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ABSTRACT

Maintenance Work Orders (MWOs) are a useful way of
recording semi-structured information regarding mainte-
nance activities in a factory or other industrial setting. Analy-
sis of these MWOs could provide valuable insights regarding
the many facets of reliability, maintenance, and planning.
Information such as which maintenance activities consume
the most work hours, identification of problem machines,
and spare parts needs can all be inferred to some degree
from well-documented MWOs. However, before one can
derive insights, it is first necessary to transform the data in
the MWOs (generally some form of natural language) into
something more suitable for computer analysis. NIST previ-
ously developed a computer aided tagging system that allows
for the quick identification of key concepts within the natu-
ral language of the MWOs, and a protocol for categorizing
these concepts as problems, solutions, or items. Using this
annotation method, this paper investigates machine learning
methods to gain insights about work hours needed for vari-
ous maintenance activities. Through these techniques, it is
possible to explain the factors captured in the MWOs that
have the strongest relationship with the duration of main-
tenance actions. The workflow of this research is to first
build strong data-driven models to classify the duration of
any maintenance activity based on the language and concepts
gathered from the associated MWO. Sensitivity analysis of
the inputs to these classifiers can then be used to determine
relationships and factors influencing maintenance activities.
This paper investigates two machine learning models - a
neural network classifier and a decision tree classifier. Input
features for the classifier were the annotated concept tags
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for solutions, problems and items derived from MWOs of an
actual manufacturer. This process for gaining insights can be
generalized to various applications in the maintenance and
Prognostics and Health Management (PHM) communities.

1. INTRODUCTION AND BACKGROUND

Optimizing maintenance activities is important throughout
nearly every industrial setting, such as, manufacturing, chem-
ical plants, process engineering (e.g., nuclear plants), and
operations of field equipment (e.g., construction and min-
ing equipment). Large scale implementations of maintenance
have evolved from primarily reactive maintenance, to regu-
lar preventive maintenance scheduling (Sherwin, 2000), then
on to more condition based and predictive maintenance prac-
tices (Camci, 2015; Helu & Weiss, 2016). Although the de-
pendence and role of the human practitioners has evolved
as well, much of the importance of workers has remained
the same. The maintenance technician remains an important
sensing tool and decision maker in observing symptoms, di-
agnosing issues, as well as prescribing and enacting mainte-
nance activities. Such specialized, experience-based knowl-
edge is often termed as tribal knowledge (Allen, 2013). Some
of this knowledge is captured as the natural language put into
Maintenance Work Orders (MWOs). Typically, information
in an MWO is manually populated by an observing technician
when a problem is faced at an asset, conveying details about
how the issue was diagnosed and how it was resolved at each
stage of the maintenance process. Such MWOs represent a
wealth of useful knowledge about the sequence, description,
causality, and timing of events with respect to the problem
and its resolution. However, given the heavy involvement of
manual free-form natural language, this data is often very in-
consistent and inadequate for direct computer based analysis.
The nature of natural language is such that variations will be
present that require some form of cleaning, translation, and
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consolidation in preparation for computer based analytics.
This paper utilizes a previously developed method to clean
and prepare textual data from MWOs (Sexton, Brundage,
Hoffman, & Morris, 2017), and then proceeds with its analy-
sis.

By providing methods to analyze this data, knowledge in
MWOs can be captured and used to address potential trou-
ble spots (e.g., most problematic machines) and prioritize
actions, such as scheduling of operations including mainte-
nance. Particularly in context of this work, models of mainte-
nance action duration derived from MWOs can assist in main-
tenance action scheduling and determination of anomalous
instances that may highlight additional underlying problems.

This paper relates concepts and ideas discovered in natural
language field entries of MWOs to the expected duration of
the action set associated with that work order. Often the lan-
guage used to describe an action can give some indication
of the relative severity or commitment of resources needed
to complete that action. For example, replacing a part may
tend to consume more time than a simple adjustment of a
corresponding part. However, following the nature of natural
language, there are no absolutes in regard to single words or
qualifying concepts. Instead, concepts and ideas are treated
as ‘soft’ influencing factors that may result in different du-
rations given context. Consider that replacing lubricant oil
consumes less time than replacing a motor - hence each so-
lution might have a unique distribution of associated dura-
tions. To model the relations between MWO terms and main-
tenance time, machine learning models are studied and suit-
ably adapted in this paper.

The objectives for this study are to,

e categorize various maintenance actions into meaningful
groups based on activity type and duration

e identify the most influential features of maintenance,
such as important problems, solutions and physical items

o identify outlier MWO instances to trigger deeper root
cause analysis investigations.

The rest of the paper is structured as follows. The state of the
art for natural language analysis in manufacturing and current
time metrics in maintenance is covered in Section 2. Research
challenges and overall methodology for carrying out the study
is described in Section 3. A use case showing the implemen-
tation of the methodology on a manufacturing MWO dataset
is demonstrated in Section 4. Results and issues from the
analysis, and scope for extending this research are discussed
in depth in Section 5, and conclusions are presented in Sec-
tion 6.

2. CURRENT STATE OF THE ART

The relationship between maintenance and time related data
is often discussed in the domains of reliability and perfor-

mance monitoring. For example, literature discusses model-
ing for maintenance intervals with respect to time, by using
distributions such as Gaussian, Weibull or Gamma (Locks,
1973). Additionally, there are time-related metrics that fo-
cus more directly on the equipment quality and performance,
such as the Mean Time Between Failures (MTBF) (Gulati
& Smith, 2009). Some research even investigates compar-
ing performance of time-based (calendar-based maintenance)
versus condition-based maintenance techniques using only
failure time data sets (Ahmad & Kamaruddin, 2012). How-
ever, rarely in literature is the time taken (duration) for spe-
cific maintenance actions investigated as it relates to those
activities, and in particular utilizing information gained from
MWOs.

Mukherjee and Chakraborty (2007) discuss work towards un-
derstanding the text of maintenance logs to gain insights, such
as diagnostic fault trees, from these logs. As mentioned in
Section 1, the process of extracting this type of information
from MWOs data is not straightforward. The difficulty in
processing the language is often due to the free-text entry by
maintenance technicians and a lack of constraints on spelling,
grammar, or vocabulary. These difficulties are highlighted in
(Devaney, Ram, Qiu, & Lee, 2005; Brundage et al., 2019).
Maintenance personnel often prefer to enter data quickly, as
their job depends on performing maintenance actions effi-
ciently and correctly, rather than entering elaborate descrip-
tions that adhere to formal language descriptions. Though
methods have been proposed for identifying manufacturing
issues from text (e.g., assembly issues (Madhusudanan, Gu-
rumoorthy, & Chakrabarti, 2017)), this paper focuses on re-
lations between natural language of MWOs and maintenance
times.

Once properly processed and prepared, MWO data can be
used to compare various possible maintenance actions in re-
gards to expected outcome, duration, cost, or other resource
investments. For example, Bokinsky et al. (2013) indicated
the need to compare the actual performed maintenance action
versus what was listed in a manual to ensure best practices
are being upheld. This conclusion followed from a natural
language analysis of Maintenance Action Forms for aircraft
to reduce the time it is out of service. The timeliness of main-
tenance is also stressed in (Parida & Kumar, 2006), such as
the role of downtime, that is directly related to the mainte-
nance activity being undertaken. In the domain of medical
devices, Sipos et al. (2014) built predictive models for equip-
ment failures from billions of event logs.

A need exists to further analyze the rich yet under-explored
knowledge of MWOs. In particular, there is a need to capital-
ize on the potential usefulness of capturing and understanding
time-durations of maintenance activities. This paper, as de-
scribed in the next section, discusses two potential methods
to analyze MWO datasets.
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3. METHODOLOGY

This work coalesces free-form information found in MWOs
into annotated concepts that are designated into the categories
problems, solutions and items using Nestor, a previously de-
veloped tool (Sexton et al., 2017). In this context, problems
are faults, failures, symptoms, or other motives inspiring the
MWO. Items are the location or equipment where the prob-
lem is observed or work is performed, and solutions are the
maintenance action taken. This work studies the solutions
and items that are most important to time spent on mainte-
nance activities. Firstly, it is necessary to clean and identify
the various features of MWOs, such as the various problem
features (e.g. fault, leak), solution features (e.g., debur, reset)
and item features (e.g., cylinder, flywheel). Then, predictive
models are built with these features as predictor variables.
Based on the models, the most important features are then
identified by studying how these features influence the over-
all maintenance time duration.

3.1. Text cleaning using tagging

A combination of human annotation and computer assistance
in the form of Nestor is used to identify the various prob-
lem, solution and item features contained in the MWOs. The
produced tags, or ideological concepts, are clean representa-
tions of noisy unstructured MWO text. For example, Replace,
which is an alias for all related indications (e.g., Repalce
<=> Replace <=> Replacing), is tagged as a SOLUTION.
Use of tagged words lowers the variations in morphological
forms and spellings as compared to raw MWO text, since
a human has clarified their correct spelling with the correct
alias. For example, in the dataset described in this paper
(see Section 4.1), action words (verbs) extracted by Natural
Language Processing resulted in 577 solution words, whereas
tagging resulted in only 65.

3.2. Pipeline for Predictive Model

A pipeline of machine learning algorithms is used to build
models for predicting maintenance durations using MWO
knowledge. Instead of trying to predict exact times, explain-
able time classes were used as target variables. The use of
time classes has two advantages. Firstly, it provides better
performance than when trying to predict exact time values.
Secondly, is more intuitive to understand and useful for main-
tenance managers since the classes give relatable quantities
of task duration that provide reasonable expectations of accu-
racy.

Two separate variations of predictive models were investi-
gated, neural networks and decision trees, and compared for
ease of construction, flexibility, accuracy, and intuitive inter-
pretation. Each model pipeline is structured to capitalize on
the individual strengths of their respective base models.

3.2.1. Neural Network Model

The first step in the neural network driven pipeline is a set of
neural networks called autoencoders. An autoencoder is ‘a
neural model where output units are directly connected with
or identical to input units’ (Li, Luong, & Jurafsky, 2015). Au-
toencoders enable abstracting input features into more con-
densed and consistent representations. These were selected
due to their ease of setup and ability to efficiently condense
related concepts using only the most relevant data. Next a
binary classifier is used to obtain a broad prediction of time
classes. Finally, each broad class is processed using classi-
fiers to get a finer time class for maintenance.

3.2.2. Decision Tree Model

A decision tree classifier was also investigated and compared
to the neural network model. Decision trees were selected
both for their intuitive structure in relating input importance,
and their speed and strength for classification (this will be
described in more detail in section 4.4). With the solutions,
problems and items as features, and various time classes as
outputs, a decision tree classifier would result in a model to
predict any one of the time classes.
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Figure 1. Distribution of times for the dataset. Various time-
scales are indicated using markers. (The y-axis represents the
kernel density estimate for the time values).

3.3. Analysis and Model Interpretation

Once classification models are built for the maintenance fea-
tures, the structure and behavior of the models themselves be-
come the subject of analysis and can be used to determine the
most influential input features found in the original MWOs.
In order to help determine the most important features, a sen-
sitivity analysis was performed by monitoring the individual
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Figure 2. Distribution of workorder samples across different time classes. The distribution varies widely with some classes
having low number of samples, which are balanced after resampling to the average number of samples.

models performance when each feature is excluded during
training, one at a time. This method is used since it reveals
the most influential features on model performance during the
construction phase. This is not the only indicator of impor-
tance to the relationship between maintenance action duration
and the captured concept features but it is a good estimation to
help guide further investigations. There are some other meth-
ods for sensitivity and importance analysis that are useful -
these are discussed in Section 5. For the decision tree, ad-
ditional information regarding the most influential features is
found by looking at the importance of features in the decision
tree structure itself.

With this generic methodology in place, we now describe a
case study that illustrates the application of the methodology
to analyze a real manufacturing dataset.

4. PREDICTIVE MODELS - A CASE STUDY

This section illustrates the application of predictive models
described in the previous section on a manufacturing dataset
and presents the performances of the models.

4.1. Dataset used

The MWO dataset used for this study was sourced from a real
automotive manufacturer and consisted of 47,798 MWOs.
The dataset is in a spreadsheet format, and some of the fields
are Workorder Number, Status, Actual Start Date and Time,
Actual Finish Date and Time, Asset Number, Textual Descrip-
tion, Location and Reported By. More details about informa-
tion contained in MWOs can be found in (Brundage, Morris,
Sexton, Moccozet, & Hoffman, 2018). The most important

fields from these MWOs are the actual start and finish times
and the two text description fields about the maintenance ac-
tivity.

4.1.1. Data Quality Challenges

In preparation for the analysis portion of this work, the non-
uniformity of the dataset presented some unique challenges
that are likely to be common in real world applications. Ev-
ery MWO dataset has its own characteristic fields, such as
Asset Number, Workorder Number, Problem Description, Re-
quested By, Solved By, Opening Time and Cost Incurred. For
this research, the text descriptions of the problems and actions
taken and time-related fields are of interest. The text descrip-
tions were annotated with tags using the methods described
in (Sexton et al., 2017).

MWOs contain dates and times in different formats and hence
must be preprocessed to get maintenance time durations. To
improve consistency, all time data is converted to days with
a range across the data set spanning from zero to hundreds
of days. The dataset used for this paper had only the start-
ing and ending times for the workorders, not the actual task
work hours. Hence, it was not possible to ascertain the ac-
tual duration of maintenance solutions. The assumed dura-
tion is deemed to be the end time minus the start time listed
on the MWO. These time calculations do not always accu-
rately reflect the actual time taken for maintenance, but are
instead rough estimates due to inconsistencies and variations
in recording times. Often, missing time entries exist for some
maintenance activities. For this case study, there are 4,914 en-
tries with incorrect formats and missing time entries. There
are a further 843 entries with negative total duration. These
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Figure 3. The schematic of the architecture of the classifier model used. Recall scores at each classification step, along with the

confusion matrices are also shown.

are excluded for the purpose of analysis. More fine-tuned,
and correct time recordings are needed to improve the accu-
racy of these resulting models. More details about this aspect
are presented in Section 5.

4.2. Time distributions and time classes

The intended output for the predictive models is a categorical
window of the maintenance duration. Though maintenance
times in MWOs are real-valued, predicting the output times
as precise real-valued numbers is far less useful than practical
task assignment windows because jobs are typically sched-
uled into some window of an expected duration of the task. In
other words, short tasks may be scheduled in 5 minute blocks,
but longer tasks are more commonly blocked off in terms of
hours. For this data set, some concessions of the designation
of the duration categories is also fed from the small number
of data points and low accuracy of predictions found in initial
studies with the time data. With larger volumes of more accu-
rate data this could be overcome. Despite these concessions,
the conclusions and methods developed in this work could
easily be extended to the level of granularity most useful and
feasible for any target use case.

The designation of the classes in this work was largely led
by expert intuition and observations of the data itself. The
distribution of times shown in Figure 1 makes it clear that
there is a large split in amount of actions requiring less than
a day, and another smaller cluster break between the week
and the month markers. Additionally, practical and relatable
demarcations such as hours, days, weeks, months and years

are more explainable and help foster understandings of the
ensuing analysis than simply putting across numerical ranges
of times.

Figure 2(a) shows the distribution of frequencies of sam-
ples across five classes (hour, day, week, month, and year).
The data points were resampled across all classes to match
the average number of samples across all classes. Since
there are a relatively small number of values in the fifth
class (month<time<year), it can also be combined into
the fourth class and represented as a single time class
(week<time<year). Figure 2(b) shows the same distribu-
tions if there are only four classes, corresponding to hour,
day, week and year. The four classes consist of:

e Less than an Hour ( < 1 hour)

e (Greater than an Hour but Less than a Day (1 - 24 hours)
e (reater than a Day but Less than a Week (24 - 168 hours)
e Greater than a Week ( > 168 hours).

4.3. Application of pipelines to manufacturing dataset

With the solution, problem and item tags as features and time
classes as outputs, classifiers are built to predict the time
classes for maintenance. A schematic for the entire pipeline
is shown in Figure 3. The first step is to preprocess the in-
put features using a set of autoencoders. These autoencoders
are used to compress these features into approximately half
the original number of inputs. The autoencoders are used to
both focus the classifiers and help to remove tangential infor-
mation contained in the original feature set. The number of
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problems reduces from 51 to 32, solutions from 65 to 32, and
items from 271 to 128.

The first stage binary classifier was set to delineate at the
largest gap in the original data distribution, the less than one
day mark. The purpose of this classifier was to roughly judge
if the jobs were ‘short’ or ‘long’ based on the language found
in the MWO. The classifier implemented is a Multi-Layer
Perceptron (MLP) with three hidden layers. MLP is a neu-
ral network with an input layer, an output layer and at least
one hidden layer. The performance of a classifier is judged
using the recall score, which is the fraction of all correct
time classes correctly identified by the classifier. It calcu-
lated as the ratio of the number of true positives to the sum of
true positives and false negatives (with an averaging method
for multiclass classification). The split between training and
testing sets was 80%-20% respectively. The binary classi-
fier performs with a recall score of 0.87 (For five classes, re-
call=0.88).

In the next step, each of the long time and short time classes
are separately classified using two separate additional MLP
classifiers. These additional classifiers respectively further
classify each MWO input into the hour vs. day categories if
the MWO was found to be a ‘short’ job or the week vs. year
categories if it was designated a ‘long’ job.

The ‘long job’ (high time) MLP classifier (recall = 0.62) was
better during testing than the ‘short job’ (low time) MLP clas-
sifier (recall = 0.57). When the predictions for all the classes
are combined, the overall recall is 0.60 (For five classes, over-
all recall = 0.59).

4.4. Decision Tree Classification

The design and implementation of the previous pipeline of
classifiers inspired a separate step-by-step classification ap-
proach, a decision tree classifier. Similar to the previous
pipeline, the target output for the decision tree is the time
classification of each MWO based on its captured language.
Decision trees were built both with and without the use of
auto encoders as preprocessing nodes to compare if there was
any trade off between end analysis results vs model accuracy.
The performance of decision tree classifiers (using only input
features) is shown in Figure 4. The time classes correspond-
ing to within an hour, week and year are more correctly classi-
fied than the in-between classes (day and month). In general,
the decision tree classifier had better performance than MLP
classifiers, with recall scores of

e .66 (only input features and 4 time classes)
e (.67 (using autoencoders and 4 time classes)
e (.64 (only input features and 5 time classes)
e (.65 (using autoencoders and 5 time classes)

The use of autoencoders to preprocess the features improves
the performance of the classifier slightly, but also adds a layer

of obfuscation to the final sensitivity analysis that may out-
weigh the accuracy gain in many cases.

4.5. Most important features

The models described earlier have targeted the prediction of
estimated time for a maintenance activity. However, it is also
useful to inform the maintenance manager about the most
important features that influence the amount of time taken.
There are two methods described here to decide the most im-
portant features. These methods are demonstrated on the de-
cision tree classifier method described in the previous subsec-
tion.

In the first method, the decision tree classifier (with autoen-
coders for preprocessing) is supplied with all features, except
one. This is repeated for all features, and the performance
of the classifier is recorded. Figure 5 shows how the recall
varies for each feature removed, for 387 features. The impor-
tant features can be inferred from low recall values when the
feature is absent.

As an alternate method, the important features for the deci-
sion tree classifier (without autoencoders) are obtained from
their Gini importance (Shouman, Turner, & Stocker, 2011).
This method did not use autoencoders since the output fea-
tures from autoencoder are not uniquely identifiable. The var-
ious problems, solutions and items are shown in Figure 6(a).
Since there are more items due to it being the largest category,
the features are shown again in Figure 6(b) by dividing with
the number of features in that category.

Between the two different methods there are some common
features that are shown as important. Common solutions were
completed and clean; some common problems are fault and
dirty and some items are beam, conveyor, hmi, primary, line-
bore and clamp. This list is useful to a maintenance manager
to help identify which solutions have the greatest influence
on maintenance time. It is also useful to identify items that
are anomalous with respect to time i.e. the maintenance for
these items takes too long or are unusually quicker than ex-
pected. Deeper analysis for determining the root cause may
then be undertaken. For example, the words dirty and clean
have large importance - this could mean that depending on
whether something was dirty and cleaned would strongly de-
termine the amount of time for maintenance. Common sense
tells us that cleaning is not a very time consuming activity as
compared to, say, replacing an entire part. Similarly, items
such as conveyor and linebore are consistently found to influ-
ence time durations. Such sensitivity analysis can be coupled
with other models such as regression models to determine the
nature of influence of important features - whether they con-
tribute to increased (or reduced) time durations. This analysis
could eventually lead to better planning and resource manage-
ment by identifying and quantifying reasonable expectations
regarding various maintenance tasks within a facility.
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Figure 4. Performance of Decision Tree Classifiers for five and four time classes.

5. DISCUSSION AND FUTURE WORK

This paper has discussed the use of machine learning models
to predict time classes for maintenance duration. Numerous
factors influenced the performance and results of the feature
importance analysis. Some of the notable observations re-
garding that are listed here.

Assignment of Duration Categories: During the course of
the investigation, various demarcations of time duration cate-
gories were explored to best describe the data. For the MLP
classifier, the binary classifier performance decreased by re-
ducing number of classes from 5 to 4. For the overall classi-
fier, as well as decision tree classifier, reducing the number of
classes led to improved performance. Also, within the multi-
step classification of the MLP classifier, the performance is
noticeably better for the binary classifier than for the sec-
ond classification step for four/five classes. These specific
results are somewhat dataset dependant, but the general trend
of searching for classes that are adjacent to each other are
largely expected to to improve performance regardless of the
dataset.

Use of Tagged Data: The analysis illustrated the value of
using tagged data, since the number of features to be used
reduces significantly. Apart from clarifying the terms used,
tagged data makes the analysis computationally feasible in
terms of having to use lesser features. It also makes the results
more explainable and coherent.

Quality of Time Data: Unusable data entries are a major
issue. These are either missing time entries or incorrect en-
tries, such as closing times for workorders that are earlier than

opening times. MWOs for which there were missing dates
and times were entirely ignored but this reduces the amount of
correct data available to train the models. Such issues empha-
size the importance of collecting accurate time related data
during maintenance.

Maintenance Data Collection: The time data available in
the dataset were only the actual start and finish times. There
is no more specific time information e.g., when the mainte-
nance technician arrived, or when the workorder was opened.
Such finer time data would lead to improved inferences about
the actual duration of maintenance. Further details of what
other time data are useful can be found in (Brundage et al.,
2018). Efficient data collection strategies are needed for bet-
ter maintenance time data capture.

5.1. Application to maintenance management

The general procedure for analysis is an outcome of this
work. To derive maintenance management insights starting
from workorder data, the following procedure is a recom-
mended workflow:

Clean the data by using Nestor to tag the data. This prepro-
cessing results in a representation of data that is possible to
be analyzed.

Calculate number of time classes for maintenance time du-
rations. An appropriate number is chosen by looking at the
distribution of times such that the number of entries in each
class is comparable.

Choose a machine learning classifier depending on comput-
ing resources, dataset size and expected performance levels.
A couple of examples have been discussed here, but there
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Figure 5. Performance of the decision tree classifier (with autoencoders for preprocessing) by removing one feature at a time.
Some of the low recalls are labelled with the feature that is removed at that point.

are many more options available. The use of machine learn-
ing models also involves splitting data for training and testing
(For this paper the split was 80%-20% respectively).

List out important features using methods such as feature
importances for decision tree classifier. This would help
maintenance managers identify hotspots such as certain items
that have been contributing heavily to maintenance duration,
even when it is not apparent without the analysis.

Identification of important features such as problem features,
solution features or item features will help to address specific
points in maintenance.

5.2. Future work

The machine learning models can be improved and more
generalized observations can be derived. This is possible
with larger and varied datasets and more tagging on datasets
(such as greater time spent on tagging and tagging of bigram
phrases). It could lead to generalized observations of tags that
are indicative of maintenance domain. For example, some
terms might relate to expensive or time consuming solutions,
such as needed a replacement part. This could potentially
contribute to language standards for MWO recording prac-
tices in maintenance.

With regards to the sensitivity of the models to input features,
it is also planned to use the method of leaving out one feature

at a time on the Neural Network Model. Also, there are other
methods that could be used, for example, one could change
the values of only one feature at a time to know the effect
on predictions. Another method is to use partial dependence
plots for visualizing importance of a given feature, one or
two at a time. Use of such multiple methods might help to
generalize the list of important features. These will all be
addressed in future work.

This work utilized a dataset from the domain of manufac-
turing maintenance. Similar analyses can be performed on
MWOs from other domains, such as aerospace, shipping,
heating ventilation and cooling (HVAC), to identify common
and domain specific parts of language that relate to the main-
tenance duration.

Wherever data is available, similar models can be built and
studied for cost of maintenance activity.

5.3. Other applications

Beyond identifying important features, predictions of main-
tenance time could be useful for maintenance and production
scheduling. Time windows of maintenance obtained from the
model can be used as input to decide how long a resource may
be unavailable.

Based on a problem condition at a machine, a maintenance
manager could search through MWOs for previous solutions.
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However, there could be many solutions, and no way to pri-
oritize which solution to perform. The solutions to a problem
may be about merely lubricating a part, or entirely replacing
a component. Modeling the relation between the solutions,
problems and items provides a means of ordering these solu-
tions by the amount of time to be likely consumed. Prioritiz-
ing might lead to potential savings in overall time.

There are potential uses from this work with respect to man-
aging the inventory of spares. If there are items that need fre-
quent replacement which influence maintenance times, these
items could be stocked in spares to shorten the duration.

The distributions of solutions, problems, items and times
could be used to build simulation models of higher fidelity
that have multiple failure modes and treatments. Thus, sim-
ulations of maintenance scheduling might be more well in-
formed.

6. CONCLUSIONS

This paper discussed the analysis of MWO data to help esti-
mate maintenance duration and identify important problems,
solutions and items features. These features are used to build
machine learning models to predict estimated time duration
of maintenance activities. From the machine learning mod-
els, it is also possible to infer important features that influence
maintenance time. The methodology for using MWO data to
infer important features involves cleaning the text data, decid-
ing on the time classes, fitting predictive models and listing
most important features from the models.
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Figure 6. Ordered list of most important features from the decision tree classifier. These features are ranked by their order of
Gini importance. In Figure (a), the top 30 features are simply ranked by importance. Since the number of features is maximum
for items, most of the important features are items. Hence, Figure (b) shows an ordered list, where the importance is divided by
the number of either problems, solutions or items.
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