCA result. 

The autoencoder extracts more abundant features than PCA 

in Figure 7. In addition, we confirm that the characteristics of 

the two faults, PCR and SmkLim, are expressed differently 

from each other. Here, the overlap between the steady state 

and the fault state occurs because the measured data is 

labeled on a daily basis, not failure basis. Therefore, we 

classify the anomalies distinguished from the normal using 

OCSVM. 

 

Figure 7. PCA and autoencoder results for failures. 

3.3. OCSVM for Anomaly Detection 

OCSVM is best suitable for detecting “abnormal” patterns 

when the target event is rare. Training requires a normal 

dataset only, in order to create a boundary that can optimally 

cover the observations as normal. However, the model 

training takes a lot of time (8hrs+α). The parameters of the 

model are Nu = 0.1 and Kernel = rbf. Figure 8 shows the 

concept of OCSVM. 

 

Figure 8. Conceptual results of OCSVM. 

For construction of the abnormal detection model, the 

information of a known failure case can be provided to the 

model in advance in order to improve the judgment 

performance of the model. The hyperparameter is tuned by 

applying the information of the two failure cases together in 

order to improve the performance of the model. This enables 

the model to distinguish between known and unknown 

failures. 

3.4. Explainable AI 

Local Interpretable Model-agnostic Explanations (LIME) is 

an algorithm that can faithfully describe the evaluation of all 

classifiers or regressors (Ribeiro, Singh and Guestrin, 2016). 

We use this method to explain the failure classification. The 

model also shows which part of the sensor is used for each 

evaluation. Classes are predefined, but the importance of 

each class can vary for each failure. LIME extracts the main 

element to find the distance between each class and feature. 

The evaluation of the classifier or regressor in a faithful way 

is explained as follows: 

𝜀(𝑥) = argmax
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝜗(𝑔)          (10) 

𝐿(𝑓, 𝑔, 𝜋𝑥) = ∑ (𝜋𝑥(𝑧)(𝑓(𝑧) − 𝑔(𝑧′))2
𝑧,𝑧′∈𝑍     (11) 
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Table 2 shows the algorithm for LIME. 

 

Thus, using the results of the expert analysis from LIME, it 

is possible to define the symptom and continuously update 

the relationship between the faults and the symptoms. Figure 

9 illustrates this process. 

 
Figure 9. Defining the correlation between errors and 

symptoms using LIME. 

4. EVALUATION 

4.1. Implementation 

As seen in Figure 10, we have developed a program to judge 

the data received from real machine based on the learned 

model. The program detects the current status as either 

abnormal or not in real-time. If there is abnormal, the 

program shows the explainable sensor list to help the 
investigation of experts. 

Figure 10. Representation of abnormal data in OCSVM. 

4.2. Experiments 

Experimental data were collected from 123 sensors for 12 

days. The target engine is a 2.4L diesel engine, which is the 

data collected from the engine controller as shown in Figure 

11. Each sensor data was measured in 100ms unit such as 

pressure, torque and temperature, etc. The total data capacity 

was approximately 346MB. There were two failure cases, 

PCR and SmkLim, on different dates. Each failure occurred 

in the following cases: 

1. SmkLim: When the required fuel amount exceeds 

the limit fuel amount, a lot of smoke is prevented 

(fuel amount limitation). 

2. PCR: When the actual sensing pressure is lower 

than the threshold pressure. 

 

Figure 11. 2.4L diesel engine as target component. 

Both are critical failures frequently found in engines and lead 

to emissions beyond the standard or equipment degradation. 

The 10 days data without a failure case were used for training, 

and the data of the other 2 days with the two fault cases were 

used to verify the outlier detection ability.  

 

Figure 12. Representation of abnormal data in OCSVM. 

Table 2. Sparse linear explanations using LIME. 

 

Input: Classifier f, Number of samples N 

Input: Instance x, and its interpretable version x' 

Input: Similarity kernel πx, Length of explanation K 

1:     begin 

2: Z←{} 

3: for i ∈{1, 2, 3, …, N} 

4: 𝑧𝑖
′←sample around(𝑥′) 

5: Z←Z∪< 𝑧𝑖 , 𝑓(𝑧𝑖), 𝜋𝑥(𝑧𝑥) > > 

6:      end for 

7: ω←K-Lasso(Z,K) 

8:   return ω 
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Red area in Figure 12 shows the data for the fault detection, 

and it confirms that some data are detected as abnormal in a 

form similar to normal. 

The constructed model is validated with the preliminary data, 

and accuracy is calculated as 73%, and recall as 83%. (1-

Precision is the value for false). In addition to the accuracy, 

one of the important factors in evaluating the reliability of the 

model is the increased number of recalls because the model 

is able to reduce false alarms. 

 

Figure 13. Result of accuracy, recall and precision. 

Another factor for model reliability is expandability. This is 

because customer / user needs to determine the credibility of 

the model in finding abnormalities, if the model regards 

anything as abnormal. Therefore, a plausible explanation is 

needed to understand the cause of a failure. XAI (eXplainable 

AI) techniques are implemented in the model to provide 

transparency and interpretability of the resulting diagnosis. 

Explanation given by LIME can help an engineer to make a 

judgment by listing by prioritizing a set of sensor data which 

affect the decision of the model in detecting abnormality 

(Zeldam, Jong, Loendersloot and Tinga, 2018). Figure 14 

shows the LIME result for one case, and the result from 

LIME confirms the fault CASE by using NOT Normal, PCR, 

and NOT SMK. For example, DFES_stChk_01 and 8 sensors 

are the biggest factors that distinguishes PCR. 

 

Figure 14. Representation of abnormal data in OCSVM. 

5. CONCLUDING REMARKS 

In this paper, we have proposed an anomaly detection model 

for two fault cases based on the engine state information with 

123 parameters. The model is appropriate for the multi-

dimensional sensor data which shows dynamic changes in 

values. By using the latent space of autoencoder, we could 

reduce multi-dimensional data and propose a method to 

extract appropriate features. In addition to this, one-class 

SVM is applied to merge the methods to distinguish the 

normal and the abnormal, in order to resolve the unbalancing 

problem between the normal and the abnormal data. 

Verification of the two fault cases show the performance of 

73%, and the reliability of the model is secured by lowering 

the false alarm rate, an important factor in anomaly detection, 

to 17%. In addition, we have proposed a real-time program to 

apply and operate the proposed model in the real environment 

on the actual equipment. In terms of abnormal data detection, 

the reliability of the model can further be improved by 

outputting the correlated sensor information through LIME, 

which allows analysis of the abnormal cases facilitated by 

expert opinions. Finally, diagnostic performance of the 

model can be improved by reducing the number of unknown 

abnormal cases, which is possible by updating the model with 

knowledge of experts on the symptoms as collected from the 

expert opinions. This machine learning method allows more 

accurate data collection and status diagnosis for anomalies. 
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