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ABSTRACT

Historic records show that the cost of operating and support-
ing an aircraft may exceed the initial purchase price as much
as ten times. Maintenance, repair and overhaul activities rep-
resent around 10-15% of an airlines annual operational costs.
Therefore, optimization of maintenance operations to mini-
mize cost is extremely important for airlines in order to stay
competitive. Prognostics, a process to predict remaining use-
ful life of systems and/ or components suffering from aging or
degradation, has been recognized as one of the revolutionary
disciplines that can improve efficiency of aircraft operations
and optimize aircraft maintenance. This study focuses on lit-
erature that has used prognostics to optimize aircraft main-
tenance and identifies research gaps for further optimization
of aircraft maintenance in commercial aviation. In this pa-
per, the origin and development of prognostics is firstly in-
troduced. Thereafter, the state of art of aircraft maintenance
is reviewed. Next, the applicability of prognostics to opti-
mize aircraft maintenance is explained, reviewed, and poten-
tial challenges and opportunities are explored. Finally, the
state-of-the-art of prognostics in aircraft maintenance is dis-
cussed and research gaps are identified in perspective of the
deployment of prognostics to optimize aircraft maintenance.

1. INTRODUCTION

Aircraft are only profitable when flying, therefore, in order
to stay competitive in the competitive global industry that is
aviation, airlines try to improve availability as well as flying
hours of their aircraft. This availability and thus profitabil-
ity of aircraft highly relies on adequate maintenance. Main-
tenance is described by (Swanson, 2001) as a combination
of all technical and administrative actions including super-
vision, action intended to retain or restore the system into
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a state in which a system can perform a required function.
Optimization of aircraft maintenance operations has been of
high interest for both the scientific community as well as the
aircraft industry. Not without reason, Maintenance, Repair
and Overhaul (MRO) activities represent around 10-15% of
an airlines’ operational costs with a total of $67.6 billion in-
dustry wide in 2016 and is expected to grow to $100.6 billion
in 2026 (IATA, 2017). Moreover, historic records show that
the cost of operating and supporting a vehicle (aircraft) may
exceed the initial purchase price as much as ten times (Asiedu
& Gu, 1998). Prognostics aims to make an accurate estima-
tion of the Remaining Useful Life (RUL) and future perfor-
mance of (aircraft) components. These RUL estimations can
be deployed to not only decrease operational disturbances but
also improve MRO operations in aircraft maintenance.

Multiple interesting literature reviews on prognostics have
been written. (Si, Wang, Hu, & Zhou, 2011) reviewed re-
liability based approaches for RUL estimation. (Sun, Zeng,
Kang, & Pecht, 2012) reviewed the benefits and challenges
of prognostics. (Liao & Kottig, 2014) reviewed hybrid prog-
nostics approaches for RUL prediction of engineered systems
in general and an application to battery life prediction. (An,
Kim, & Choi, 2015) wrote a review on selecting data-driven
or physics-based prognostic algorithms. (Elattar, Elminir, &
Riad, 2016) reviewed the origin and evolution of prognos-
tics and different prognostic approaches. We observe that al-
though applications in the field of aviation are often consid-
ered in these literature reviews, a review solely focused on the
use of prognostics in the optimization of aircraft maintenance
has yet to be carried out. This is important because efficiency
is key in this industry in order to stay competitive, and inade-
quate maintenance can cause failures which result in delays or
cancellations of flights. However, so far no review is available
that pools literature on how to use prognostics to optimize
aircraft maintenance. On top of that, the ubiquity of sensors
(300,000 sensors in the new generations of aircraft) produces
a flood of data allowing us to give meaning to information
and leads to the need for efficient processing and a relevant
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interpretation to utilize this data in prognostics (Gouriveau,
Medjaher, & Zerhouni, 2016). In recent years, improvements
in machine learning and big-data analysis have made it pos-
sible to efficiently process this flood of data. This accelerates
the development of new prognostic models on components
for which no clear degradation pattern or failure mode can be
identified. Research shows that 80% of all failures are pre-
ventable (Gerdes, Scholz, & Galar, 2016), if prognostics is
carried out accurately, one could predict when failures will
occur and act accordingly.

The paper is organized as follows. Section 2 elaborates on
aircraft maintenance strategies and especially the ones that
exploit the benefits of prognostics. Then, Section 3 presents
an introduction to prognostics and an overview of prognos-
tic tools and techniques currently available in literature that
indicate the RUL of individual aircraft or components. Next,
Section 4 shows why the deployment of prognostics is impor-
tant for aviation industry and how it can improve MRO oper-
ations. Section 5 discusses the feasibility of prognostic en-
abled maintenance systems in current day to day operations.
Then, Section 6 concludes the study. Finally, Section 7 iden-
tifies possible gaps for further research and proposes possi-
ble actions for further improvement of contemporary aircraft
MRO operations.

2. AIRCRAFT MAINTENANCE

As mentioned, (Swanson, 2001) described maintenance as
a combination of all technical and administrative actions to
retain or restore the system into a state in which a system
can perform a required function. Technical actions can in-
clude overhaul, inspection, replacement, defect rectification,
and the embodiment of a modification or a repair. Manage-
ment actions include supervision, classifications as to service-
ability, and the supply of spare parts, accessories, raw ma-
terials, adhesives, sealants, coatings and consumables. Fo-
cusing on aircraft maintenance, not all airlines operate their
own maintenance departments, most of them actually out-
source their maintenance operations as shown by (Bazargan,
2016). In this way, MRO activities of dozens of airlines are
carried out at a single location, where expensive equipment,
spare parts, and skilled personnel is located. These mainte-
nance providers are extensively trying to optimize their oper-
ations, but still are obliged to schedule maintenance accord-
ing to maintenance plans provided by authorities as shown
by (Gerdes et al., 2016; Air Transport Association of Amer-
ica, 2007). This scheduling of maintenance based on time
intervals is part of the Preventive Maintenance (P.M.) strat-
egy. P.M. is the standard maintenance strategy used in avia-
tion and three types of P.M. are identified (Federal Aviation
Administration, 1978; Gerdes et al., 2016).

• Hard-time: scheduled removal of a component in accor-
dance with the maintenance manual.

• On-condition: This requires the component to be peri-
odically inspected or checked against some appropriate
physical standard to determine whether it can continue
service.

• Condition-monitoring: The component can be used until
it breaks and will then be replaced. This maintenance
strategy is often referred to as Corrective Maintenance
(C.M.).

Scheduled maintenance checks are most often referred to as
letter checks (A, B, C, D), where A and B are lighter checks
and C and D are considered heavy checks (Air Transport As-
sociation of America, 2007). The problem with scheduling
based on predefined intervals is that these time intervals are
not accurate at all, just as the life span of an individual person
may vary greatly from the average of the population life ex-
pectancy (Uckun, Goebel, & Lucas, 2008). When the time
interval between maintenance checks is too short, a lot of
time and money get wasted for performing maintenance on
equipment which does not need maintenance yet. When the
interval is too long, the aircraft component will fail with all
the consequences that will entail.

Therefore, if the periods between two different maintenance
checks could be accurately determined, maintenance could
take place just in time. Condition Based Maintenance (CBM)
is a maintenance strategy that aims to only perform mainte-
nance according to the actual component condition and trend
of the component condition while still complying with regu-
lations as shown by (Niu & Pecht, 2009). The goal of CBM is
to prevent failure and retain the system operational condition
with the help of advanced (intelligent) technology that con-
tinuously tracks the condition and the trend of the condition
of the component. To be able to not only act on actual con-
dition but also on the future condition of the system, mainte-
nance providers are trying to extend CBM to Predictive Main-
tenance (PdM). (Peng, Dong, & Zuo, 2010) show that PdM
not only uses the real-time diagnosis of the actual condition
of a system, but also employs prognosis to predict the fu-
ture system health in order to avoid unnecessary maintenance
tasks. PdM thus deploys prognostics, which can be applied
to greatly improve estimations of the RUL and therewith is a
useful tool for improving maintenance operations as shown
by (Zhao, Bin Liang, Wang, & Lu, 2017). (Tchakoua et
al., 2014) shows the differences between maintenance strate-
gies mentioned above, where PdM is considered optimal as is
shown in Fig. 1, although individual components might have
other optimal maintenance strategies depending on their char-
acteristics (Tam, Chan, & Price, 2006; Vandawaker, Jacques,
& Freels, 2015; Vianna & Yoneyama, 2018).

Maintenance providers are looking into possibilities to make
their maintenance operations more efficient in terms of time
and cost. Increasing efficiency in maintenance is as old as
maintenance itself and a lot of research has been conducted
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Figure 1. Comparison of different maintenance strategies, adapted from (Tchakoua et al., 2014).

into increasing the efficiency. From a management perspec-
tive we observe that increasing efficiency of maintenance op-
erations by effectively scheduling of personnel is very rele-
vant in every industry, especially because a shortage of skilled
mechanics is anticipated. Optimally scheduling the mainte-
nance of the aircraft also is very relevant, especially because
unscheduled ground time, which may cause delays and can-
cellations, is very costly for airlines. Making the tasks this
maintenance personnel needs to carry out more effective is
the focus of relatively new optimization methods such as re-
ducing waste using the lean method. Research by (Pogačnik,
Duhovnik, & Tavčar, 2017) for instance shows the use of a
lean approach together with prognostics to schedule mainte-
nance services. They show that this lean method could re-
duce a seven-day aircraft check, which consists of 300 jobs,
to 6 days. Profitability of an aircraft highly relies on its avail-
ability, which in turn is particularly influenced by adequate
maintenance. On top of that, it still remains very difficult to
accurately diagnose which components have failed or predict
which components are about to fail. This causes maintenance
providers to have a lot of spare parts in stock, because of the
large number of aircraft they provide with maintenance, and
delays and cancellations are very costly. However, because
of the high cost related to the storage of these spare parts
together with a degrading quality during this storage, mainte-
nance providers try to decrease the number of spare parts as
much as possible. Besides optimizing service and personnel
scheduling and decreasing the number of spare parts, mainte-
nance operations can be optimized by improving the:

• supply chain of spare parts

• service life of aircraft

• troubleshooting of failures

• quality of component repairs

• phase-out and replacement of aircraft

As can be observed, aircraft maintenance can be improved
by moving from the current P.M. strategy to CBM. In CBM,
diagnostics is used to perform maintenance according to the
actual condition of the component instead of on predefined
time intervals. When prognostics can be used to estimate
the RUL of components, maintenance providers could move
from CBM to PdM in which this RUL predictions of com-
ponents can be used optimize MRO activities as (Sun et al.,
2012) shows.

3. PROGNOSTICS

Prognostics usually means the prediction of the time at which
a system or component can no longer perform its intended
function. The word prognostics originates from the Greek
word ’progignskein’ that means ’to know in advance’. In en-
gineering, prognostics can be defined as the process of RUL
estimation of systems or components that are degrading due
to either normal operation (no fault symptoms) or detected
fault and can be seen as a revolutionary discipline that can
change the whole world of complex engineering system life
cycle management (Elattar et al., 2016). The engineering
discipline that links studies of failure mechanisms to sys-
tem life-cycle management is Prognostics and Health Man-
agement (PHM). PHM includes fault detection, diagnostics,
health management, and prognostics and is used to preserve
safe and reliable operation of complex engineering systems
in general (Sun et al., 2012). The first important step in PHM
is the monitoring and diagnostics process. In this process,
sensor data from the functional modules such as communi-
cations, navigation, and identification is first monitored, after
which the data is preprocessed to extract the feature param-
eters needed for further diagnostics (Xu, Sun, & Xu, 2015).
When data is acquired, preprocessed and the diagnostic health
assessment has been carried out, the next step is prognostics.
Prognostics is highly reliant upon diagnostics, and cannot be

3



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Table 1. Different prognostics approaches and their main advantages and disadvantages.

Approach Advantages Disadvantages
Statistics-based Simple and easily applicable to other components Not accurate and difficult to apply to new components
Data-driven Quick implementation, low cost, and useful even if

degradation is unknown
Large amounts of (useful) data necessary and thus dif-
ficult to apply to new components

Physics-based Very accurate and specific Applicability, time consuming and expensive

done in isolation. Where diagnostics involves identifying and
quantifying damage that has already occurred, prognostics
tries to predict damage that is yet to occur (Sikorska, Hod-
kiewicz, & Ma, 2011). (Sun et al., 2012) shows this informa-
tion can be used to improve:

• system operations
• system design and development
• production of components
• logistics support and maintenance
• phase-out and disposal of systems
• life cycle cost of systems

3.1. Approaches

Prognostics can be classified into three different approaches:

1. statistics-based approach
2. data-driven approach
3. physics-based approach

combinations of these three approaches are also possible and
are called hybrids (Elattar et al., 2016; Sheppard, Kaufman,
& Wilmer, 2009). The different approaches and their main
advantages and disadvantages are shown in Table 1. The se-
lection of the right approach for a certain problem is a dif-
ficult task because approaches used in the estimation of the
RUL do not only differ in accuracy and cost, but also need
to consider noise and interference in the data from sensors.
The statistics-based approach is the most used approach and
depends on massive historical data about the same, mostly
uncritical, mass produced components. Advantages of this
approach include that it is simple and can easily be adapted
to be applicable to other components for which extensive data
is available. Many drawbacks of this approach include that
the calculated Mean Time Between Failure (MTBF) is of-
ten not accurate and components can thus fail before being
replaced, also it is hard to apply the models to new compo-
nents because historic data is not available. The data-driven
approach is very popular in the scientific community, due to
its quick implementation and deployment, and the increas-
ing interest in machine learning techniques. Moreover, it can
be used even when it is impossible to obtain a mathematical
degradation model. The approach mainly relies on machine
learning techniques that can be used at low cost and without
knowledge of the system physics. The drawback of this ap-
proach is that is often difficult to let the model learn when no

or insufficient data about failure modes exists (Elattar et al.,
2016; Sheppard et al., 2009). The physics-based approach
is the most effective in terms of predicting the system degra-
dation. In this approach a physical model for the system or
component is developed. This physical model is a mathe-
matical representation of degradation in the form of material
deformation, fracture, fatigue, and material loss (Elattar et al.,
2016; Sheppard et al., 2009). Physical models define relation-
ships between degradation of a component and environmental
and operational conditions under which the component oper-
ates. Combining these physical models with expert knowl-
edge and actual failure modes makes it so effective. (Elattar
et al., 2016) show the drawbacks of this approach in that it
is very costly, time consuming and data of failure cases is
needed. Finally, hybrid approaches combine two or more of
the previous described approaches to get the best from each.
For example, a combination of the physics-based approach
and the data-driven approach makes it so that the physical
model can compensate the lack of data and the machine learn-
ing compensates the lack of knowledge about system physics.
This approach will, however, still carry the disadvantages of
used approaches to a certain extent.

NASA considers prognostics the most important in improv-
ing system safety, reliability, and availability of aircraft. As
mentioned in Section 2, the PdM strategy exploits the bene-
fits of prognostics and can be used by maintenance providers
to improve their maintenance operations. The challenges that
still need to be considered when prognostics is used to predict
the future health of systems are presented in Section 7.

4. PROGNOSTICS IN AIRCRAFT MAINTENANCE

More and more aircraft maintenance providers are looking
to change their operations from P.M. to CBM and some even
into PdM, which exploits the benefits of prognostics. As men-
tioned in Section 2, P.M. does not effectively use prognostics
because maintenance takes place at specified time intervals
while in PdM, prognostics is used to identify the RUL and
the actual real-time condition of the system to schedule main-
tenance. A lot of literature interchanges definitions of CBM
and PdM and thus considers CBM to also exploit the benefits
of prognostics, just as PdM does. (Peng et al., 2010) show
that being able to perform precise and reliable prognostics is
the key of PdM for an engineering system and it is also critical
for improving safety, planning missions, scheduling mainte-
nance, reducing maintenance costs, and down time. Aircraft
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Table 2. Overview of reviewed literature per topic.

Section and topic Author and year of publication

Deployment of PdM (4.1)
(Kraft, Sethi, & Singh, 2014)
(Feng, Chen, Sun, & Li, 2014)
(Lin, Luo, & Zhong, 2017)
(Yang et al., 2018)

Service scheduling (4.2)

(Pattabhiraman, Gogu, Kim, Haftka, & Bes, 2012)
(Bazargan, 2016)
(Feng, Bi, Zhao, Chen, & Sun, 2017)
(Feng, Bi, Chen, Ren, & Yang, 2017)
(Vianna & Yoneyama, 2018)

Spare parts management (4.3)

(Fritzsche & Lasch, 2012)
(Rodrigues & Yoneyama, 2013)
(Cai, Li, & Chen, 2016)
(Cai, Xin, & Xi, 2017)
(Vandawaker, Jacques, Ryan, Huscroft, & Freels, 2017)
(Mofokeng & Marnewick, 2017)

Reduce maintenance and repair-induced failures (4.4)
(Feng, Li, & Sun, 2014)
(Rashid, Place, & Braithwaite, 2014)
(Shanmugam & Paul Robert, 2015)
(Duarte et al., 2016)

maintenance can be optimized in various areas as described in
Section 2, however, prognostics might not be able to increase
efficiency in all of these mentioned areas. For example, prog-
nostics will not directly increase efficiency of tasks mainte-
nance personnel needs to carry out, although it can be used
for better troubleshooting. Prognostics neither is very use-
ful in making personnel scheduling more efficient. However,
personnel scheduling is highly reliant upon service schedul-
ing of aircraft, which could benefit from prognostics. The
number of maintenance checks could also be reduced, if these
checks are made more efficient. Prognostics contributes to
better trouble shooting if a component has broken down, and
reduces so called ’No Faults Found’ (NFFs) in maintenance
departments, false alarms that cost a lot of money (Hölzel &
Gollnick, 2015). On top of that, research shows human er-
rors are a primary contributor in up to 80% of all aviation
accidents and incidents (Rankin, 2007). This could be re-
duced if the number of maintenance activities is decreased,
which in turn reduces the occurrence of accidental damage
during these maintenance activities (Sun et al., 2012). Prog-
nostics can be used to schedule more efficiently, identify bro-
ken components more efficiently, decrease the frequency of
maintenance checks and therewith reduce the amount of col-
lateral damage. Prognostics could also be used to minimize
the number of spare parts, which is very relevant because re-
search shows inventories sum op to above 50 billion dollar
in airlines business which results in excessive storage costs
(Cai et al., 2017). The following sections will chronologically
present literature on the use of PdM in aircraft maintenance,
optimization of service scheduling, spare parts management,
and the reduction of maintenance and repair-induced failures.
Scopus is used as main search engine. Literature focused on
maintenance of aircraft in commercial aviation is considered,

published later than 2012. Table 2 shows an overview of the
presented literature per section. Literature solely focused on
the development of prognostic models is reviewed by (Elattar
et al., 2016).

4.1. Deployment of Predictive Maintenance

Contemporary maintenance providers are extensively trying
to optimize their operations using prognostics and PdM, of
which literature will be shown in this section. Most airlines
own many more aircraft of the same type, where the infor-
mation of older aircraft of the same type can eventually be
used to optimize maintenance of a fleet of aircraft of this type.
Ideally, prognostics is implemented in multiple levels such as
shown in Fig. 2. As an example, at the lowest level cracks
in every single fuselage panel are identified, after which the
impact of this one crack on the total fuselage is evaluated.
The fuselage is a part of the total aircraft, and an aircraft is
eventually part of a fleet of aircraft. Proof that PdM can op-
timize maintenance operations is developed by (Kraft et al.,
2014). They present research on a fleet of about 100 aircraft
engines on long-haul aircraft. A performance improvement
program was launched in 2007 in which engine models were
developed. These models indicate the effect that the actual
condition of a specific part of the engine has on the future
operation of the engine. The models use data of actual in-
service engines operated at typical conditions of the specific
engine fleet. The models were tested in order to optimize
the engine maintenance costs per flight hour and the spe-
cific fuel consumption. Before their research, engine main-
tenance was carried out based on general experience of the
OEM. Now the engine maintenance is primarily based on the
health monitoring and predictions generated by this research.
Results show improvements on many levels, of which an im-

5



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

Figure 2. Prognostics on different levels, adapted from (Collins & Huzurbazar, 2012).

provement of the engine life span of 30 to 40% probably is
the most recognizable. (Feng, Chen, et al., 2014) propose a
modeling method based on CBM for a fleet of aircraft. The
health status of the aircraft is defined, after which the mainte-
nance optimization program is used to minimize maintenance
time, costs, and risk. The research considers prognostic un-
certainty, constrained resources and presents results for a case
study of a fleet containing 10 aircraft with 4 components that
can fail. A different model is shown by (Lin et al., 2017), as
they proposed a maintenance decision-making support sys-
tem based on a CBM multi-objective decision-making model.
This model both minimizes maintenance costs as well as max-
imizes the availability of the aircraft. They assume aircraft
send real-time information about strains of the wing boxes
which indicate the real-time condition of the aircraft. This
data can then be processed and decisions about required main-
tenance can be made. (Yang et al., 2018) show how prognos-
tics can be exploited to optimize aircraft maintenance. They
use the RUL estimation of all key subsystems of an aircraft to
optimize fleet-wide CBM. A heuristic sequential game frame-
work is proposed that can help managers determine the best
combination of maintenance activities and therewith reduce
maintenance time and cost of equipment. This research is a
perfect example of what is possible if the RUL of all key sub-
systems is estimated. Fig. 2 shows how prognostics on sub-
systems can be extended to the RUL estimation of the entire
aircraft and from there to fleet-wide maintenance optimiza-
tion. It is key to couple aircraft of the same type in order to
estimate the future performance of the entire fleet of aircraft.

4.2. Service Scheduling

The aviation industry still mostly uses P.M. with periodic main-
tenance checks which are referred to as A, B, C, or D checks.
Each of these checks is very costly and thus it is extremely

important to efficiently plan these checks (Bazargan, 2016).
The scheduling of all these checks has been extensively ad-
dressed in literature, although fewer literature about the schedul-
ing of maintenance checks that exploits the benefits of prog-
nostics exists. (Pattabhiraman et al., 2012) propose skipping
some maintenance checks using CBM in service scheduling.
They focus on cracks in the fuselage panel which occur due
to the repeated pressurization cycles of airplanes. They show
that skipping some structural airframe maintenance could re-
duce costs while safety is maintained with the use of an on-
board structural health monitoring system. Skipping main-
tenance tasks currently is, however, not allowed by regula-
tions. (Bazargan, 2016) shows an optimization approach of
in-house vs. outsourced maintenance strategies. The D main-
tenance check includes all categories of the A, B, and C checks
and a lot of non-routine maintenance tasks and thus is by
far the most expensive. Airlines have the opportunity to out-
source this maintenance, and (Bazargan, 2016) actually shows
that it is sometimes optimal to outsource the more expensive
checks (D checks), while less expensive checks should be per-
formed in-house. However, this is highly dependent on the
age of aircraft because older aircraft will require more fre-
quent maintenance. (Feng, Bi, Zhao, et al., 2017) implicitly
use prognostics in their game theory approach to optimize a
CBM service scheduling problem of a fleet of aircraft. The
game first looks for a local optimal strategy for different sets,
after which the cooperative game tries to find the global op-
timum for all sets. The characteristics of the fleet reliability
model and maintenance problem are still very basic though.
(Feng, Bi, Chen, et al., 2017) extend this research by means of
agent learning which uses the health data of the aircraft more
effectively. (Lin, Luo, & Zhong, 2018) developed a multi-
objective decision-making model for the maintenance of air-
craft. They propose a CBM approach based on RUL predic-
tions that minimizes fleet maintenance cost and maximizes
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fleet availability. Moreover, a case study regarding a fleet
of 10 aircraft is conducted which shows the approach meets
the scheduling requirements. The paper addresses the nega-
tive influence caused by uncertainty, but is still just a start for
research in this direction. Finally, another research that de-
ploys prognostics to optimize service scheduling is presented
by (Vianna & Yoneyama, 2018). They use a Kalman filter to
predict the wear of some aeronautical redundant systems. A
Kalman filter is useful because it can deal with noisy or even
incomplete measurements to estimate the RUL. The method
is used to optimize a maintenance scheduling problem.

4.3. Spare Parts Management

Many airlines order excessive spare parts in the first several
years while in these years the demand of spare parts is lim-
ited, which contributes to the huge inventories of spare parts
which sum up to above 50 billion dollar (Cai et al., 2017).
Prognostics is relevant in spare parts management because of
the fact that it can predict the RUL and thus it helps to or-
der spare parts only when the components are just about to
fail. Although relatively outdated, (Muckstadt, 2005) wrote
a book about spare parts in supply chains. The book is not
focused on aircraft, but on supply chains in general. Nev-
ertheless, it includes a lot of mathematical models and opti-
mization techniques for spare parts management. Focusing
on spare parts in aircraft industry, (Fritzsche & Lasch, 2012)
present a paper on a faster and more efficient supply of spare
parts by trying to minimize unscheduled maintenance using
prognostics. When aircraft need unscheduled maintenance,
there is a high possibility of inefficient spare part deliveries.
They present a model based on the actual condition of com-
ponents and their predicted future performance to be able to
accurately schedule maintenance. This information is then
used to optimize the stock and delivery of spare parts while at
the same time decreasing the number of flight cancellations
drastically. Although their model minimizes cost, it does not
consider the implementation costs of the advanced technol-
ogy that is needed to accurately estimate the RUL of compo-
nents. (Rodrigues & Yoneyama, 2013) present a paper that
shows how PHM information can improve fleet availability.
The authors consider the failure of components of a fleet of
10 aircraft and the repairs and replacement of these compo-
nents. The number of spare parts in stock can be reduced
because spare parts can now be ordered just-in-time. Inter-
esting is the fact that the authors consider uncertainties in the
estimation of the RUL. (Cai et al., 2016) very clearly shows
how prognostics can improve spare parts management. They
optimize aircraft engine maintenance service based on RUL
and stochastic repair times. The goal of the research is to
carry out maintenance just-in-time, based on the real-time
condition of the engines. The results show it is possible to
accurately estimate the RUL which can reduce the number of
spare engines needed. A different paper by the same authors,

(Cai et al., 2017), present a joint inventory management strat-
egy together with an optimization of maintenance inspection
and spare parts provisioning. Physical degradation models
are considered that describe the RUL of critical spare parts.
The interesting thing about this paper is that the authors con-
sider different phases in the spare part provisioning, if an air-
craft is new, no or very little spare parts are needed in the first
years. Moreover, the authors consider different inspection
intervals, which is consistent with the actual situation in in-
dustry. Research by (Vandawaker et al., 2017) does consider
the costs of implementing a condition aware system that uses
prognostics. They present how PdM can improve operations,
especially the supply of spare parts for a fleet of Joint Strike
Fighter (JSF) fighter jets. Each aircraft has 20 unique compo-
nents with different failure times, and the impact of ordering
spare parts on basis of predicted failure of these components
is inspected. The developed model also changes the supply
ordering frequency, taking costs for holding spare parts into
consideration. The authors show that the overall annual sup-
ply costs can be decreased while at the same time the aircraft
availability is increased if prognostics is used. (Mofokeng &
Marnewick, 2017) present a case study at an aircraft mainte-
nance company to find factors contributing to the delays of
A-checks. Maintenance reports were analyzed for half a year
in 2016 and the authors identified causes for delay. A poor
logistics process related to spare parts was found to be the
cause of delay most of the times. Also, poor planning, lack
of communication, lack of human resources, lack of capabil-
ity, and defects were identified as causes of delay. With the
help of prognostics these delays could be mitigated or even
resolved.

4.4. Reduce maintenance and repair-induced failures

When prognostics is used to more efficiently schedule main-
tenance using RUL estimations, maintenance of different com-
ponents can be combined which reduces the number of main-
tenance checks needed (Hölzel, Schilling, & Gollnick, 2014).
Prognostics can thus also reduce the amount of ground sup-
port equipment and manpower needed. Because the failure
modes of the failed components are known, repairs are more
efficient and the number of NFFs will reduce as is also shown
in Fig. 3. Moreover, mechanics may cause accidental damage
to other components while carrying out maintenance. This is
most often called collateral damage during repairs, and if this
damage stays unnoticed, this can result in additional system
downtime or failures. Research shows that of all aviation ac-
cidents and incidents, human errors were identified as a cause
in up to 80% of times (Rankin, 2007; Daneshjo, Majernik,
Danishjoo, & Krivosudska, 2017). Boeing already acknowl-
edged this problem in 1992 and offers a human factors tool
to all of its airline customers called Maintenance Error De-
cision Aid since 1995 (Rankin, 2007). Boeing expanded this
tool to also include violations in company policies, processes,
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Figure 3. Predictive maintenance based on component wear-out, adapted from (Kählert, 2017).

and procedures that lead to an unwanted outcome. (Feng, Li,
& Sun, 2014) present an interesting paper where they sim-
ulate human behavior when assigning personnel to specific
maintenance tasks. A multi-agent system is used to describe
the maintenance process and assign maintenance personnel.
Agents in the system can take decisions and can consider all
sorts of behavior of maintenance personnel from human er-
ror to capability level. The agents propose bids to the man-
agement to find the optimal personnel for a certain task, a
case study shows promising results but is still subject to a lot
of assumptions and uncertainties. (Rashid et al., 2014) and
(Shanmugam & Paul Robert, 2015) show that it is important
to make use of prognostics to decrease the number of mainte-
nance activities because human errors occur more often due
to increasingly complex human-machine interactions in air-
craft maintenance. (Duarte et al., 2016) also show this area
of research is relevant as they reviewed multiple case studies
in which a component of an aircraft has failed. Different com-
ponents from engines to aircraft structures and landing gears
are considered and an extensive failure analysis has been con-
ducted. The authors clarify that the human factor bears a sig-
nificant role in the failure of aircraft systems and components.
More specifically, in most of the investigations, the root cause
for the incident was directly or indirectly related to human
causes.

5. DISCUSSION

We observe that there are some challenges to overcome be-
fore PdM will be the standard in aircraft maintenance. Al-
though prognostic models for individual components have re-
ceived quite some attention in literature, the interaction be-
tween these components and the assessment of the health of
the entire aircraft still proves to be very difficult. Especially,
little research into the health management of entire fleets of
aircraft is available. Moreover, (Ma, Zhang, & Meng, 2015)
state that if the aircraft design and PHM system are designed

separately, the optimal design can never be reached. They
thus propose a collaborative PHM development framework in
which the PHM and aircraft design are completely integrated,
as for instance has been done in the JSF project (Calvello,
Olin, Hess, & Frith, 2007; Hess, Calvello, & Dabney, 2004).
(Zhang et al., 2014; Nicolai & Dekker, 2008) show another
challenge for prognostics in the verification and validation of
the techniques used. It is important to acknowledge the de-
gree to which a model and its associated data accurately rep-
resent the real-world. Models will remain a representation of
reality, and thus these need to be validated thoroughly. When
we consider the data-driven approach for prognostics, which
is the most widespread in the PHM community, as the name
says: data is needed. Especially, it is very important to be
able to determine the real-time condition of aircraft and esti-
mate the future performance. Multiple models have been de-
scribed in Section 3, most of which show promising results,
but in order to be able to estimate the real-time condition of
aircraft, real-time data from the aircraft is needed wherever
it is located. According to (Gomes, Rodrigues, Leao, Gal-
vao, & Yoneyama, 2018), even though in-flight data transmis-
sion costs are reducing, we are still far from a reality where
streaming of large amounts of data can be performed for the
great majority of flights. Besides, smaller aircraft do not have
the hardware to gather continuously sampled data.

Considering the use of prognostic maintenance strategies in
industry, although a lot of research has been conducted, prog-
nostic models have not been significantly applied to optimize
maintenance operations in aviation industry. The state-of-
the-art remains to be maintenance at specified time intervals.
The length of these intervals is very difficult to determine,
but can be determined when the real-time condition of the
aircraft is assessed. The future performance is estimated us-
ing prognostics and in theory maintenance scheduling would
take place just-in-time and components would never cause
unexpected, expensive maintenance events. Unfortunately,

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019

estimations of RUL and degradation of performance remain
subjected to uncertainty. When the RUL estimations used in
PdM are not accurate, the use of PdM could have the same
drawbacks as P.M.. When the RUL is underestimated, main-
tenance is planned too often, while unscheduled ground time
and system failures could occur when the RUL is overesti-
mated. (Vandawaker et al., 2015; Vianna & Yoneyama, 2018)
assess the topic of risk management in prognostics regarding
these uncertainties. The use of prognostics can reduce costs
and increase safety, if and only if, the estimations of the RUL
are accurate enough. (Arahchige & Perinpanayagam, 2018)
analyzed and confirmed the significance of uncertainties in
prognostics, which include modelling errors, noise, and sen-
sors. They show one of the first detailed statistical analysis
on the effect of sensor noise which can be used in uncertainty
management. Together with the validation of the models, as-
sessing the uncertainty of the models and therewith address-
ing the risk of using these models in reality is a must before
the use of prognostic maintenance systems will be feasible
in aircraft industry. Management has the task to evaluate the
prediction of prognostic models and their according uncer-
tainties and take careful decisions (Vandawaker et al., 2015).
Experience in taking these decisions is an advantage, but it
will take some time before companies will be skilled enough
to accurately assess the uncertainties resulting from the prog-
nostic models.

With the move to prognostic maintenance systems, suppli-
ers of aircraft components will now be able to predict fu-
ture performance and can use this as an advantage to maxi-
mize their revenue (Phillips & Diston, 2011). This, however,
also brings up difficulties in the fact that information about
many of different components will have to be coupled by
airlines to be able to schedule maintenance more accurately.
With regard to prognostic approaches, the reason the data-
driven approach is the most widespread in the PHM commu-
nity, while the physics-based approach is more accurate, is
largely because of the fact that the physics-based approach
is time consuming and very costly. Management of airlines
needs to consider the fact that maintenance is a very large
part of their operation and invest in research and development
of more effective prognostics, although one might argue the
cheaper data-driven approach is not ineffective. We observe
that it might be difficult for management to determine the
profitability of mathematical models that describe the degra-
dation of the condition of components of aircraft. Those mod-
els will become more profitable when maintenance operations
are moved from maintenance at fixed time intervals to PdM
based on the actual real-time condition of aircraft. In this,
governments can play a role in reconsidering regulations that
specify the amount and frequency of maintenance checks,
however, their response to new technologies tends to be quite
slow (Quinlan, Hampson, & Gregson, 2014). This is inter-
esting because already in 2008, the Department of Defense

of the USA released a technical report about the potential
of CBM (Department of Defense, 2008). Another difficulty
which needs to be considered is the data ownership, airlines
own the data which their aircraft generate, but aircraft and air-
craft engines are manufactured and maintained by different
companies. Data sharing would greatly accelerate research
and development, however, especially large airlines are not
excited about sharing this data (Uckun et al., 2008). Recently,
new initiatives by aircraft manufacturers such as Airbus and
Boeing might change this when they provide data capturing
and processing.

6. CONCLUSION

From the reviewed literature we conclude that the deploy-
ment of prognostics can optimize operations in aircraft main-
tenance. The first area of optimization is maintenance schedul-
ing, where prognostics enables service scheduling accord-
ing to the future condition of the aircraft(components) in-
stead of at fixed time intervals. The second area that bene-
fits from prognostics is the field of spare parts management,
where decreasing the amount of spare parts in stock decreases
costs and a just-in-time delivery of spare parts is the main
goal of optimization models. The third area of improvement
is the reduction of maintenance by more accurate schedul-
ing and fault diagnostics. This will cause a reduction of the
amount of collateral damage due to human errors and lower
repair cost due to more effective troubleshooting. Moreover,
human-machine interactions have become very complex in
recent years and the difficulty will keep increasing, which
will augment this problem. It is important for management
to acknowledge maintenance errors and violations and con-
sider that violations, while intentional, are also caused by
contributing factors.

7. FURTHER RESEARCH

The feasibility of deploying prognostic maintenance systems
to optimize maintenance operations is explored in this paper.
We observe that although there are some difficulties from
both a technical as well as a management perspective, the
implementation is certainly feasible. Most of the contem-
porary difficulties lie in the fact that methods are still rela-
tively new and thus aircraft maintenance companies have lit-
tle experience using them. Technologies are advancing ever
more rapidly, and thus it will only be a matter of time be-
fore companies obtain this experience. We observe multiple
challenges for further research of which some have been ex-
tensively discussed in previous sections.

1. Empirical validation of prognostic models

Empirical validation is concerned with the validation of prog-
nostic models with reality based on observation or experience
instead of solely on theory. Although most of these models
show promising results, they will need to be validated before
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the models can be used in the real-world.

2. Quantification and risk assessment of uncertainties in prog-
nostic models

Uncertainties in these models need to be addressed and quan-
tified to be able to make risk assessments and improve main-
tenance operations. Management of airlines will have to take
careful decisions based on these risk-assessments which will
become more straightforward with time and experience. Re-
garding the little amount of research into prognostic mod-
els, the development of these models is a difficult and time-
consuming task. Moreover: data is needed. As we can ob-
serve from for example the competition set up by NASA (Saxena,
Goebel, Simon, & Eklund, 2008), the supply of extensive reli-
able data from aircraft engines causes an impulse to research.
Especially when this data is backed by some sort of competi-
tion as has been done by NASA. Airlines and aircraft compa-
nies such as Boeing and Airbus should make extensive data
available to validate the models presented in literature. In
this way, prognostic approaches can be validated and imple-
mented in industry.

3. Integrating PHM in the design of new aircraft

Aircraft manufacturers have the noble task to integrate PHM
in the design of their aircraft, such as has been done in the JSF
fighter-jet project. This is especially a difficult task because
the aircraft manufacturer does not design and build all parts of
the aircraft, on the contrary, thousands of suppliers deliver all
sorts of parts from engines to bolts and from fuselage panels
to landing gear.

4. Interaction between damaged components of aircraft

Because all of these components come from different suppli-
ers, research is needed to evaluate the interaction of damage
in one component in relation to the degradation of adjacent
components. Data-driven prognostic models based on ma-
chine learning could be used to identify relations that can not
be seen by the naked eye.

5. Real-time health management of an entire fleet

A thing we also observe is the fact that frameworks connect-
ing individual aircraft RUL estimation and real-time condi-
tion to fleet-wide RUL estimation and real-time condition is
very scarce in literature, more effort is needed before fleet-
wide PdM can intensively be used in aircraft industry.

6. Optimization of maintenance operations using the real-
time condition of a fleet of aircraft

Monitoring the real-time condition and accurately predicting
the future performance of an entire fleet of aircraft enables
optimization of maintenance operations as described in this
paper. We observe most research has been conducted into the
optimization of service scheduling, spare parts management,
and the reduction of the amount of maintenance and repair-
induced failures. Although research is still limited and the

research that has been done often considers only a fraction of
the thousands of components of an aircraft. We believe the
deployment of prognostics can optimize the entire logistics
supply chain of aircraft maintenance, including the phase-
out, reuse, and recycling of aircraft and their components.
Furthermore, with the accurate estimations of RUL one can
extend the service life of an aircraft and avoid unnecessary
replacement of components, which contributes to a more sus-
tainable aircraft industry in general. In summary, we observe
research gaps in the following areas:

1. Empirical validation of prognostic models

2. Quantification and risk assessment of uncertainties in prog-
nostic models

3. Interaction between damaged components of aircraft

4. Integrating PHM in the design of new aircraft

5. Real-time health management of an entire fleet

6. Optimization of maintenance operations using the real-
time condition of a fleet of aircraft
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