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ABSTRACT 

How can we tell if a flight is normal or abnormal? In Safran 

Aircraft Engines, we are interested in the engine behavior. 

Some data are collected at low frequency between 1Hz up to 

66Hz. These data are mainly measurements acquired from 

engines sensors, information coming from the aircraft that are 

needed to control the propulsion system and results of online 

computations for monitoring and maintenance. Hence, a 

flight appears as a big multivariate temporal signal. But it is 

not just a simple temporal observation, this signal is 

structured and may be decomposed in standard phases like 

start, taxi, take-off, climb, cruise, descent, reverse and taxi 

again. Moreover, during each standard phase there may be 

stabilized regimes and transient phases, the stabilized parts 

are easy to understand and to model mathematically. There 

are mainly four stabilized regimes: slow ground speed, 

normal cruise speed, slow descent and climb. The transient 

regimes are more complex as they depend a lot on the 

command issued by the pilot, but we identify two classes of 

transient phases: accelerations and decelerations. Depending 

on the flight plan, the airport ground geography, the day time, 

season and meteorology those phases may appears randomly 

at different instants during the journey. All of this complexity 

makes the comparison of different flights very difficult. Our 

goal in this work is to give a definition of an abnormal fight 

based on a new kind of metric that we build to compare those 

multivariate temporal series two by two. 

1. INTRODUCTION 

Flight data are now flowing in our databases. We cannot 

analyze every single observation and we need a tool to 

automatically alert in case of unusual behavior and another 

tool to find similarities between parts of real aircraft flights. 

Our proposal is to systematically index the databases 

replacing each multivariate numerical signal acquired by the 

aircraft and the engine sensors by a sequence of labels. Each 

label should characterize a specific part of the signal such as 

a stationary phase or a transient phase. Stationary phases are 

summarized by snapshots made of statistics on multivariate 

signal distribution parameters and are easy to characterize. 

Transient phases are a more complex in a multivariate 

environment. This work applies a specific fast change 

detection algorithm to identify transient phases and an 

adaptive classification neural network to label each temporal 

behavior. However, as it seems natural to automatically 

separate standard flight phases like engine start, taxi, take-

off, climb, etc. our goal is to identify different behaviors 

among those main classes. For example, we detect engines 

with slow thermal stabilization during the take-off and 

separate them from engines with fast thermal stabilization. 

We also separate hot engines during the climb phase to cold 

ones. The same sort of analysis is done on mechanical 

transfer functions as we may identify fast or slow crossing of 

specific vibration modes, etc. At the end of this segmentation 

and classification process, each multivariate signal is 

replaced by sequences of classes corresponding to relations 

between contexts, rotation speed for example, and any 

endogenous observation like temperature or vibration. Then 

working on discrete data, it becomes easier to query this 

database for rare behaviors, usual behaviors, or to search 

some similarity with a specific engine observation. For 

example, looking at a specific temporal interval during a 

given flight it becomes possible to ask for flights and engines 

with similar behavior in the historic database. 

This document has two mains sections, the first one (section 

2) shows some applications of a metric able to compare 
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flights, then section 3 explains the mathematic and 

algorithmic tools we used to build such metric. 

2. DEFINITION OF AN ABNORMAL FLIGHT 

2.1. Normal or usual behavior 

With a metric to compare two flights it becomes possible to 

define the neighborhood of a given flight. In fact, we may 

identify the nearest neighbors of any flight. 

A very common flight is one with a minimal distances to 

other flights; it minimizes the sum of all distances to its 

neighbors. Figure 1 shows such a flight seen from the low-

pressure (LP) shaft speed N1 of one engine. 

 

Figure 1. A good representative flight, one that minimizes 

the distance to its neighbors. The graphs shows the low-

pressure shaft speed in percentages. This flight lasted 

approximately 3h301 (in red are the accelerations transients, 

in blue the deceleration and in black the stabilized phases). 

The LP shaft drives the fan, which is mainly responsible of 

the thrust of the engine. In fact, the engine is controlled by 

thrust demand from the cockpit lever or the autopilot and 

looking at this N1 signal is a good method to analyze the 

context of the operation. On the figure, we colored the 

measurement according to different phases, in red are the 

accelerations, in blue the decelerations and in black the 

stabilized phases. We can see that stabilized phases may 

include some local scatter. 

As N1 is the result of some controlled decision computed on 

the embedded computer, we may not always see a direct 

causality with other measurments. For example the lever 

angle computed by the autopilot changes before the N1. 

Moreover, as the engine is itself driven by a high-pressure 

(HP) gas generator, then the HP shaft speed N2 and 

measurements inside the engine core may be more reactive 

than the LP shaft speed N1. This should be taken into account 

when we will work on multivariate signals. 

 
1 This plot and the following use 8Hz acquisition data for some sensors, 

lower frequency measurements are interpolated. 

2.2. Unusual or abnormal behavior 

Even with a metric to measure similarities between two 

flights, there are multiple ways to detect an unusual behavior. 

A flight with far neighbors is an outliers and should be 

investigated. Here, we are intersected in another kind of 

behavior: we may dispose of a plurality of different but 

similar ways to measure similarity. In this application, we use 

the stochastic characteristic of our algorithm to compute the 

similarity distance: here a 2D auto-adaptive Self-Organizing 

Map (SOM) (Kohonen, 1995). This algorithm is randomly 

initialized, and uses random selection of observations during 

its iterations. This allows us to build a set of similar metrics 

and according to (de Bodt, Cottrell & Verleysen, 2002) a 

couple of observations (flights) may not always be neighbors. 

A flight with almost never the same neighbors is clearly 

special. 

Let 𝑣𝑖,𝑗 = 1 if two flights of positions 𝑖 and 𝑗 on the map are 

neighbors and 0 otherwise and let 𝑉𝑖,𝑗  be the sum of this 

boolean value over 𝑅  random maps. In case of random 

association and if we do not take into account the edges of a 

rectangular map, the mean value of being a neighbor is 9/𝑈 

where 𝑈 is the number of units on the map2. Hence, in that 

case, 𝑉𝑖,𝑗 follows a binomial distribution 𝐵(𝑅, 9/𝑈). 

If 𝑅 is big enough (~100) and 9/𝑈 not too small (~0.1) then 

Gaussian approximation is allowed and random acceptation 

interval for 𝑉𝑖,𝑗/𝑅 becomes [𝐴 − 𝐵, 𝐴 + 𝐵] where 𝐴 = 9/𝑈 

and 𝐵 = 1.96√𝐴(1 − 𝐴)/𝑅. Hence 

• if 𝑉𝑖,𝑗/𝑅 is less than 𝐴 − 𝐵 we can say that the pair is 

repulsive, 

• if 𝑉𝑖,𝑗/𝑅 is greater than 𝐴 + 𝐵 on the contrary the pair is 

attractive, 

• and if 𝑉𝑖,𝑗/𝑅 is between A and B, the pair is inconsistent 

because it behaves like if the relation between the two 

flights i and j is random. 

Then it is possible to order the flights according to the number 

of inconsistent neighbors, we call the ones with big number 

of inconsistent neighbors fickle or inconsistent flights. 

Figure 2 shows such a flight with a level increase in the 

middle of the cruise phase at very high altitude. In general we 

observe a level decrease and mostly at the end of the flight. 

This may be a particularity of our database because we select 

only one airline for our tests. 

2 8 neighbor cells and the center position. 



  
ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2019 

3 

 

Figure 2. A fickle flight selected among the observations 

with the biggest number of inconsistent neighbors. The 

duration of this flight is around 3h30. The red line is the 

altitude, which is plotted along the usual low-pressure shaft 

speed N1. 

Figure 3 is a clear case of abnormality because one see just a 

small take-off immediately followed by a landing. The whole 

trip lasted 35 minutes including taxi on the ground. This one 

also has almost no stable neighbor. 

 

Figure 3. Another very short fickle flight. This one is 

probably an aborted flight because it last just 35 minutes 

and does not climb very high. (Remember it is a turbofan 

jet, small trips are very rare.) 

 
3 This is mostly a summary of Cinthia Faure PhD thesis (2018) in French and 
much development of intermediate results are given in her numerous 

publications. 

2.3. First conclusions 

1) With a similarity metric we are able to find 

representative flights, this is very nice if we expect 

to compute complex loads using very long finite 

element computations for example. This 

methodology helps identify the most representative 

flights and then it becomes possible to approximate 

life duration estimation by estimating a potential 

load counter after each flight. 

2) As we found a stochastic methodology able to build 

not only one but a whole set of metrics sharing 

similar constraints about our interpretation of the 

multivariate signal, we also are able to identify very 

original flights (fickle flights). Forwarding this 

information to our system engineers will help 

maintenance logistic. 

The next section explains our stochastic methodology to 

build similarity metrics3. 

3. INDEXATION OF TEMPORAL MULTIVARIATE DATA 

Analyzing multivariate time series created by sensors during 

a flight or a test bench represents a new challenge for 

engineers. Each signal can be decomposed into series of 

stabilized phases, well known by the expert, and transient 

phases that are hardly explored even if very informative when 

the engine is running. Our proposition aims at converting 

these time series into a succession of labels, designing 

transient and stabilized phases on a bivariate context to begin. 

This transformation of the data will allow several 

perspectives: tracking similar behaviors or bivariate patterns 

seen during a flight, detecting frequent or rare sequences of 

labels during a flight and discovering hidden multivariate 

structures. 

Figure 4. Schematic workflow of the segmentation process using a reference variable and one observation in the engine. 
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(Faure, 2018) proposed an algorithm that builds a new 

database of transient patterns with a change-point detection 

method. Then, the bivariate transient patterns are clustered 

into a ranked number of typologies which will provide the 

labels. The clustering is implemented with self-organizing 

maps. All algorithms are applied on real flight measurements 

with a validation of the results from expert knowledge. 

Figure 4 presents the process workflow to transform a 

temporal bivariate signal into a sequence of labelled patterns. 

3.1. Segmentation of temporal data 

Intuitively, a phase is stabilized when it does not contain any 

major variation, when it is not transient. The indexation of 

the database begins with an offline change-point detection 

method. 

An algorithm computes the start and stop points of each 

phases. Different engine variables may be used as reference 

to segment the signal so the method has to be adaptable to the 

different properties each measurement might have. We 

mostly use the fan speed (N1) which is always acquired and 

stored on the data-flight recorders. A main characteristic of 

an engine during flight is its current thrust; our engines are 

regulated according to N1, which is directly proportional to 

the thrust. N1 is called a “reference” variable on which the 

clusterisation is based. 

We select to represent N1 with a piecewise linear model. This 

is why we choose to detect changes in the slope and an 

algorithm that uses dynamic programming and penalty term 

(since the number of change-points is unknown). In order to 

detect potential crucial changes of characteristic variables, it 

is relevant to develop robust algorithms with accurate results. 

Different segmentation algorithms were tested but only the 

PELT (Pruned Exact Linear Time) method (Killick, 

Fearnhead & Eckley, 2011) which achieved the best trade-off 

between results and computational time is used in this study 

(Faure, Bardet & Olteanu, 2016). This method indexes any 

monovariate signals into different phases: stabilized and 

transient. Of this partition will result a new database 

composed of patterns. A first simple classification into three 

classes is made; it creates three databases of stabilized, 

ascending and descending phases. They are classified with a 

10% threshold on the rate of increase or decrease.  

Figure 5 shows a result of the PELT algorithm. We applied 

this algorithm on 500 flights recorded from 8 different 

aircrafts of the same type and same engines type. The mean 

duration of one flight is around 2.8 hours. The PELT 

algorithm gathers around 8000 different transient phases 

from our N1 reference variable on which almost 4000 where 

ascending phases. All of the computed algorithms are done 

with language R and the clustering algorithm comes from the 

package SOMbrero (Villa-Vialaneix, Mariette, Olteanu, 

Rossi, Bendhaiba & Boelaert, 2017). 

 

Figure 5. N1 profile in black and the result of the 

segmentation by the PELT algorithm in red. 

3.2. Classification of transient patterns 

A clustering method is applied to the transient phases. We 

select Self-Organizing Maps among many other 

segmentation tools (k-means, etc.) because this method has 

the best results concerning the visualization aspect and the 

computed errors (Faure, Olteanu, Bardet & Lacaille 2017). 

This technique is based on numerical features (mean, 

variance and a set of other statistics) extracted from the 

patterns. 

After the pre-classification of the transient phases into two 

classes ascending and descending, we focused on the 

ascending phases first. Figure 6 shows the disparity of all 

ascending phases and the necessity to classify this database 

in relatively coherent clusters. 

 

Figure 6. Plot of some ascending phases superposed on the 

same graph. 

An 11x11 SOM is computed first with a super-classification 

realized by a hierarchic clustering (Figure 7). Finally, in order 

to validate the quality of the clustering, clusters were crossed 

checked with the flight mode variable (Table 1). 
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Figure 7. 11x11 SOM clustering of ascending transient 

phases. The numbers refers to the majority code4 in each 

cluster according to Table 1. The colored zones are 

computed by hierarchical clustering and were labelled by 

experts. 

Table 1. Numeration of the official flight phases. 

Preflight 0 Engine-Start 1 

Taxi-Out 2 Take-Off 3 

Climb 4 Cruise 5 

Descent 6 Approach 7 

Landing & Roll 8 Taxi-In 9 

3.2.1. Synchronization 

The extracted transients coming from multiple flights phases 

have unequal lengths and the clustering of these phases is not 

an easy task. The aim is to group the phases of very much 

alike shapes and identifies them. Dynamic Time Wrapping 

(DTW) (Berndt & Clifford, 1994) is not an option on our data 

because the time delays are of real physical importance. 

Pattern classification for multivariate time series frequently 

uses a distance measure and a hierarchical clustering method 

to compare and to group these time series. For this step, the 

unequal lengths of the phases make the definition of a 

similarity measure more complex. So, to transform all the 

phases of different lengths into patterns of equal lengths, a 

representative “median” curve of each clusters is selected. 

Each pattern of the cluster is compared and centered 

according to this median curve in a way that optimizes the 

convolution between observed and median curve (Figure 8). 

Depending on the pattern, the other phases must get bigger or 

be cut. 

 
4 Each label is composed of at least two digits because transient phases are 

across a couple of successive standard regimes. 

 

Figure 8. The synchronization of N1 patterns on a median 

curve. 

3.2.2. Bivariate classification 

Then a second “observed” variable (for example an engine 

temperature) is extracted on each signal according to the 

“reference clusters” identified previously (on referenced 

variable, here N1). The extraction process synchronizes all 

second variables according to the reference variable.  

Figure 9 shows similar rotation speed increases that 

corresponds to different evolutions of the temperature. The 

second clustering step, implemented on each reference class, 

is based on numerical features of the new observation 

variable. 

 

Figure 9. On this figure, each of the 6 cells corresponds to a 

couple of synchronized N1 (on the left) and compressor 

temperature (on the right) organized according to a second 

step of classification for the same N1 pattern. One can 

clearly identify fast (top left) or slow (bottom right) 

temperature adjustment after N1 increases. 

Finally, for each couple of “referenced” and “observed” 

variable we get a specific behavior label. And this same 

process can be replayed for any couple of reference and 

observation (Cottrell, Faure, Lacaille & Olteanu, 2019). 

3.3. Sequences of temporal patterns 

At this point, a bivariate signal is transformed into a string of 

the type “A11 A12 D74 S1 A53 A44 D42 D44 D61 A65 D65 

A65 S2 D63 A67 D27 D75” (a real flight). Each label is either 

an acceleration transient (A) a deceleration transient (D) or a 

stabilized phase (S). The following index corresponds to the 

first segmentation step on the reference variable (N1 here) 

and second step for transient phases (here on a compressor 

N1 T3 N1 T3 
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temperature). On may see those sequences as a chromosome 

description and like in genetic we apply a comparison 

between sequences using an optimal matching distance 

(Wunsch & Needleman, 1970) also known as edit distance or 

Levenstein distance. Note that transformation of a temporal 

multivariate signal into a sequence of labels is a nice solution 

to index the data as such tools already exists for document 

search (Ukkonen, 1985). 

Optimal matching distance is based on the definition of a cost 

function for each move that is used to transform one sequence 

into another (Studer & Ritschard, 2016). Clearly, in our case, 

we define such cost according to the distance between classes 

on the original map. We also have to deal with some 

constraints such that the cost of removing a label and 

inserting another is more expensive that exchanging both 

labels. Anyway, here again, the Kohonen map appears to be 

useful as it maintains a correspondence between distances in 

the original space and distance on the map (Lacaille, Bense, 

Berechet & Faure, 2016). 

4. CONCLUSION 

Temporal signals describing flights are structured into 

specific phases. Each phase is extracted from a monovariate 

reference measurement. Each phase should also be modelled 

according to the particular physic involved in the engine. 

However, a big-data approach may be used with rough 

models, here we consider transients as piecewise linear 

evolution and stabilized phases as constant with some scatter. 

A fast algorithm (e.g. PELT which works in linear time) is 

used to segment a whole database of measurements. Fast 

computation is really needed because we want to index a very 

big amount of data and we want to do it according to different 

reference measurements. 

Once the signal segmented, we classify the reference 

measurement to identify the category of phases, then inside 

each category, we synchronize other signals and build a 

second bi-variate classification for transient observations. 

The new signals are selected according to the specific 

behavior of interest like thermic or dynamic responses.  

Both levels of classification use self-organizing maps to keep 

track of the distance between observations, followed by 

hierarchical clustering to limit the number of labels. 

Once each signal segmented and each segment labelled, we 

have a new representation of the database into sequences of 

labels, which can be used to index the flight. 

To compare sequences, we use an optimal matching distance 

which cost function is parametrized by the distances on the 

Kohonen maps. 

This distance let us find similar flights to a given one or 

identify representative flights, which may be of great help to 

limit computation by heavy physic finite element models. 

Finally, the intrinsic random property of the Kohonen 

algorithm let us build numerous solutions of indexation, 

hence identifying specific flight labelled as “fickle flight” or 

inconsistent flights by identification of specific sequences 

that are difficult to classify and should be observed in 

priority. 
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