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ABSTRACT

Neural networks in their many flavors have been widely used
in prognostics of engineered systems due to their versatil-
ity and increasing potential, especially with recent break-
throughs in Deep Learning and specialized architectures. De-
spite these advances, some problems can still significantly
benefit from a solid exploratory analysis and simple task-
specific data/target transformations. In this work, popular ar-
chitectures including Feedforward, Convolutional and LSTM
(Long Short-Term Memory) networks are evaluated in a case
study of RUL (Remaining Useful Life) prediction for turbo-
fan aircraft engines, using data from publicly available repos-
itories. A robust set of over 20, 000 model configurations
are tested, evaluating the effects of several hyper-parameters
and design choices. The latter includes a maximum predic-
tion horizon, revealing a trade-off between prediction accu-
racy and timeliness which can have significant impact in real-
world applications. An operating condition-specific standard-
ization scheme is also evaluated, in order to minimize the im-
pact of normal changes in operating regimes which obfuscate
the fault degradation patterns. A comparison with existing
works in literature shows some simple policies for operating
condition-invariance have lead to results which outperform
the current state-of-the-art methods for some of the data sub-
sets with multiple operating conditions.

1. INTRODUCTION

Engineers constantly aim to design systems increasingly per-
formant, but also capable of remaining so for long periods of
time. Specifically, in the aerospace industry, reliability and
availability are very important traits due to the high associ-
ated acquisition, repair and operation costs for aircraft. The
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aerospace industry (like the automotive, data center, oil and
gas, steel-making, etc.) has high stakes and potentially catas-
trophic consequences for failure, so a substantial effort is put
into reliability and maintainability, from concept design to
product end-of-life.

Prognostics and Health Management (PHM) technologies are
a core enabler for predictive maintenance, allowing for timely
interventions that prevent unscheduled downtime, helping in
the decision-making process, making operation not only safer
but also more cost effective.

The focus of this work is on prognostics, or remaining use-
ful life (RUL) prediction, more specifically machine learn-
ing data-driven methods based on neural networks. Publicly
available data sets describing the operational history of sim-
ulated aircraft turbofan engines are used in the case study,
allowing for comparisons with other results from the litera-
ture. The explored architectures include multilayer percep-
tron (MLP), convolutional neural networks (CNN) and long
short-time memory (LSTM) networks. The analysis covers
the required steps for implementing such data-driven prog-
nostics techniques, including exploratory analysis, data pre-
processing, feature engineering and selection, model struc-
ture and hyperparameter optimization.

2. LITERATURE REVIEW

2.1. Taxonomy of Prognostics Approaches

Although no universal consensus seems to exist on how to
best categorize the different prognostics methods, a useful
classification is shown in (Javed, Gouriveau, & Zerhouni,
2017):

Physics-based methods: also known as model-based meth-
ods, they use explicit mathematical formulations to represent
the system behavior (Pecht & Jaai, 2010). These tend to
be more accurate, but require in-depth knowledge about the
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physical processes that govern the system behavior and as-
sume it can be described analytically and accurately, making
them not always possible or cost effective.

Data-driven methods: these methods use black box models,
learning the system behavior via condition monitoring data,
not requiring extensive expect knowledge about the system.
The use of general-purpose models also allows for more flex-
ibility, allowing applicability across different contexts, but ac-
curacy is dependent on the quantity and quality of available
data (Ahmadzadeh & Lundberg, 2013).

Hybrid methods: these approaches leverage aspects of both
physics-based and data-driven methods, using them in com-
plementary ways.

In this work, all studied methods fall into the second category,
the data-driven approaches. Those represent a good compro-
mise between accuracy and applicability, especially in times
of ubiquitous and abundant data sources and the technologi-
cal advances in machine learning / deep learning, which show
tremendous potential in many fields.

2.2. Machine Learning-based Prognostics Methods

There are a number of papers in the literature proposing data-
driven methods for health management-related tasks using
machine learning, statistical, ad-hoc methods, etc. Upon re-
view, some similarities among the different prognostics ap-
proaches can be noticed.The concept of a health index (HI) is
used by many authors. The problem is then broken into two
steps, one to map the predictor features into the HI and the
other to map the HI to the RUL. Examples of works using
HI’s include (Yang et al., 2016), (Wang, Yu, Siegel, & Lee,
2008) and (Peng, Xu, Liu, & Peng, 2012).

When dealing with measurements of physical quantities, sen-
sor noise will always be present to some extent. This is
addressed in multiple studies by applying some form of
pre/post-processing smoothing filter. In (Yang et al., 2016),
a dynamic filter is applied to the HI, enforcing monotonic-
ity and gradualness (health will generally only slightly de-
crease over time). Similarly, a moving average filter is used
in (Wang et al., 2008) and a kernel filter in (Ramasso, 2014).
Several different neural network architectures have been used
for prognostics, such as feedforward networks in (Yang et al.,
2016), CNN’s in (Li, Ding, & Sun, 2018), recurrent neural
networks (RNN) are used in (Liu, Saxena, Goebel, Saha, &
Wang, 2010), LSTM networks are used in (Guo, Li, Jia, Lei,
& Lin, 2017), to name a few.

3. METHODOLOGY

3.1. Problem Overview

The CMAPSS (Commercial Modular Aero-Propulsion Sys-
tem Simulation) data sets are used in this work. These are

divided into TEDS (Turbofan Engine Degradation Simula-
tion) (Saxena & Goebel, 2008b) and PHM2008 (Saxena &
Goebel, 2008a) data sets, which are both publicly available at
the NASA Prognostics Data Repository.

The data is comprised of several multivariate time series,
which correspond to 24 sensor measurements taken for each
operating cycle of a particular simulated turbofan engine.
Over time, the engines start to degrade and the goal is for the
model to predict the number of cycles until failure (RUL). As
seen in Table 1, each data set is divided into subsets, which
may have different numbers of fault modes and operating
conditions.

Table 1. Overview of the CMAPSS datasets subsets.

Dataset Subsets # Fault
Modes

# Operating
Conditions

# Train
Units

# Test
Units

TEDS
FD001 1 1 100 100
FD002 1 6 260 259
FD003 2 1 100 100
FD004 2 6 249 248

PHM2008 FD005 1 6 218 218
FD005 Final 1 6 435

In the training set, all time series are assumed to go on until
failure. In the test set, the data stops before that happens. In
the TEDS data set, ground truth for the number of cycles left
is provided. In the PHM2008, it is not, so one must submit
their result to the repository website to get the results.

Figure 1 shows the windowing scheme used to map segments
with length ` from the input time series X(u) from the u-
th engine unit into a scalar y(u) representing the number of
flight cycles left, which decreases linearly over time. This
relationship is what needs to be learned by the models.

t t

X(u) y(u)

tu0 tu0 `

`

Figure 1. Moving window sequences to RUL curve mapping.

3.2. Exploratory Analysis

By plotting the normalized sensor data, as seen in Fig. 2a, it
can be seen that different features behave differently, but a
clear fault degradation trend can be seen for some of them.
However, in the case where there are multiple operating con-
ditions, as in Fig. 2b, the same degradation trend is not clearly
visible. It turns out that the variations in the predictor fea-
tures caused by changes in the operating conditions are way
more pronounced than the variations due to the degradation.
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Since that degradation pattern is what needs to be recognized
in order to predict RUL, the second case is considerably more
complex to model.
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(b) Multiple operating conditions.

Figure 2. Plots of the time series data from two arbitrary units
(u = 1) from subsets FD001 and FD002, which have, respec-
tively, one and six operating conditions.

It is stated at the problem description that the first three fea-
tures encode the operating conditions. When plotting those
features only, 6 well defined clusters can be seen, as shown in
Fig. 3 (TEDS and PHM2008 data sets have different operat-
ing conditions).

3.3. Data Preprocessing

Several data preprocessing strategies are evaluated in this
work. Feature selection is performed manually, by visually
inspecting the behaviors of the individual features over time.

Three scenarios are evaluated: one where all features are kept,
one where the features not directly correlated with RUL are
removed and one where most features are removed, leaving
only a few which do not seem to contain redundant informa-
tion (see Table 2 for details).

3.3.1. Operating Condition-specific Standardization

Feature scaling is generally desirable in order to improve con-
vergence of gradient-based learning algorithms, such as the
ones used to train neural networks. Feature transformation
was initially done by performing regular feature-wise stan-
dardization, as seen in Eq. (1), where X̃(u)

:,d is the standard-

ized d-th feature from the u-th engine unit, X(u)
:,d is the orig-
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(a) TEDS.

Altitude [ft ×1000]

0
10

20
30

40

Mach

0.0

0.2

0.4

0.6
0.8

T
R

A
[%

]

0

20

40

60

80

100

(b) PHM2008.

Figure 3. Clusters found in the features describing the en-
gine operating conditions in CMAPSS dataset (including all
subsets).

inal data, µd is the mean from the d-th feature and σd is the
standard deviation.

X̃
(u)
:,d =

X
(u)
:,d − µd

σd
(1)

However, it was noticed that the operating conditions have a
great impact on the predictors, as seen in Fig. 2. In fact, the
(normal and expected) variance observed as a consequence
of different operating conditions far outweighs the variance
introduced by the progressing faults. This essentially masks
the fault’s effects making it more difficult to predict the RUL
if multiple operating conditions are present. Therefore, an ef-
fort was made to make the data operating condition-invariant.

This is achieved by applying the operating condition-specific
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standardization method described by Eq. (2) and Eq. (3) in all
features correlated with RUL. Similar feature standardization
schemes have been proposed by other authors, such as (Peel,
2008) and (Wang, 2010), with good results.

X̃
(u)
:,d =

nc∑
c=1

δ(u):,c �
(
X

(u)
:,d − µd,c

σd,c

)
(2)

δ
(u)
t,c =


1, if c = arg min

c′

√√√√ 3∑
d=1

(
X

(u)
t,d − µd,c′

)2
0, otherwise

(3)

Since each operating condition corresponds to a cluster in the
X:,1:3 subspace (subspace defined by the first three features),
a simple clustering algorithm (K-Means) is used to assign
each data point to a cluster via a hard membership function
δ
(u)
t,c . Each data point is then standardized using the statistics

drawn from only the samples coming from the same cluster it
belongs to. Similarly, µd,c and σd,c are the mean and standard
deviation, respectively, of the d-th feature considering only
samples belonging to the c-th cluster. The number of clusters
nc corresponds to the number of operating conditions in the
data subset.

3.3.2. Noise Filtering

When analyzing the top ranked prognostics algorithms for
this problem, it can be seen that all of them use some form
of filter in order to decrease the effects of sensor noise. In
this work a causal exponentially weighted filter, described by
Eq. (4), is used to that end.

X̃
(u)
t,d =

{
X

(u)
t,d , if t = 0

α ·X(u)
t,d + (1− α) · X̃(u)

t−1,d, otherwise
(4)

X
(u)
t,d is the original observation at time t and X̃(u)

t,d is the re-
sulting filtered value. Low values of the parameter α lead to
more pronounced filtering, but also a longer delay is intro-
duced in the signal.

3.3.3. RUL Limit (rmax)

Since the target RUL value is only given for the final observa-
tion in the time series, targets for earlier windows may be de-
fined arbitrarily, not necessarily assuming a linearly decreas-
ing trend (as seen in Figure 1) throughout the entire engine
unit’s life.

A simple target transformation is used, in order to limit the
maximum RUL (rmax) value in the target RUL curve. Three

scenarios are evaluated, setting this cap to 130 (most common
among the works in the literature), 100 and 80 cycles. Going
back in time far enough will likely eventually make one reach
a stage at which no fault is present, the system is healthy with
no signs of degradation, making it unreasonable to expect the
model to predict a future failure then. Introducing this RUL
limit reduces the uncertainty of early predictions, making the
models more reliable.

3.4. Model Architectures

In this work, three neural network predictive model architec-
tures are evaluated. The first is the classic Multilayer Percep-
tron (MLP). The only noteworthy adaptation that was made
necessary was the flattening of the input multivariate time se-
ries into a single univariate array, by concatenating the feature
vectors. This was necessary since the MLP structure only
supports unidimensional inputs.

The second architecture is the CNN. Since the feature vec-
tors are relatively small, there was no need to include pooling
layers in between the convolutional ones. For all the tested
models, at least one fully connected layer was used at the end
of the network.

The third architecture is the LSTM. No special adaptation was
necessary.

For all architectures, several structures were tested, changing
the number of layers, width per layer, filter lengths (CNN),
etc. The ranges of values experimented with were determined
in an attempt to equalize the average training time for each the
architectures (see Table 2 for details).

3.5. Training and Evaluation

The Adam (adaptive moment estimation) optimizer (Kingma
& Ba, 2014) was used for all experiments. The original train-
ing set was broken into 80% for training and 20% for vali-
dation. The original test set was reserved for testing. As for
loss functions, initially, a simple mean squared error (MSE)
was considered, as described in Eq. (5), where ny is the num-
ber of observations, ŷi and yi are the i-th predicted and target
outputs, respectively (i being a simple index, not necessarily
time).

MSE =
1

ny

ny∑
i=1

(ŷi − yi)
2 (5)

Since for the prognostics task a late prediction is more harm-
ful than an early one, an asymmetric score s was devised by
the creators of the dataset in order to penalize late predictions
more strongly, as described by Eq. (6).
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s =



ny∑
i=1

[
exp

(
− ŷi − yi

10

)
− 1

]
, for ŷi < yi

ny∑
i=1

[
exp

(
− ŷi − yi

13

)
− 1

]
, for ŷi ≥ yi

(6)

Note, however, that the Eq. (6) does not normalize the score
by the number of observations accounted for, which makes it
unsuitable for comparisons between data sets with different
sample sizes. In order to overcome this inconvenience, the
normalized score s̃ described by Eq. (7) was used as a loss
function instead.

s̃ =


1

ny

ny∑
i=1

[
exp

(
− ŷi − yi

10

)
− 1

]
, for ŷi < yi

1

ny

ny∑
i=1

[
exp

(
− ŷi − yi

13

)
− 1

]
, for ŷi ≥ yi

(7)

3.6. Hyperparameter Search

Several methods for hyperparameter optimization were con-
sidered in this work, but random search was eventually cho-
sen. This method is very simple, computationally cheap, ex-
plores the search space relatively well despite the presence
of unimportant hyperparameters. Other more complex opti-
mization strategies, such as genetic algorithms for example,
may yield better results but also introduce other hyperparam-
eters themselves.

Table 2 shows a list of all hyperparameters / design choices
and their values explored during random search. In all archi-
tectures, the layer width is increased by a factor of 2 as depth
is increased (i.e.: if the first layer has width 64, the second
will have 128, the third 256, etc.).

4. EXPERIMENTAL RESULTS

4.1. Random Search Results

During random search, over 20, 000 different models were
evaluated, being trained with 20 epochs. Figure 4 shows the
results of these model evaluations (each point is a model eval-
uation), in light of the MSE and normalized score for the val-
idation set.

From the results in Figure 4b it can be seen that a lower
RUL limit will allow the models to achieve lower MSE’s
and scores. This poses an interesting trade-off between pre-
diction accuracy and timeliness. If the model is forced to
make too early predictions, its uncertainty is higher, so the
error tends to increase. However, if the limit is too low, the

Table 2. Summary of the hyperparameter values and design
choices explored through random search.

Hyperparameter Search space

Selected features
Kept all;
Removed 4, 8, 19, 21 and 22;
Only kept 7, 14, 16, 18 and 24

Op. cond. as one-hot features Yes or No
RUL limit (rmax) 130, 100, 80
Sequence length 20, 21, ..., 40
Batch size 32, 64, 128, 256, 512, 1024
Op. cond.-specific standardization Yes or No
Exponential filter α 0.001 to 0.2 (log distribution)
Extra fully-connected layer No extra layer, 64 or 128 neurons
Hidden Layer activation function Tanh, RELU, Sigmoid
Learning rate 0.0001 to 0.01 (log distribution)
Dropout probability 0 to 0.6
LSTM units per layer 32, 64, 128, 256
LSTM layers 1 or 2
CNN filters 4, 8, 16, 32, 64, 128, 256, 512
CNN kernel size 3, 4, 5, ..., 11
CNN layers 1, 2, 3, 4, 5
MLP units per layer 16, 32, 64, 128, 256, 512, 1024
MLP layers 1, 2, 3, 4

Number of epochs 20 for random search;
50 to reproduce best results

Optimizer Adam
Loss function Normalized score (s̃)

model may only give non-trivial predictions (predictions be-
low rmax) when it is too late to take any action.

The first plot in Figure 5 shows the average output from the
best models (in terms of normalized score) from each archi-
tecture (MLP, CNN and LSTM) for each engine unit in the
validation set of subset FD004. The shaded areas represent
the standard deviation for predictions at each time step. The
dashed lines show the target RUL, limited by rmax. The sec-
ond plot shows the mean squared error of predictions over
time and the third shows the number of data points present in
each time step. Data points come from each of the three eval-
uated models for each of the validation set data sequences for
each of the time steps.

In the second plot of Figure 5 it can be seen that the error
is generally higher for higher values of rmax for pretty much
the entire time span featured in the datasets. A peak in the
errors can be seen at the discontinuity between the constant
and linearly decreasing regimes. The difference between the
errors for different values of rmax also becomes much smaller
after this discontinuity (as target RULs coincide), but is still
present.

RUL predictions for larger values of rmax in the constant tar-
get regime tend are significantly underestimated, which is a
consequence of the asymmetrical loss function that penalizes
late predictions and the larger uncertainty for earlier degrada-
tion states.

In the first plot of Figure 5 it can be seen that the models with
higher RUL limits tend to underestimate the RUL value. This
is due to the asymmetrical loss function described in Eq. (7).
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(b) Zoom-in on best performing models.

Figure 4. Scatter plot of normalized scores (equation 7) and MSE (equation 5) on the validation set for all CMAPSS subsets
(FD001 to FD005) from model configurations obtained by random search. Color coded by RUL limit (rmax).

The behavior for the other subsets was very similar to that,
which is why it was omitted.

4.1.1. Hyperparameter Effects

By analyzing the many models generated during random
search it is possible to assess the overall effect each parame-
ter has on average on the prediction results. Since the hyper-
parameter values are chosen at random (in this case mostly
drawn from uniform distributions), the effects from each pa-
rameter are not seen in isolation. Instead, what is seen is the
withstanding effect despite changes in other parameters.

Figure 6 shows the impact the operating condition-specific
standardization has on the aggregated validation results from
all data subsets and all model architectures. On average,
the normalized score tends to be lower if this method is
used, surely a consequence of the better results from subsets
FD002, FD004 and FD005, which have multiple operating
conditions.

Similarly, Figure 7 shows the impact of the choice of rmax.
The lower the limit, the better the scores, on average, which is
consistent with previous observations regarding the accuracy
and timeliness trade-off.

Figures 8 and 9 show the effects of more structural hyper-
parameters, specifically the model width (number of neurons
per layer) and model depth (number of layers). Neurons and
layers in different architectures are not necessarily compara-
ble, for instance the computational cost of an LSTM layer 1 is

1In this work what is referred to as "LSTM layers" are the entire recurrent
LSTM units, which can be stacked in series (output of the first layer con-

significantly higher than an MLP layer with the same width.
The ranges for depth and width for each architecture were
chosen by hand, in a way to make models converge to non-
trivial (not overfit or underfit) solutions and to make training
times similar (fair division of computational time).

Note that the width shown in Figure 8 is taken on the nar-
rowest layer, and the width increases with layer depth. On
average, models seem to benefit from having wider layers,
however the training time and chance of overfitting will in-
crease, so the trend seen in 8 will not continue indefinitely
as width increases (even wider models were not trained to re-
strain the computational cost and training times).

It can be seen on Figure 9 that on average, relatively shallow
models with 2 or 3 layers are easier to train, and are able
to reach good scores. It is easier to have converging models
with less layers than with many layers, even if the overall
performance of the deeper models that do converge may be
better.

4.2. Comparison with Literature Results

As pointed out in (Ramasso & Saxena, 2014), many authors
have used the CMAPSS datasets in their work, making it an
opportunity to further validate the achieved results in a bench-
mark. Tables 3 and 4 show a comparison between the results
from this work and results from the literature for the subsets
in the TEDS dataset, for RMSE (root MSE), Eq. (5), and
asymmetric score, Eq. (6), respectively. Ideally more eval-
uation metrics could be used, such as the ones described in

nected to the input of the next, and so on), not the internal subcomponents
of the LSTM cell.
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(Saxena et al., 2008), but RMSE and the asymmetric score
are more widely used for this problem, being a common met-
ric for comparison between works.

By analyzing Table 3, it can be seen that for subsets FD001
and FD003, that have a single operating condition, (Listou
Ellefsen et al., 2019) achieved the best results. However, for
subsets FD002 and FD004, that have 6 operating conditions,
the CNN and MLP models from this work take the lead (in
fact, all three models from this work outperform the others).
Something similar happens for Table 4, but LSTM from this
work takes the lead in FD002 and FD004 instead, losing for
other algorithms in FD001 and FD003.
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Figure 9. Effect of model
depth.

The better performance observed for the subsets FD002 and
FD004 is largely explained by the use of operating condition-
specific standardization, which makes the features somewhat
invariant to operating conditions, making it easier for mod-
els to detect the degradation trends. In subsets FD001 and
FD003, with a single operating condition, Eq. (2) is reduced
to Eq. (1), and the models perform comparably, but not al-
ways better, to others from the literature.

Analyzing Table 5 it can be seen that the CNN got the best
score on the test set for FD005. When comparing this re-
sult with the PHM Society 2008 Data Challenge Competition
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Table 3. Test set RMSE comparison between the best results obtained in this work and the state of the art algorithms found in
the literature for the TEDS datasets. Best results for each category highlighted in bold.

FD001 FD002 FD003 FD004
Publication rmax Technique Mean STD Mean STD Mean STD Mean STD
This work 80 MLP 4.5 0.1 5.8 0.1 4.6 0.2 5.7 0.2
This work 80 CNN 4.3 0.1 5.6 0.2 5.0 0.2 6.4 0.2
This work 80 LSTM 4.9 0.3 6.0 0.3 5.0 0.3 6.1 0.2
This work 100 MLP 7.7 0.1 9.6 0.2 7.8 0.3 8.9 0.3
This work 100 CNN 8.3 0.4 9.5 0.2 8.3 0.3 9.6 0.2
This work 100 LSTM 8.7 0.5 10.2 0.6 8.3 0.4 9.7 0.3
This work 130 MLP 15.1 0.4 18.0 0.4 14.3 0.7 16.6 0.5
This work 130 CNN 15.0 0.5 17.5 0.7 14.8 0.8 17.4 0.9
This work 130 LSTM 16.5 0.3 18.1 0.9 15.9 1.0 17.2 1.4
(Ramasso, 2014) 135 RULCLIPPER 13.3 - 22.9 - 16.0 - 24.3 -
(Sateesh Babu et al., 2016) 130 CNN 18.5 - 30.3 - 19.8 - 29.2 -
(Zhang et al., 2017) 130 MODBNE 15.0 - 25.1 - 12.5 - 28.7 -
(Zheng et al., 2017) 130 LSTM 16.1 - 24.5 - 16.2 - 28.2 -
(Li et al., 2018) 125 CNN 12.6 0.2 22.4 0.3 12.6 0.1 23.3 0.4

(Listou Ellefsen et al., 2019) 115/135/
125/135 RBM + LSTM 12.6 - 22.7 - 12.1 - 22.7 -

Table 4. Test set Score comparison between the best results obtained in this work and the state of the art algorithms found in
the literature for the TEDS datasets. Best results for each category highlighted in bold.

FD001 FD002 FD003 FD004
Publication rmax Technique Mean STD Mean STD Mean STD Mean STD
This work 80 MLP 57 7 574 75 81 5 193 15
This work 80 CNN 58 4 289 83 88 10 259 19
This work 80 LSTM 62 8 155 8 85 6 310 322
This work 100 MLP 124 10 780 174 232 12 562 42
This work 100 CNN 166 15 395 30 174 22 559 101
This work 100 LSTM 155 26 400 53 165 35 482 48
This work 130 MLP 411 54 1113 417 1091 195 2755 789
This work 130 CNN 369 64 1757 579 332 35 1678 143
This work 130 LSTM 444 79 942 155 718 383 1487 224
(Ramasso, 2014) 135 RULCLIPPER 216 - 2796 - 317 - 3132 -
(Sateesh Babu et al., 2016) 130 CNN 1286 - 13570 - 1596 - 7886 -
(Zhang et al., 2017) 130 MODBNE 334 - 5585 - 422 - 6558 -
(Zheng et al., 2017) 130 LSTM 338 - 4450 - 852 - 5550 -
(Li et al., 2018) 125 CNN 273 24 10412 544 284 27 12466 853

(Listou Ellefsen et al., 2019) 115/135/
125/135 RBM + LSTM 231 - 3366 - 251 - 2840 -

Table 5. Comparison between the best results obtained for each of the different architectures and RUL limits for the PHM2008
dataset. RMSE and normalized score are taken from the validation set, since for FD005 the ground truth RUL is not disclosed.
Score from test set also included for reference (evaluation only allowed once a day).

Validation
Normalized

Score
Validation

RMSE Test
Score

Publication rmax Technique Mean STD Mean STD
This work 80 MLP 0,82 0,02 7,30 0,16 -
This work 80 CNN 0,96 0,07 7,75 0,23 -
This work 80 LSTM 1,04 0,14 8,15 0,43 -
This work 100 MLP 1,77 0,06 10,44 0,25 -
This work 100 CNN 1,75 0,11 10,52 0,40 -
This work 100 LSTM 2,07 0,12 11,37 0,33 -
This work 130 MLP 5,13 0,46 16,91 0,25 1884
This work 130 CNN 4,84 0,24 17,39 0,39 1314
This work 130 LSTM 6,93 0,23 20,40 0,68 1505
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rank, as described in (Ramasso & Saxena, 2014), we see that
result would have reached 7th place.

5. CONCLUSION

Prognostics is a major enabler capability for maintenance
of highly complex and safety critical systems such as the
ones present in aircraft. The high associated costs with lo-
gistics and maintenance efforts in aeronautical industry are
an encouraging factor for the application of prognostics and
health management technologies, allowing for anticipated ac-
tion planning which not only helps reduce costs but also im-
proves system availability and overall safety.

In this work, a case study was performed on the application
of data-driven prognostics methods based on neural networks.
One of the significant selling points of data-driven methods is
the fact that very little context specific knowledge is required
about the inner workings of the system. Since high fidelity
dynamic models are difficult to devise or in some cases even
infeasible, this seems like a good compromise between per-
formance, flexibility and applicability. Neural networks how-
ever do have many free parameters and high computational
cost for training, which can be a disadvantage when com-
pared to more specialized algorithms such as RULCLIPPER
(Ramasso, 2014), which is almost parameter free.

The publicly available C-MAPSS datasets, provided by
NASA, were used in this case study, and three different
model architectures were evaluated: MLP, CNN and LSTM.
The many design choices, exploratory analysis, preprocess-
ing steps, and other relevant aspects of the implementation of
these prognostics approaches were explored in search for the
best resulting model.

A trade-off between prediction timeliness and accuracy was
identified, where one may choose to decrease the model’s pre-
diction horizon, getting lower prediction errors in return. This
improvement however may not necessarily result in more use-
ful models or translate to other performance metrics.

A comparison with the state-of-the-art models (to the knowl-
edge of the authors) for this problem was provided. The ap-
proaches explored in this work outperformed these models
from literature in some of the data subsets with multiple oper-
ating conditions and achieved comparable results in the oth-
ers. These results point to the conclusion that proper data
cleaning and preprocessing based on solid exploratory anal-
yses can lead to significant improvements when compared to
directly feeding raw data into predictive models.

NOMENCLATURE

The nomenclature used in this paper is as follows:

X Multivariate time series (2D array)
Xi:j,p:q Array with time i to j and features p to q
X:,d Array with all time steps, but only feature d
Xt,: orXt Array with all features, but only time step t
Xt,d Scalar observation of feature d at index t
X(u) u-th 2D array
y Univariate time series (1D array)
yt Scalar observation at index t
y(u) u-th 1D array
X̃ or X̃ Normalized/standardized quantity
ŷ or ŷ Estimated quantity
X �W Hadamard (or element-wise) multiplication
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