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ABSTRACT 

Fault detection in gearboxes plays a significant role in 

ensuring their reliability. Vibration signals collected during 

gearbox operation contain a wealth of valuable condition 

information that can be exploited for fault detection. 

However, in an industrial environment machine operating 

speed always fluctuates around its nominal value, which 

causes smearing of the gearbox vibration spectrum. 

Considering operating speed fluctuation and multi-

component nature of measured gearbox vibration signals, an 

order-tracking method combining the variational mode 

decomposition (VMD) and the fast dynamic time warping 

(FDTW) is proposed in this paper. Firstly, the multi-

component vibration signal is decomposed into several 

intrinsic mode functions (IMFs) using VMD in order to 

extract a signal component with higher signal-to-noise ratio 

(SNR). Then, the sensitive fault information carrying IMF is 

exploited to estimate the instantaneous speed profile in order 

to construct the shaft rotational vibration signal. The 

measured vibration signal is then resampled based on the 

optimal warping path obtained by FDTW, which performs an 

“elastic” stretching and compression along the time axis of 

the extracted shaft vibration signal with respect to a 

sinusoidal reference signal of constant shaft rotational 

frequency. Finally, the gear fault is detected by constructing 

the order spectrum of the resampled vibration signal. The 

effectiveness of the proposed algorithm is demonstrated 

using simulation results. 

1. INTRODUCTION 

The presence of localized defects in a gear tooth results in 

periodic amplitude and phase modulations in the measured 

vibration signal (Randall, 1982). This phenomenon 

introduces sidebands around the gear-mesh frequency (GMF) 

and its harmonics, in the vibration signal spectrum. Detecting 

these sidebands, which occur at the fault characteristic 

frequencies (FCFs), is the basis of identifying gear faults. 

However, extracting fault information from them is 

challenging because the FCFs and GMF are related to the 

shaft rotating frequency, which varies during operation 

(Wang, Cheng, Qiao & Qu, 2018). This operating speed 

fluctuation results in a non-stationary nature of the measured 

vibration signal. Under such circumstances, the traditional 

Fourier transform based spectral analysis fails to provide 

reliable fault information as frequency overlapping occurs 

leading to the undesirable smearing phenomenon of the 

frequency components (Wang et al., 2018). Moreover, the 

measured vibration signals are generally multi-component in 

nature and often contaminated by unwanted background 

noise. Thus, developing appropriate signal processing 

techniques that can successfully extract relevant fault-

information carrying part from the measured signal and 

remove the influence of the operating speed fluctuation to 

extract the fault characteristics is an important research 

aspect in the field of gear fault diagnostics.  

Traditionally, order-tracking (OT) is adopted to remove 

spectral smearing, which transforms a non-stationary signal 

in the time domain into a stationary one in the angular domain 

(Schmidt, Heyns & deVilliers, 2018). OT requires collection 

of extra information on the shaft rotational speed or angular 

position using additional sensors like tachometers and 

encoders (Bonnardot, El Badaoui, Randall, Daniere & 

Guillet, 2005). However, the availability of such sensors in 

an industrial set-up is limited due to the added cost associated 

with it. Hong, Qu, Dhupia, Sheng, Tan, and Zhou (2017) 

proposed a fast dynamic time warping (FDTW) based tacho-

less order tracking technique where spectral smearing was 

alleviated by aligning a filtered shaft rotational harmonic 

with a sinusoidal reference signal constructed assuming 
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constant shaft speed. A critical step in this method, which 

requires user intervention and understanding of system 

operation, is the extraction of the mono-component shaft 

rotational harmonics using band-pass filtering, from a multi-

component measured vibration signal. However, the central 

frequency and bandwidth of this filter need to be chosen 

carefully, especially when speed fluctuations are involved 

(Cheng, Yu, Tang & Yang, 2008). If these parameters are not 

estimated properly, the resultant signal may lead to inaccurate 

interpretations, due to the varying frequency content of 

measurements. As a result,  researchers have recently started 

adopting more adaptive approaches using different signal 

decomposition methods, like the variational mode 

decomposition (VMD), which uses advanced filtering 

techniques to extract signal modes that can adaptively update 

the center frequency and bandwidth until the appropriate 

mode is identified (Dragomiretskiy & Zosso, 2014; Feng, 

Zhang & Zuo, 2017). VMD  is a non-recursive decomposition 

scheme, which solves a constrained variational problem to 

concurrently extract the signal modes (Dragomiretskiy & 

Zosso, 2014). 

In this paper, a novel tacho-less order tracking method for 

self-adaptive gear fault-detection is developed by combining 

VMD and FDTW. The detection algorithm first employs 

VMD to extract the time-varying gear-mesh frequency 

component mode from the vibration signal of a gearbox. 

Afterwards, the extracted component is exploited to estimate 

the instantaneous speed profile in order to construct the shaft 

rotational vibration signal. The extracted component is then 

utilized to resample the measured original vibration signal of 

the gearbox based on an optimal warping path evaluated from 

the FDTW. The spectrum of the original vibration signal after 

the resampling step is found to improve as the smeared gear-

mesh frequency and the fault-induced sidebands are easily 

identifiable as compared to the spectrum in the presence of 

speed fluctuation and noise. The capability of the proposed 

algorithm is demonstrated using an analytical vibration signal 

model of a fixed-axis gearbox. 

The rest of the paper is organized as follows. Section 2 gives 

a brief background of VMD and FDTW followed by the 

introduction of the proposed algorithm. Section 3 investigates 

the effectiveness of the proposed algorithm using a 

MATLAB-based simulation analysis. Finally, the paper is 

concluded in Section 4. 

2. PRINCIPLE OF THE PROPOSED FAULT DETECTION 

ALGORITHM 

The proposed algorithm sequentially uses VMD and FDTW 

on measured vibration signal to perform fault detection in 

gears operating under variable speed. Accordingly, a brief 

background on VMD and FDTW is first provided in this 

section for the ease of understanding of the readers. The 

proposed fault detection algorithm is also introduced later in 

this section. 

2.1. Variational mode decomposition (VMD) 

VMD is an adaptive decomposition method that can 

decompose a complex multi-component signal x(t) into a 

discrete number of modes or IMFs, mk(t). Here, mk(t) is the 

kth mode or IMF, which is defined as an amplitude-frequency 

modulated (AM-FM) signal and can be written as 

(Dragomiretskiy & Zosso, 2014), 

       cos ,k k km t A t t   (1) 

where Ak(t) is the instantaneous amplitude, ϕk(t) is the 

instantaneous phase whose derivative gives the instantaneous 

frequency. 

VMD produces IMFs, which are signals with limited 

bandwidth around their central frequencies. During the 

decomposition process, VMD iteratively updates each IMF 

mk(t) in the frequency domain, simultaneously estimating 

their associated center frequency ωk as the center of gravity 

of the respective IMF’s power spectrum. In order to estimate 

the bandwidth of a particular IMF mk(t), its analytic signal is 

constructed by applying Hilbert transform in order to 

calculate the unilateral non-negative frequency spectrum. 

Then the IMF’s spectrum is shifted to baseband by 

multiplying it with an exponential function tuned to its 

estimated center frequency. Finally, the required bandwidth 

is estimated using the H1 Gaussian smoothness. The resulting 

constrained variational problem, with the goal to minimizing 

the sum of the spectral widths of all the IMFs, is as follows 

(Dragomiretskiy & Zosso, 2014; Feng et al., 2017), 
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where {mk}={m1,…,mK} and {ωk}={ω1,…,ωK} are, 

respectively, the mode vector and their corresponding center 

frequency vector, δ(.) is the Dirac delta function, * denotes 

the convolution function, K is the number of modes or IMFs 

to be extracted, and the constraint denotes that the sum of the 

modes is equal to the original signal x(t). 

The constrained optimization problem in Eq. (2) is solved by 

converting it into an unconstrained problem by introducing a 

quadratic penalty term and Lagrangian multiplier as, 
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  (3) 

where α is the penalty term and λ(t) is the Lagrangian 

multiplier. Now the solution to the original minimization 

problem of Eq. (2) is found by iteratively solving the 

Lagrangian L of Eq. (3) using alternate direction method of 
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multipliers (ADMM), which is explained in detail in 

(Dragomiretskiy & Zosso, 2014). Next, the IMF mk(t) and its 

center frequency ωk is obtained by updating them as a 

solution to a minimization problem of Eq. (3) as (Feng et al., 

2017), 

      argmin , , ,
k

k k k
m

m t L m        (4) 

    argmin , , .
k

k k kL m


        (5) 

In the frequency domain, the solution to Eq. (4) can be found 

as (Feng et al., 2017), 
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The full spectrum of the IMF is then obtained by applying 

Hermitian symmetric completion and it is converted into the 

time domain by taking the real part of the inverse Fourier 

transform of the filtered analytic signal. 

As previously mentioned, the center of gravity of the 

obtained IMF mk(t) power spectrum is utilized to calculate its 

center frequency ωk as (Feng et al., 2017), 
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The detailed algorithm of VMD is provided in 

(Dragomiretskiy & Zosso, 2014) and its MATLAB code is 

available at (Zosso, 2013). The readers are advised to refer 

these for more details on this method. 

2.2. Fast dynamic time warping (FDTW) 

FDTW is an approximate method for multilevel 

implementation of dynamic time warping (DTW) approach 

with a linear O(N) time and space complexity which produces 

an accurate minimum-distance warp path between two time 

series that is nearly optimal (Salvador & Chan, 2007). 

DTW is an approach to achieve an optimal alignment 

between two time series in order to determine the similarity 

between the two given series. The resemblance between the 

given time series is estimated by optimal alignment between 

their corresponding data points, which yields a minimum 

residue, allowing the two timescales to be warped nonlinearly 

by stretching or shrinking (Salvador & Chan, 2007; Hong et 

al., 2017). In order to understand the concept of DTW, two 

time series, X (= x1, x2,…, xi,…, xN) of length N and Y (= y1, 

y2,…, yi,…, yM) of length M, are considered. Next a warping 

path, W (= w1, w2,…, wk,…, wP) is constructed, where P is the 

length of the warping path and the k-th element of the 

warping path is given by, 

  , ,kw i j   (8) 

where i (=wk(1,1)) is an index from the time series X, and j 

(=wk(1,2)) is an index from the time series Y. Now, if the 

warping path, W, contains the element, (i,j) then it implies 

that DTW has performed an alignment between the i-th 

sample of X and the j-th sample of Y. The warping path must 

also satisfy the following conditions (Salvador & Chan, 

2007), 

1. The first element of W must be w1 = (1, 1), which implies 

that the warping path must start at the beginning of each 

time series, 

2. The last element of W must be wP = (N, M), which 

implies that the warping path must finish at the end of 

both the time series, and 

3. Moreover, every index in both of the time series, 

between the start and end of the warping path, must be 

used sequentially at least once, i.e., if wk = (i, j) and wk+1 

= (i⸍, j⸍), then i⸍ ϵ (i, i+1) and j⸍ ϵ (j, j+1). 

The warping path W is evaluated by calculating a two-

dimensional cost matrix, D, of dimension, N × M, as shown 

in Fig. 1. Each cell of the matrix D is calculated as, 
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Figure 1. The two-dimensional cost matrix, D, of DTW 

indicating the optimal alignment path for the time series, X 

and Y (Hong et al., 2017). 

As each cell in the cost matrix D is evaluated once, so DTW 

becomes quadratic in time and space and it creates the need 

for methods to speed up the algorithm. FDTW is the faster 

alternative of DTW, which is achieved by a multilevel 

recursive approach with three key operations (Salvador & 

Chan, 2007; Hong et al., 2017): 

1. Coarsening: In this step, a lower resolution time series is 

created by considering half as many points as the input 

time series for a single run of the recursive function. 

Coarsening is run several times until a lowest resolution 

of the time series is obtained, which is determined by a 

pre-defined radius.  

2. Projection: This step involves finding an optimal 

warping path in the lowest resolution using the standard 
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DTW and then project it to the next higher resolution, 

which is obtained by increasing the lower resolution by 

a factor of 2. 

3. Refinement: In this step, the projected path is expanded 

by the predefined radius to form a search window at a 

higher resolution, which is passed to a constrained DTW 

algorithm. This constrained DTW only evaluates the 

cells within the search window to find the optimal 

warping path.  

Thus, in FDTW, the DTW algorithm only evaluates the cells 

within the search window rather than the complete cost 

matrix, which speeds up the overall algorithm. 

2.3. Proposed fault detection algorithm 

The proposed fault detection algorithm is developed to first 

extract a mode with a high signal-to-noise ratio (SNR) from 

the measured vibration signal and then use it to counter the 

spectral smearing phenomenon. The key steps of the 

developed fault detection scheme are:  

Step 1: Decomposition of the measured vibration signal into 

different signal components using VMD in order to extract 

the fault information carrying part of the measured signal. 

Step 2: Estimation of the shaft vibration signal from the 

selected signal mode.  

Step 3: Estimation of a reference signal with an assumed 

constant speed. 

Step 4: FDTW implementation to align the extracted shaft 

vibration signal with the reference signal.  

Step 5: Reconstruction and resampling of the original 

vibration signal to alleviate the spectral smearing caused by 

speed fluctuations.  

 

Figure 2. Flowchart of the proposed fault detection 

algorithm. 

The overall scheme is summarized in Fig. 2 and is explained 

in detail using a MATLAB-based simulation of a fixed-axis 

gearbox in Section 3. 

3. SIMULATION BASED ANALYSIS 

This section describes the model to represent the vibration 

signal of a single stage fixed-axis gearbox (with number of 

teeth on pinion Np =10 and number of teeth on gear Ng =15) 

operating under speed fluctuation. The signal obtained from 

this model is processed by the proposed fault detection 

algorithm to study the capability of the method in extracting 

fault indicators under variable speed conditions. 

The vibration response, xv(t), of the virtual gearbox consists 

of the shaft-vibration signal, xs(t), and gear-mesh vibration 

signal, xm(t). The dominant frequency components of xs are 

the gear-shaft rotational frequency, fs(t). The important 

frequency components in xm are the fundamental gear-mesh 

frequency, fm(t) (=Ngfs(t)), and the sidebands around the mesh 

frequency if a local gear fault is present. Thus, the overall 

vibration signal, xv(t), can be simulated as (Hong et al., 2017; 

McFadden, 1986), 
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where a speed variation function, fs(t) = (1 + 0.05t) fs, is used 

to simulate a speed fluctuation around the nominal shaft 

rotational frequency fs = 20 Hz. Fig. 3 plots the speed profile, 

fs(t). The amplitude and phase modulation (AM & PM) 

functions, am(t) and bm(t), due to a local fault at a gear tooth 

are expressed as, 

     
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
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If the gear is free from any defect, then the amplitudes of Eq. 

(11) and Eq. (12) are set equal to 0. 

 

Figure 3. Speed fluctuation profile used in the simulation. 
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Figure 4. Time domain signal of the simulated faulty 

gearbox. 

Without the loss of generality, the first gear mesh harmonic 

(m = 1) is considered and its corresponding amplitude is taken 

as A1 = 3. The harmonic order (q) of the modulation functions 

am(t) and bm(t), is assumed to be 2, with their corresponding 

amplitudes set as a11 = 0.15, a12 = 0.30, b11 = 0.18, b12 = 0.25. 

For the gear shaft, only the fundamental harmonics is 

considered (i.e., n = 1) and its corresponding amplitude As1 is 

chosen as 2. A Gaussian white noise of SNR = 5 dB is added 

to the vibration signal xv(t) to account for the challenges 

encountered in practical measurements. Fig. 4 shows the 

time-domain waveform of the simulated gearbox, which 

indicates that the modulation features caused by the gear 

faults are mostly suppressed by noise and other unwanted 

components. This study is done considering a sampling 

frequency of 4096 Hz. 

 

Figure 5. The spectrum of the raw vibration signal of the 

simulated gearbox in fault condition in the presence of 

speed fluctuation and noise. 

The spectrum of the simulated signal is shown in Fig. 5. 

However, the presence of sidebands around the meshing 

harmonics due to gear faults cannot be distinguished from the 

spectral components because of the smearing phenomenon 

caused by shaft operating speed fluctuation. Therefore, in 

order improve the smeared spectra; the proposed algorithm is 

applied, which is explained in detail in the subsequent 

section. 

3.1. Application of the proposed fault detection 

algorithm 

In this section, the detection algorithm is applied on the 

simulation model and an explanation of the involved steps is 

provided. 

3.1.1. Step 1: Signal decomposition using VMD 

In this step, VMD is applied on the simulated vibration signal 

xv(t) in order to decompose it into its constituent modes. Fig. 

6 shows the IMFs generated after applying VMD with initial 

mode estimation of K = 5. VMD is found to be effective in 

decomposing the multi-component vibration signal xv(t) into 

its constituent modes. After the decomposition, IMF 2 is 

found to have an instantaneous frequency (IF) centering 

about the gear-mesh frequency and so it is selected for further 

analysis. Fig. 7 shows the IF profile of IMF 2. Since the mesh 

frequency is a function of the shaft rotational frequency, it 

can be exploited to estimate the instantaneous speed profile 

of the corresponding shaft, which is explained in detail in the 

next step. For the ease of estimation of the shaft vibration 

signal and the reference signal in the subsequent steps, IMF 

2 is demodulated to form a normalized sinusoidal function, 

x̅imf(t) using the Hilbert transform. 

 

Figure 6. IMFs generated using VMD. 

 

Figure 7. IF of IMF 2 and its comparison with the 

corresponding gear meshing frequency. 

3.1.2. Step 2: Estimation of the shaft vibration signal 

The next step is to extract a harmonic of the reference shaft 

rotational frequency (fs(t)) from the selected IMF (IMF 2), 

which is a mono-component having IF around the 

fundamental gear-mesh frequency. Therefore, it can be 

exploited to extract the first harmonic of fs(t) from where the 

normalized vibration component of the shaft can be 

represented as a simple sinusoidal signal as, 
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     cos 2 .sh sx t f t t   (13) 

Now in order to extract fs(t) from IMF 2, the fixed-axis gear-

mesh frequency (fm(t) = Ngfs(t)) must be estimated from where 

the instantaneous speed profile can be calculated as, 

  
 

.
m

s

g

f t
f t

N
   (14) 

From Eq. (10), it can be observed that the instantaneous phase 

of the fixed-axis gear’s fundamental meshing vibration is 

given by, 

    2 .g mf t t b t       (15) 

Now, if we divide Eq. (15) by 2πt and consider b(t)/2πt and 

φ/2πt to be negligible for an increase in t, the gear meshing 

frequency can be approximated from the instantaneous phase, 

ψg of the gear’s fundamental mesh vibration signal. Fig. 8 

shows the comparison of the estimated instantaneous shaft 

speed profile and the true instantaneous speed profile, 

considered for this simulation, and they are found to have a 

close match. 

 
Figure 8. Comparison between the true and the estimated 

input shaft speed used in the simulation. 

3.1.3. Step 3: Estimation of the reference signal 

In this section, the reference signal, y(t), is built using the 

estimated vibration signal of the reference shaft of the 

gearbox. For the reference signal, the gearbox is considered 

to be operating under a constant load and rotational speed, f͂s. 

So, the vibrational signal can be written as, 

    cos 2 ,sy t A f t   (16) 

where A is the amplitude. y(t) is constructed using the same 

sampling frequency and the total time as the original 

vibration signal xv(t). As in this analysis, the normalized shaft 

vibration signal is considered, so the amplitude of reference 

signal, y(t), is set as A = 1. Furthermore, the constant shaft 

rotational frequency, f͂s, of the reference signal, y(t), can be 

chosen from the range between 
1pp

T


and

1pp

T


, where T is 

the total time for which the original vibration signal xv(t) is 

simulated (Hong et al., 2017). Pp corresponds to the number 

of positive peaks of the sinusoidal signal, which can be 

estimated from the number of local maximum/minimum 

points of the normalized shaft-vibration signal. 

3.1.4. Step 4: Fast DTW implementation 

In this step, FDTW is utilized to negate the spectral smearing 

phenomenon of the measured vibration signal. The two 

signals, the normalized shaft vibration signal, xsh(t), and the 

estimated reference signal, y(t), are matched in the time 

domain by employing the FDTW algorithm. Fig. 9 (a) shows 

the alignment of xsh(t) and y(t) before warping. The observed 

phase difference between the two signals is primarily 

introduced due to speed fluctuation, which is eliminated by 

aligning xsh(t) with y(t) using FTDW. The resulting warped 

signals after FDTW are shown in Fig. 9 (b). 

 

Figure 9. (a) Waveforms of the normalized shaft vibration 

and the reference signal, and (b) Waveforms of the warped 

normalized shaft vibration and the warped reference signal. 

3.1.5. Step 5: Reconstruction of the original vibration 

signal 

After the FDTW step, the original vibration signal, xv(t) is 

reconstructed based on the data points of warped normalized 

shaft vibration, xshw. However, it is observed that the length 

of the reconstructed signal changes and so in order to restore 

back to the original vibration signal length, a resampling 

algorithm is applied (Hong et al., 2017). This sequential 

application of FDTW and resampling algorithm squeezes the 

time-dependent shaft rotational speed, fs(t), towards the 

constant rotational speed, f͂s, through optimal alignment of the 

corresponding similar data points. As a result of this 

procedure, the time-varying frequency components, which 

are the harmonics of the shaft rotational speed, fs(t), are also 

transformed into constant ones. This transformation step 

makes the proposed detection algorithm suitable for order-

tracking analysis, which converts the instantaneous 

frequency trajectories of specified orders that change 
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arbitrarily over time into lines parallel to the time axis on the 

time-frequency plane. So, the reconstructed vibration signal 

(xw(t)) is now used to generate the shaft order spectrum for 

fault detection. 

Fig. 10 shows the generated shaft order spectrum. It can be 

observed that the severe spectral smearing (Fig. 5) caused by 

the speed fluctuations is removed from the spectrum and the 

sidebands introduced due to gear faults can be easily 

identified. Thus, the proposed algorithm helps in adaptively 

overcoming the spectral smearing problem in fault detection 

of gears. 

 

Figure 10. The shaft order spectrum of the reconstructed 

vibration signal of the gearbox in fault condition in the 

presence of speed fluctuation and noise after the application 

of the proposed algorithm. 

4. CONCLUSION 

In this paper, a self-adaptive fault detection algorithm for 

gears, combining VMD and FDTW, is presented. Fault 

detection in industrial gearboxes using measured vibration 

signal is generally limited by the presence of unwanted 

background noise and inherent machine operating speed 

fluctuation. The conventional Fourier transform based 

approaches suffer from spectral smearing in such cases. The 

proposed algorithm addresses these issues in order to extract 

reliable fault information. An analytical simulation model of 

a fixed-axis gearbox is used to investigate the performance of 

the proposed detection algorithm. The simulation results 

indicate that VMD is capable of adaptively extracting a 

sensitive fault information carrying mode from a noisy 

gearbox vibration signal, which can then be exploited for 

order analysis in order to eliminate the smearing effect caused 

by speed fluctuation. The proposed order-tracking method 

doesn’t require additional speed information of the shaft as 

the extracted mode is utilized to estimate the shaft speed 

profile, which is then employed to project the original 

timescale of the measured vibration signal to a new 

transformed timescale by performing a warping operation 

with the help of FDTW. Future work of this study includes 

implementation of the VMD-FDTW approach in detecting 

faults using measured vibration signals of practical 

gearboxes. 
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