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ABSTRACT

Along with increasingly frequent use of electric and hybrid
electric vehicles, the constraints and demands placed on the
them become stricter. The most noticeable challenge consid-
ering Hybrid Electric Vehicles (HEVs) is to provide an opti-
mal power flow between multiple electric sources alongside
provided as less as possible aging of energy storage com-
ponents. To provide efficient battery usage with respect to
batteries lifetime, it becomes unavoidable to develop battery
lifetime models, which do not only reflect the State-of-Heath
(SoH) but also allow battery lifetime prediction. The lifetime-
oriented battery models have to be integrated in power man-
agement. To be used efficiently and to provide optimal power
split ensuring mitigation of battery degradation without sacri-
ficing desired power consumption, accurate modeling of bat-
tery degradation is of utmost importance. This implies that
gradual battery degradation, which is directly affected by ap-
plied loading profiles, has to be monitored and used as addi-
tional control input. Moreover, the lifetime model developed
in this case has to provide model outputs also in the time-
frame of power management. In this contribution, a machine
state-based lifetime model for electric battery source is devel-
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oped. In this particular case, different degradation states as
well as machine state transitions are identified in accordance
to current operating conditions. Here, the change in charg-
ing/discharging rate (C-rate), overcharging/undercharging of
the battery (depth-of-discharge), and the temperature are
taken in consideration to define machine model states. The
End-of-Lifetime (EoL) is defined as deviation between nomi-
nal and current ampere-hour (Ah)-throughput. The proposed
machine state-based lifetime model is verified based on exist-
ing battery lifetime models using simulation setup. The de-
veloped lifetime model in this way serves as a prerequisite for
its integration into power management with an aim to provide
the trade-off between aforementioned conflicting objectives;
fuel consumption and battery degradation.

1. INTRODUCTION

An evident scarcity of oil supplies alongside increased neg-
ative impact on environment concerning pollution, emission
of greenhouse gases, and its corresponding contribution to
global warming emerge the development and introduction of
a number of improvements in transportation sector (Serrao,
Onori, & Rizzoni, 2011; Marano, Onori, Guezennec, Riz-
zoni, & Madella, 2009). Due to increased human popula-
tion, consequently higher number of automobiles, a viable so-
lution for energy efficient, environmental-friendly, and low-
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cost transportation led to an utilization of Hybrid Electric Ve-
hicles (HEV) and Plug-in Hybrid Electric Vehicles (PHEV)
to a higher extent than in previous years. Although hy-
brid electric vehicles are characterized by greater complex-
ity, consequently also by increased costs, a number of advan-
tages in comparison to conventional vehicles, such as reduced
fuel consumption through hybridization and mitigated pollut-
ing emissions, cause still unsolved issues in this field to be-
come increasingly interesting and thoroughly discussed in re-
cent years (Onori, Spagnol, Marano, Guezennec, & Rizzoni,
2012).

Total energy required for vehicle propulsion in case of
HEV/PHEV is often split among fuel energy and electrical
energy source(s). As such, efficient power management is
indisputable by terms of providing optimal solution with re-
spect to available energy resources, component aging, drive
profile, and traffic conditions (Onori, Serrao, & Rizzoni,
2016; Sabri, Danapalasingam, & Rahmat, 2016). The opti-
mization objective as such is defined over minimization of
fuel consumption and mitigation/minimization of aging of
energy sources with retained desired power demand. The
optimization of fuel consumption concerning integration of
Lithium-ion Battery (LIB) aging model is treated as addi-
tional cost of optimization quantified using appropriate life-
time model. In this contribution, the LIB lifetime model for
integration into power management is developed. Model de-
velopment serves as a prerequisite for its further integration.
Machine state-based LIB lifetime model is developed con-
cerning a number of degradation indicators of LIB occurred
during twenty drive cycles. The model is verified using sim-
ulation setup.

The contribution based on exiting data models is organized as
follows: i) after introduction in Section 1, current state-of-art
concerning power management and quantification of battery
aging is given in Section 2, ii) machine state-based battery
lifetime model is detailed in Section 3, iii) followed by pre-
sentation and discussion of obtained results in Section 4. The
contribution closes with conclusion and outlook in Section 5.

2. STATE-OF-ART

2.1. Powertrain Configurations and Power Management
Strategies

As conventional vehicles with Internal Combustion Engines
(ICA) are replaced by HEV/PHEV/EV, the leverage on power
management and control strategies assigned within it be-
comes larger (Sabri et al., 2016; Bayindir, Gözüküçük, &
Teke, 2011). By incorporating a number of different en-
ergy sources in HEV/PHEV vehicles, power management
becomes crutial to control energy flows between the differ-
ent sources and sinks. Taking into account limited energy
from electrical energy sources, goals defined through min-
imizing fuel consumption and aging of system components

while maintaining the same vehicle performance, different
HEV/PHEV configurations are discussed in a number of con-
tributions (Sabri et al., 2016; Peng, He, & Xiong, 2017; Vora
et al., 2018; Wang, Ma, & Wang, 2018). In dependence
of most common HEV/PHEV powertrain configurations (se-
ries, parallel, or series-parallel configuration), different power
management strategies for providing optimal power flow be-
tween energy sources are developed. Still unsolved challenge
from this perspective is an inclusion of an additional cost into
power management objective function related to the aging of
energy source components (primarily LIB battery packs as
rechargeable electrical sources). In this case, the development
of an accurate lifetime model of LIB/LIB battery packs is cru-
cial, as they have direct impact on the efficiency of power
management and overall system costs.

Improving fuel economy of PHEVs using rule-based energy
management algorithms and Dynamic Programming (DP)
due to simplicity of implementation and fast computation are
commonly used based on multi-objective optimization (Peng
et al., 2017). In (Peng et al., 2017), an optimization-based
rule development procedure is explained and validated by
Hardware-in-Loop (HIL) simulation experiments, but infor-
mation about battery degradation is not taken in considera-
tion. Also in (Zhang & Xiong, 2015) hierarchical control
strategy for ensuring optimal power split between different
energy sources of PHEV without consideration of LIB life-
time is proposed. Control strategy here consists of two layers,
whereas the upper layer regulates the engine-generator and
hybrid energy-storage system whilst the lower layer regulates
the power split between the battery and ultracapacitor. A driv-
ing pattern recognition is integrated in adaptive energy man-
agement through classifying typical driving cycles into dif-
ferent driving patterns. Dynamic programming is employed
to develop optimal control strategies for different driving pat-
terns (Zhang & Xiong, 2015). Further, power management
with integrated degradation of the battery and consequent im-
pact on fuel consumption and overall system cost is discussed
in (Vora et al., 2018). In the aforementioned contribution, a
powertrain simulation model and battery degradation model
are used to conduct a lifecycle economic analysis such as pay-
back period and rate of return. According to obtained results,
it becomes noticeable that the fuel consumption increases by
10 % during the overall service lifetime. Proposed frame-
work thus enables system cost analysis through integration of
an impact of battery degradation and replacement on the total
cost. Moreover, the battery is recognized as the most expen-
sive component (Vora et al., 2018). Similarly, relatively short
battery longevity affecting at the same time an overall price
of the system is discussed in (Wang et al., 2018). An energy
management strategy for power split, aiming not only to re-
duce fuel consumption but also to prolong battery lifetime,
is performed in order that the instantaneous battery usage is
penalized by its influence on the battery lifetime. By terms of
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battery degradation, the influence is quantified as the battery-
fading index corresponding to aging rate in dependence of
operating conditions. Here, the multi-objective optimization
problem is achieved using model predictive control (Wang et
al., 2018).

The trend of improvements and advances to be introduced in
this field are noticeable from the discussion in Section 2 but
inevitably include the integration of Remaining Useful Life-
time (RUL) of battery in power management. The aim is to
extend the lifetime of overall system, reduce costs without
impacting system performance, and additionally to adapt the
power management rules to actual SoH of the battery. Ac-
cordingly, the development of accurate LIB lifetime model
for an integration into power management and ensuring bat-
tery longevity is of main concern in this contribution, as de-
picted in Figure 2.

2.2. Battery Aging

Numerous battery degradation models are presented in litera-
ture, most of them focusing on single technology (Marano et
al., 2009; Onori et al., 2012; Jafari, Khan, & Gauchia, 2018;
Lipu et al., 2018; Lin, Hao, Liu, & Jia, 2018; Suri & Onori,
2016; Song, Hofmann, Li, Han, & Ouyang, 2015). Character-
ized by specific key variables to be monitored and integrated
within the mathematical presentation of the model, existing
models can be discussed either from material level or appli-
cation level (Jafari et al., 2018). Here, stochastic processes re-
lated to the aging of LIB are discussed thoroughly as the LIBs
are commonly used in HEV/PHEV vehicles as energy source.
Factors that show a huge impact on battery aging are pri-
marily battery charging/discharging rate, Depth-of-Discharge
(DoD), and temperature. Higher battery charging/discharging
rates as well as higer temperature contribute to faster capacity
fading, as same as lower DoD. Due to increased temperature
as well as high charging/discharging rates and the DoD, the
complex electrochemical reactions occurring in the battery
are accelerated, causing the growth of the solid electrolyte
interphase layer and increasing the internal resistance of the
battery. Consequently, the capacity of a battery becomes re-
duced. All of these three quantities are affected by loading
profiles; here drive cycle/pattern (Jafari et al., 2018; Lipu et
al., 2018; Lin et al., 2018). The battery EoL by these terms
is quantified using capacity fade or an increase of internal
resistance as they are directly related. The most commonly
accepted definition of battery aging is taken as a reduction in
capacity to 80 % of its nominal value. The accelerated aging
process through fast charging, beside the fact that this dras-
tically reduce battery lifetime, can have impacts on battery
safety.

Comprehensive review of remaining useful lifetime estima-
tion methods for LIB can be found in (Lipu et al., 2018).
It becomes noticeable that the modeling approaches can

be grouped as follows: i) measurement assessment ap-
proach, ii) adaptive approach, and iii) data-driven approach.
The Coulomb counting method, requiring occasional re-
calibration and iterative complete charging/discharging of the
battery is one possible way of correlating State-of-Health
(SoH) to DoD. Alongside Coulomb counting method, open
circuit voltage method and impedance spectroscopy are em-
ployed to measure intermediate system variables (such as
charging/discharging currents, voltage, and/or temperature)
and correlate them to SoH/degradation state of the battery.
Adaptive approaches like Kalman filtering, particle filter-
based methods, or least-square methods belong to the sec-
ond group and mostly introduce some uncertainties into the
models. The largest group according to (Lipu et al., 2018)
is the group of data-driven methods based on the analysis of
a huge amount of captured data. Utilizing fuzzy-logic meth-
ods, support vector machines, some form of artificial neu-
ral networks, and similar methods, underlying electrochemi-
cal processes within these modeling approaches do not need
to be known in advance. Alongside battery lifetime model-
ing approaches, a health conscious fast charging frameworks
are developed to reduce the charge duration alongside battery
degradation (Lin et al., 2018). For instance, an electrolyte en-
hanced single particle model with degradation mechanisms
and a multi-objective optimal control problem is discussed
in (Lin et al., 2018). Battery lifetime model is employed
along with DP technique to find the optimal charging strate-
gies, concerning charging time and battery degradation. The
analysis in (Lin et al., 2018) is relied neither on real drive
pattern nor adapted power management but traditional con-
stant current/constant voltage approach and health conscious
fast charging framework. Contrary, a semi-empirical battery
aging model identified using the data representing mimicking
loading conditions that HEV/PHEV battery encounters in real
driving scenarios is formulated in (Suri & Onori, 2016). The
introduced aging model is used to construct so-called sever-
ity factor map, which characterizes gradual degradation of the
battery under different operating conditions. The developed
battery lifetime model is further used to integrate a battery
degradation criterion within a multi-objective optimization,
aiming to provide battery aging as well as fuel consumption
minimization. The model in (Suri & Onori, 2016) is validated
by simulations conducted using a hybrid electric vehicle sim-
ulator, whereas it is proven that the severity factor map relied
aging model can be effectively used to predict and control
battery degradation. Similarly, lifetime model developed for
integration in power management is elaborated in (Marano
et al., 2009; Onori et al., 2012). A generic approach to LIB
lifetime modeling applicable to a number of vehicle classes
based on the concept of accumulated charge throughput (Ah-
throughput) under real drive profile is proposed in aforemen-
tioned contribution. The assumption lying behind is that the
damage is accumulated proportionally to charge transfer in
or from the battery, modulated by a severity factor associ-
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ated with the operating conditions. The most critical issue
reported in (Marano et al., 2009; Onori et al., 2012) is to
quantify the topology of severity map with respect to battery
sizing and powertrain control with concerned battery damage
accumulation model.

This contribution focuses to battery lifetime modeling for
integration in power management also to provide opti-
mal/intelligent power split between energy sources in multi-
source HEVs/PHEVs. It is of high importance to develop
LIB lifetime model which would overtake existing shortcom-
ings of existing models, especially concerning real life drive
profiles and the necessity for a priori knowledge about under-
lying processes of LIB aging. The lifetime model proposed
in this contribution requires neither a priori knowledge about
physical processes occurring in LIB nor high computational
complexity (including complex analytical relations). It is of
high importance to note that the developed model can be used
to estimate State-of-Health at some time point in future based
on applied operating conditions and available measurements.
Taking the information about predicted SoH in future, it
becomes possible to affect the lifetime by adapting power
management strategy, as depicted in Figure 1. In Figure 1,
three different loading profiles/operating conditions with
accompanying lifetimes are depicted, each of them showing
different level of accumulated damage and used lifetime
predicted from tnow.
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Figure 1. Integration of current health state of the system into
power management.

3. BATTERY LIFETIME MODELING

Battery data model proposed in this contribution is machine
state-based lifetime model, tending to describe LIB aging
by reflecting particular system inputs to predefined machine
states in accordance to current operating conditions, as ini-
tially introduced in (Beganovic & Söffker, 2017). The num-
ber of considered states is three, whereas each state is repre-
sented by a mathematical equation with different state-based
optimized parameters. In this contribution, the model and re-
sults obtained in (Onori et al., 2012) and (Song et al., 2015)

Table 1. Model states.

State Expression

S1 Qloss = A1e
−B1+C1·Crate

R·T · (Ahthroughput)
z1

S2 Qloss = A2e
−B2+C2·Crate

R·T · (Ahthroughput)
z2

S3 Qloss = A3e
−B3+C3·Crate

R·T · (Ahthroughput)
z3

are used for the own modeling procedure and parameter def-
inition. In a later context, the literature data can be easily
replaced by experimental data.

HEV/PHEV
vehicle model

Power
management

Loading
profile

Battery lifetime
model

Figure 2. Overall power management scheme with integrated
degradation model of LIB.

Inputs to the lifetime model are charging/discharging LIB
current, DoD (defined as DoD = 100 − SoC expressed in
%), and the temperature, as is shown in Figure 3. In this case,
the temperature and DoD are used to quantify the impact of
temperature on Ahthroughput using severity factor map, as
described in detail in (Onori et al., 2012). The Ahthroughput

is further correlated to battery capacity loss and used lifetime.
Concretely, battery capacity loss is expressed in (Song et al.,
2015) as

Qloss = Ae−
B+C·Crate

R·T · (Ahthroughput)
z, (1)

where A, B, C, and z are constants, T is the temperature in
kelvins, Ahthroughput is the current throughput, and R is the
gas constant. Mathematical equation 1 is used in this con-
tribution alongside severity factor map for Ahthroughput cal-
culation and lifetime estimation. The Crate is considered as
1C. The parameters A, B, C, and z are varied in dependence
of operating conditions, whereas each of aforementioned pa-
rameter is assigned to particular machine state. Three differ-
ent machine states are identified according to different oper-
ating conditions, namely S1 , S2, and S3. Here, S1 is the
state with the most favorable operating conditions from the
aspect of degradation, and S3 is the state with the most un-
favorable operating conditions from the aspect of degrada-
tion. The states are described as given in Table 1. The model
thus has four parameters per state which has to be optimized.
In total, twelve model parameters are optimized using Non-
dominated Sorting Genetic Algorithm (NSGA-II).

State transitions are defined in correspondence to input vari-
able threshold exceedance and their rates of change, as
is shown in Figure 4. In Figure 4, rate of change of
Ahthroughput is stated as IDIFF and is used to define state
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Figure 3. Degradation model of LIB and model inputs.
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Figure 4. Model states and state transitions.

transitions. It can be seen from Figure 4 that the transition
from S1 to S2 occur either when the temperature exceeds
predefined threshold tr1 whilst IDIFF lies between trdiff1
and trdiff2 or when the temperature is lower than tr1 but
IDIFF exceeds trdiff1. Similarly, state transition from S2 to
S3 occur either when IDIFF becomes higher than trdiff2
or when the temperature exceeds predefined threshold tr2
and IDIFF lies below trdiff2. State transition from S1 to
S3 occur only when the temperature is found below tr1 and
IDIFF is greater than trdiff2. The transition from S3 to
S1 occur when the temperature drops to predefined thresh-
old tr2 simultaneously with IDIFF is found between trdiff1
and trdiff2. The transition from S3 to S2 occur either when
the temperature drops to predefined threshold tr2 simultane-
ously when IDIFF equals to the value between trdiff1 and
trdiff2 or when the temperature becomes higher than tr2
with IDIFF dropped below trdiff1. The state from S2 is
changed to S1 when IDIFF drops to trdiff1. As such, the
state is not changed as long as the change in IDIFF and tem-
perature lies within predefined thresholds. This preknowl-
edge is qualitatively effecting the structure of the model by
defined by the state machine model provided. The related
parameters of the state machine variables have to be defined
with a suitable data-driven-based training.

Table 2. Optimized parameters.

Parameters State S1 State S2 State S3

Ax 0.004 0.0044 0.0054
Bx 324.1979 439.479 1000.0
Cx 15863.0 15657.0 17557.0
zx 0.6619 0.0546 0.1773

4. RESULTS AND DISCUSSION OF RESULTS

4.1. Battery Lifetime Model

The inputs of LIB lifetime model are shown in Figure 5. In
the first diagram, vehicle speed over twenty drive cycles used
for analysis is depicted. As already stated, input current (con-
sequently its change over time) and the DoD/SoC are consid-
ered as model inputs. In addition, the impact of temperature
on battery aging is analyzed by integrating temperature mea-
sure into the model over severity factor map.
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Figure 5. Input variables to LIB lifetime model.

Optimized model parameters for each state using NSGA-II
are given in Table 2. The parameters are defined by terms
of guaranteed lowest estimation error by optimization when
compared with reference values, implying the objective func-
tion given as

obj(t) =|reference(t)− actual value(t)|. (2)

An estimation of capacity loss, which can directly be corre-
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Table 3. Prediction error.

Prediction point End-point value Percentage error
20% 4698.2 100 - 93.964 = 6.036
40% 4653.3 100 - 93.066 = 6.934
60% 4701.1 100 - 94.022 = 5.978
80% 4980.2 100 - 99.604 = 0.396

lated either to used or remaining lifetime, as well as End-
of-Lifetime prediction using proposed machine state-based
model is verified using simulation setup. Obtained results
are given in Figure 6. Figure 6 depicts battery capacity loss
during twenty drive cycles. Aforementioned cycle is defined
as a change is SoC from 58 to 83 % (the third diagram in
Figure 6).

Obtained reference capacity drop during twenty drive cycles
(step-wise behavior, black line) and estimated capacity loss
obtained using proposed machine state-based model, both ex-
pressed in percentages are shown in the first diagram in Fig-
ure 6. As the EoL is considered as capacity loss of 20 %,
it implies that with the capacity drop of 20 % the battery is
neither capable to endure additional loading anymore nor to
provide safe use. The second diagram shows absolute error
and its propagation over time, whilst machine states used for
calculation of ∆Qloss are shown in the last diagram of Fig-
ure 6. As only twenty drive cycles are analyzed here, capac-
ity drop is a function of twenty drive cycles showing very low
absolute error and acceptable level of congruence with refer-
ence lifetime values. This means, accumulated ∆Qloss dur-
ing twenty drive cycles in this particular case equals to 0.08.
By extending obtained results to additional drive cycles, con-
cerning constant capacity loss rate and EoL detected when
accumulated absolute value of ∆Qloss equals to twenty, the
battery is feasible to withstand

20 drive cycles

0.08 capacity loss per 20 drive cycles
= 250 (3)

in total 250 ·20 = 5000 drive cycles until its EoL as example.

4.2. Prediction of Battery Lifetime

To extend obtained results to additional drive cycles and to
predict battery lifetime, a few assumptions are considered:
i) the points in time used for prediction are varied by 20 %,
ii) no further change of operating conditions after considered
time point tnow is assumed, and iii) a lifetime is affected in
the same manner by each drive cycle after tnow. Stated tnow
is the time point at which used LIB reaches 20, 40, 60, and
80 % of its lifetime. Taking in consideration stated assump-
tions and developed battery lifetime model, obtained results
are depicted in Figure 7.

In the first diagram of Figure 7, reference and estimated ca-
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Figure 6. Obtained results using proposed machine state-
based lifetime model.

pacity drop when only 20 % of battery service lifetime is
known is shown. When expressed in terms of drive cycles,
it equals to 5000 · 0.2 = 2000. The rest of 80 % of battery
service lifetime is predicted. Similarly, in the second, third,
and fourth diagram of Figure 7, reference and estimated ca-
pacity drop when 40, 60, and 80 % of battery service lifetime
is known is depicted. The rest of 60, 40, and 20 % of battery
service lifetime, respectively, is predicted. At first glance,
it can be seen that the deviation between reference and esti-
mated values is low in all considered cases. It implies that
the model is capable to predict the lifetime of battery (battery
capacity drop) over time with acceptable error, which as the
largest amounts almost 7 % as calculated in Table 3.

5. CONCLUSION AND OUTLOOK

In this contribution, a lifetime-oriented machine state-based
battery model for integration into power management is de-
veloped with an aim to provide an optimal power flow be-
tween multiple electric sources alongside provided as less as
possible aging of battery/battery packs.

The proposed model in contrast to most other models does not
require a priori knowledge about underlying electrochemical
processes occurring in LIB. It includes simplified analytical
relations connecting operating conditions and LIB aging. Ac-
cordingly, gradual battery degradation explained through pro-
posed model can be used as additional control input to pro-
vide optimal power flow. Different degradation states as well
as machine state transitions are identified in accordance to
current operating conditions. According to the results, it can
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Figure 7. Obtained results using proposed machine state-
based lifetime model.

be shown that absolute error lie below 0.01 % when twenty
drive cycles are considered, and the prediction error using the
same model applied to extended timespan equals to almost
7 % in the worst case, when 80 % of lifetime is predicted
and only 20 % of lifetime is a priori known. As such, the
model proposed in this contribution is ideal for integration
into power management, including control with integrated in-
formation about predicted battery lifetime.

The improvement in proposed model related to experimen-
tal model validation and severity factor map adjustment con-
cerning particular battery/battery packs can be considered for
future work.

NOMENCLATURE

ICA Internal Combustion Engines
HEV Hybrid Electric Vehicle
PHEV Plug-in Hybrid Electric Vehicles
EoL End-of-Lifetime
LIB Lithium-ion Battery
SoC State-of-Charge
DoD Depth-of-Discharge
SoH State-of-Health

DP Dynamic Programming
HIL Hardware-in-Loop
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