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ABSTRACT 

The 2018 PHM Data Challenge posed the problem of 

estimating Remaining Useful Life (RUL) for multiple faults 

in ion etch mills. As with any industrial system, run-to-failure 

data for the mills is not directly available and the mills 

experience more than one fault at the same time. We propose 

a novel data-driven methodology to address these challenges 

and develop a workflow that can be used for concurrent 

estimation of RUL for multiple faults in ion etch mills in real 

time. In the proposed approach, operational data of the ion 

etch mill is used to build a machine learning model for 

predicting a health score of the mill and to create a library of 

truncated degradation curves for each fault. These are then 

utilized for RUL predictions using Dynamic Time Warping 

(DTW) curve matching. Application of the proposed 

approach to test and validation datasets provided during the 

data challenge showed reasonable agreement between RUL 

predictions and the ground truth. The approach proposed here 

can be extended to other industrial systems and equipment for 

which historical operational data and failure information is 

available. This framework will help optimize health 

management and pave the way for predictive maintenance of 

industrial equipment.  

1. INTRODUCTION 

Process anomalies and equipment failure are major areas of 

concern for manufacturing and process industries. Process 

anomalies may be triggered due to disturbances in normal 

operating conditions and/or due to operator response to 

process disturbances. If such anomalies are not detected and 

arrested at an early stage, they may lead to abnormal events 

(e.g. uncontrollable operation) or accidents. Similarly, faults 

in mechanical equipment such as blowers, pumps, 

compressors, valves, etc. that occur due to aging, wear and 

tear, fatigue or abnormal changes in the operating 

environment may lead to failure if the faults are not detected 

and addressed as early as possible. 

Industries typically follow a preventive maintenance strategy 

wherein repairs and replacement of components in equipment 

are carried out at periodic intervals (e.g. every 4 months) that 

are decided on the basis of historical failure data of assets. 

Preventive maintenance, however, is not an optimum strategy 

as perfectly healthy components may be replaced during 

maintenance and equipment failure may occur in the gap 

between two maintenance tasks. This shortcoming led 

industries to turn to predictive maintenance or Condition 

Based Maintenance (CBM) wherein the health of equipment 

is assessed using sensor data and maintenance is scheduled 

only when the equipment health falls below a certain 

threshold. While predictive maintenance is not an entirely 

new concept (Jardine et al., 2006), there is renewed interest 

in the subject due to the emergence of the Industrial Internet 

of Things (IIoT) and the availability of enormous amount of 

data collected by equipment and process sensors, mobile and 

wireless logs, software logs, cameras, microphones and 

wireless sensor networks at a high frequency (Qin, 2014).  

Predictive maintenance consists of the following key steps – 

continuous monitoring of equipment using sensor data, 

detection and diagnosis (i.e. classification or localization) of 

faults, and estimation of RUL of the faulty component. 
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Reliable and accurate prediction of RUL of components and 

physical systems helps in scheduling maintenance activities 

optimally and in managing the health of the system. In this 

context, the problem posed by the 2018 PHM Data Challenge 

(PHM Data challenge, 2018) is very pertinent to 

manufacturing and process industries.  

The 2018 PHM Data Challenge involved analyzing the fault 

behavior of Ion Mill Etch Tools (IMET) and predicting the 

time-to-failure or RUL of the tools due to three different 

faults. In an IMET, high intensity beams of charged ions are 

used to etch metallic, non-metallic or semi-conductor wafers 

mounted on a rotating fixture in a vacuum enclosure. It 

contains a cooling system known as ‘FlowCool’ that is used 

for cooling the wafers during the etching process. The 

cooling system passes helium gas behind the wafer at a 

specified flow rate and the heated helium gas is indirectly 

cooled by a separate water cooling system (PHM Data 

challenge, 2018). Any failure in the FlowCool system could 

damage the wafer during etching. Hence, a prognostics and 

health management system would be useful for predicting the 

failure of the FlowCool system a priori so that appropriate 

control actions or maintenance activities can be undertaken 

to prevent wafer damage. The objective of the data challenge 

is to predict the RUL of the FlowCool system due to three 

different faults, namely FlowCool Pressure Dropped Below 

Limit, FlowCool Pressure Too High and FlowCool Leak.  

This year’s data challenge is different from previous data 

challenges viz. PHM’08, PHM’10, IEEE’12 and IEEE’14 

(Huang et al., 2017) in two significant ways. Firstly, while 

run-to-failure data from healthy state to failure of the system 

was made available for training purposes in the previous data 

challenges, regular operational data of the IMET is made 

available in this year’s data challenge. Secondly, while 

previous data challenges dealt with only one type of 

fault/failure, this year’s data challenge deals with three types 

of faults where one or more faults could occur simultaneously 

at any given time. 

We propose a novel data-driven approach to tackle non-

availability of run-to-failure data and the presence of multiple 

faults in the system for concurrent estimation of RUL for 

multiple faults. The data-driven approach was chosen due to 

the abundancy of IMET operational data. In our approach, 

multiple health score models were built from continuous 

operational data and were used to create a library of truncated 

degradation curves for each fault. The estimation of RUL for 

each fault was then carried out using a curve matching 

technique similar to the one proposed by Wang et al. (2008). 

According to (Wang et al., 2008), the RUL of the test unit is 

read as the RUL of the training unit from the point where the 

degradation pattern of the test unit has the best match with 

the degradation patterns of the training units.  

The rest of the paper is organized as follows: The objective 

of the 2018 PHM Data Challenge and the dataset provided 

are discussed in Section 2. Insights from data exploration are 

provided in Section 3. The RUL estimation methodology is 

described in Section 4 and the RUL prediction results are 

presented in Section 5. Finally, conclusions and future work 

are discussed in Section 6. 

2. DETAILS OF THE DATA CHALLENGE 

As mentioned in Section 1, in an IMET, for which the dataset 

was provided, the FlowCool system could be affected by 

three faults, namely, FlowCool Pressure Dropped Below 

Limit, FlowCool Pressure Too High and FlowCool Leak. 

One, two or all the three faults could occur simultaneously at 

any given time. The objective of the data challenge is to 

predict the time remaining until the occurrence of next fault, 

that is, to predict the RUL of the tool, for each of the above 

mentioned three faults. The RUL prediction should be done 

by building a model from time series sensor data collected 

from various IMETs operating under various conditions and 

settings. The predictions of time-to-failure at a specific time 

should only use time-series data from current and past times 

(PHM Data challenge, 2018).  

The training dataset consists of multivariate time series that 

are collected from 20 different IMETs during operation. Each 

tool may be at a different level of degradation with respect to 

the three faults and this is unknown. Training data also 

consists of the times of occurrences of faults and the category 

of faults for each of the 20 IMETs. It is understood that the 

initiation of the fault could have happened much earlier than 

the provided fault time. Along with the fault time 

information, the Time-To-Failure (TTF) or RUL that 

indicates the time remaining until the next failure at each time 

step is also provided. This serves as the ground truth for 

training. 

Time series data from 5 IMETs (a subset of the 20 IMETs 

from the training data) without the RUL information was also 

made available for testing the models developed using the 

training data. Validation data provided towards the end of the 

competition also consisted of time series data from the same 

5 IMETs.  

The predicted RULs are evaluated using a score computed as 

per the rules shown in Table 1.  Two scores, namely, primary 

and secondary, are used to assess the submitted RUL (SUB) 

predictions by comparing them with the ground truth RUL 

(GT) of the validation data. The secondary score is similar in 

nature to the primary score, but it penalizes the false positives 

and false negatives more, as shown in Table 1. Both primary 

and secondary scores have a sub-score for RUL prediction at 

each time step. The sub-scores for each prediction are 

summed and divided by the total number of time steps in the 

validation data to arrive at the final score.  
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Table 1. Rules for computation of score. 

 
Ground 
Truth 

TTF (GT) 

Submission 
TTF  

(SUB) 

Primary 
Score 

Secondary Score 

Number Number 
𝑒(0.001∗𝐺𝑇)

∗ |𝐺𝑇 − 𝑆𝑈𝐵| 
0.1 ∗ (𝐺𝑇 − 𝑆𝑈𝐵)

∗ (𝐺𝑇 − 𝑆𝑈𝐵) 

Not-a-
Number 
(NaN) 

Number 
𝑒(0.001∗𝑆𝑈𝐵)

∗ 𝑆𝑈𝐵 

5

|𝑆𝑈𝐵| + 3
 

Number NaN 

 

𝑒(0.001∗𝐺𝑇)

∗ 𝐺𝑇 
 

20 ∗ 𝑒
1

|𝐺𝑇|+0.1 

NaN NaN 0 0 

3. DATA EXPLORATION 

The multivariate time series data in training, test and 

validation datasets consists of 23 parameters, 5 of which are 

categorical and the rest 18 are numeric variables. Important 

categorical variables include Wafer ID, Recipe, and Recipe 

Step. IMETs work in a batch operation mode, that is, the tool 

is stopped between etching of two different wafers. Wafer ID 

refers to the wafer that is being etched at any given point in 

time. While ‘Recipe’ refers to the combination of settings that 

are used for etching a wafer, ‘Recipe Step’ refers to the 

process step in a particular recipe. Analysis of recipes and 

recipe steps from all the training files revealed that there are 

347 unique recipes and that a given recipe number (e.g. 300) 

can have different number of recipe steps. There are 1568 

unique recipe-recipe step combinations across all training 

tools. One wafer is subjected only to one etch recipe in one 

batch. The same wafer may be subjected to different etch 

recipes at different times to achieve the desired etch pattern. 

On the basis of these observations, we divide the IMET 

operational data into ‘wafer-level data sequences’ using the 

Wafer ID. These sequences were used for RUL estimation. 

  

Figure 1. Sample trends of selected parameters for tool 

#01_M02 

Fig. 1 shows the trends of the numeric variables across three 

wafers for the tool 02_M01. Analysis of the trends revealed 

the sequence of operations in an IMET: Circulation of 

FlowCool is started following which the flow of argon into 

the ion source and the Particle Beam Neutralizer (PBN) 

assembly, and the vacuum of the ion mill chamber is started. 

When the chamber is sufficiently close to vacuum, etch beam 

current and etch suppressor are passed and the etching of the 

wafer begins. The currents, voltages, fixture tilt angle, fixture 

shutter position, and flow rate and pressure of FlowCool vary 

during the etching process depending on the recipe step that 

is in operation. The rotation speed was found to be constant 

for a majority of the time. At the end of the etching process, 

when the tool is switched off, the currents, voltages, argon 

flow rates and the FlowCool flow rate drop almost 

instantaneously. The FlowCool pressure and the vaccum in 

the chamber decrease slowly after the tool is switched off. 

Any deviation from the established sequence of operations 

may be indicative of faults in the tool.  

 

Based on our understanding of the ion etching process and 

working of ion etch mill tools, we have selected 13 out of the 

18 parameters such as Ion Gauge Pressure, Etch Beam and 

Etch Suppressor Voltage and Currents, FlowCool Flow rate 

and Pressure, Fixture Tilt Angle and Rotation Speed as 

important process parameters for RUL estimation. The 

remaining 5 parameters were ignored as they are counter 

variables. 

 

Figure 2. Trends of ground truth RUL for tool # 01_M01 

As mentioned in Section 2, multiple faults could exist in an 

IMET at the same time. The ground truth RUL trends for all 

the faults for tool # 01_M01 are shown in Fig. 2 and it can be 

observed that RUL predictions exist for more than one fault 

at any given point of time. Therefore, our approach provides 

for concurrent estimation of RUL for multiple faults.  

4. RUL ESTIMATION METHODOLOGY 

The RUL estimation approach consist of two phases, viz. 

training and testing phase. Training was carried out using 

operational data only from those IMETs for which test 

datasets were provided (Table 2). Training was carried out 

separately for each IMET. This is because the operational 
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behaviour of two IMETs could be different as each IMET is 

handling different recipes. Merging data from various IMETs 

could lead to contamination of operational behaviour. For this 

reason, operational data from each individual IMET was used 

separately for training.  

 

Table 2. Datasets used for training. 

 
Datasets used for Training Test Datasets 

01_M02 01_M02 

02_M02 02_M02 

03_M01 03_M01 

04_M01 04_M01 

06_M01 06_M01 

 

 

 4.1 Training Phase 

 

The sequence of steps followed in the training phase are 

shown in Fig. 3 and explained below.  

 

 
 

Figure 3. Sequence of steps in the training phase 

 
1) Labelling of normal and faulty wafers 

For each IMET used for training, the operational data was 

divided into ‘wafer-level data sequences’ based on Wafer ID 

as mentioned in Section 3. The wafers were categorised as 

normal, Fault #1 (FlowCool Leak), Fault #2 (FlowCool 

pressure dropped below limit) and Fault #3 (FlowCool 

pressure too high). Wafers for which RUL data for any of the 

three faults is not available were considered normal. For each 

fault type, few wafers before a given fault time period are 

labelled as faulty (according to corresponding fault type). 

Some wafers were not used for training.  

 

2) Parameter Selection 

As discussed in Section 3, 13 important process parameters 

were selected for RUL estimation. This selection was based 

on our understanding of the ion etching process and analysis 

of variable trends of all the available parameters. 

 

3) Extraction of Time Domain Features 

Preliminary attempts to build health score regression models 

using raw sensor data did not result in models with a good 

accuracy. Hence, time domain features such as mean, 

standard deviation, peak, Root Mean Square (RMS), kurtosis, 

skewness, crest factor and shape factor were extracted to 

derive underlying information from the raw data. A fixed 

window size of 100 instances with a window shift of 50% 

was used. Windowing and extraction of time domain features 

was done for all labelled wafers. Time domain features were 

computed for each of the 13 selected parameters. Each 

instance of time domain features takes the corresponding 

label of its wafer. All the 104 features (13 parameters × 8 

features) were used for building health score models.  

 

4) Development of Health Score Models 

Regression models for health score of the IMET were built 

using the 104 features by labelling the faulty wafers as 1 and 

the normal wafers as 0. Rather than having a single score 

model for all faults, we have modelled each fault separately 

to aid in concurrent RUL prediction for multiple faults. Thus, 

three health score models exist for each tool. Instead of 

assuming the form of the degradation curve and choosing the 

form of the health score model, several machine learning 

models – linear as well as nonlinear – were trained in order 

to arrive at the best health score model for each fault.  

The following models were trained: Logistic Regression 

model, Generalized Linear Models (GLM) with Gaussian and 

Gamma families, Multivariate Adaptive Regression Splines 

(MARS), Support Vector Regression (SVR), Random Forest 

(RF), MultiLayer Perceptron (MLP) model and Gradient 

Boosted Machine. Of these, the Random Forest model, with 

its capability to handle imbalanced data, was found to have 

the highest model accuracy and lowest mean square error for 

all the faults across all IMETs. The RF health score model 

has the following form; 

 

𝑦𝑖
𝑘 = 𝑓𝑘(𝑋𝑖)                                  (1) 

 

where 𝑦𝑖
𝑘 is the health score corresponding to kth fault and ith 

window, 

𝑋𝑖  is the 1 × 104 matrix of time domain features for ith 

window, 

𝑓𝑘 is the functional form of the RF model relating 𝑋𝑖 to 𝑦𝑖
𝑘. 

 

The health score is a bounded value that is indicative of the 

health of the IMET with respect to each fault. A value closer 

to 0 indicates healthy/normal state while a value closer to 1 

indicates faulty state. Further, an increase of health score 

from 0 towards 1 indicates an increasing faulty trend. 

 

5) Creation of library of truncated degradation curves 

The RF health score models for each fault were used to 

predict health score for every instance of time domain 

features extracted for all the wafers in an IMET (normal 

wafers, faulty wafers and the wafers not included in training). 

The health score values thus obtained from all the wafers 

were smoothed using exponential weighted moving average 

technique to obtain continuous health score curves similar to 

the one shown in Fig. 4.  
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Figure 4. Health score curve for fault #2 in tool #01_M02 

(Vertical red lines indicate failure times due to fault #2) 

 

Based on visual analysis of health score curves, a threshold 

(T) on health score was chosen, beyond which the signature 

of the fault was considered significant. It can be seen from 

Fig. 4 that health score is higher than the threshold (0.55) at 

most of the failure times compared to the rest of the time. For 

each fault, all the sequences of health scores above the 

threshold and their corresponding RULs were extracted and 

stored. These form the library of ‘truncated degradation 

curves’ for a given fault and IMET. These are called 

truncated degradation curves as they do not start from a 

health score of zero because such complete run-to-failures are 

not always available in operational data. The truncated 

degradation curves for the three faults obtained for tool # 

01_M02 are shown in Fig. 5, 6 and 7.  

 

 
 

Figure 5. Degradation curves for fault #1 for tool #01_M02 

 

 

 
Figure 6. Degradation curves for fault #2 for tool #01_M02 

 

 
 

Figure 7. Degradation curves for fault #3 for tool #01_M02 

 

It can be observed that fault #3 propagates faster than fault #1 

which propagates faster than fault #2. 

4.1. Testing Phase 

The sequence of steps followed in the testing phase are shown 

in Fig. 8 and described below. This is used for estimation of 

RUL on test dataset or validation dataset for each of the faults 

at any given time.  

 
 

Figure 8. Sequence of steps in the testing phase 
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1) Extraction of Time Domain Features of Selected 

Parameters 

The IMET operational data from the testing/validation 

dataset was divided into ‘wafer-level data sequences’, and 

time domain features for 13 parameters were extracted for 

each window in the wafer as mentioned in the training phase. 

In this case, wafers were not labelled and all wafers were 

considered for RUL estimation.  

 

2) Computation of Health Score using RF Models 

The RF health score models, one for each fault, were used to 

predict the health scores using the time domain features. Each 

model will signify the health of the IMET with respect to the 

corresponding fault at any given time. If the health score 

overshoots the threshold for N consecutive number of times 

for a particular fault, it is considered as initiation of a 

particular fault and RUL estimation for the fault is triggered. 

Here, N is a hyper-parameter that is tuned (e.g. 5 to 7) for 

each fault and each tool to improve the RUL prediction score 

on test data.  

 

3) DTW Curve Matching with Truncated Degradation 

Curves 

The health score sequence that has overshot the threshold N 

number of times is extracted and its closeness to the library 

of truncated degradation curves was computed using the 

Dynamic Time Warping (DTW) distance. The matching was 

performed using the fixed length-sliding window approach 

over each degradation curve in the library. Fig. 9 shows a 

faulty test score sequence overlaid on the library of 

degradation curves while computing the DTW distance. The 

DTW distance is chosen over traditional Euclidean distance 

as DTW is better suited to compare the shapes of two curves 

(Gu & Jin, 2006). The window for which the DTW distance 

between faulty test score sequence and a degradation curve is 

considered the best match, and its corresponding RUL value 

in the library is taken as the RUL estimate for the faulty test 

score sequence. Hence, for every degradation curve in the 

library, we get the closest distance and a corresponding RUL 

estimate.  

 
 

Figure 9. Faulty test score sequence (red) overlaid on the 

degradation curves for fault #3 for tool #01_M02 

 

4) Weighted Average RUL Estimation 

The final RUL estimate was calculated as the weighted 

average of the individual RUL estimates using Eq. (2). 

Weights were assumed to be inversely proportional to the 

closest distances.  

 

                      𝑅𝑈𝐿|𝑡 =  
∑ (

1

𝑑𝑖
×𝑅𝑈𝐿𝑖)𝑛

𝑖

∑ (
1

𝑑𝑖
)𝑛

𝑖

                                      (2) 

 

where 𝑅𝑈𝐿|𝑡 is the final RUL estimate at time t, 

𝑅𝑈𝐿𝑖  is the RUL estimate obtained from ith degradation 

curve, 

𝑑𝑖  is the closest distance obtained from the ith degradation 

curve. 

 

This process was repeated as we progress through all the 

windows of the testing/validation data. RULs corresponding 

to each window and each fault were thus estimated. 

 

5) Interpolation and Clipping of estimated RULs 

Since the RULs were estimated at a window level instead of 

the instance level, there will be gaps in the RUL estimates at 

various times. In order to fill these gaps, we have performed 

linear interpolation between two discrete times at which the 

RUL estimates are available, provided the two consecutive 

values of time are within twice the distance of the length of 

faulty test score sequence, that is, 2N.  

We have noticed that RUL is over-predicted in some cases 

during cross validation with training data. This is handled by 

clipping the RUL predictions for a particular fault to the limit 

of 0.75 × (max(𝑅𝑈𝐿) − min (𝑅𝑈𝐿)). 

5. RESULTS & DISCUSSION 

The RUL estimation methodology proposed in Section 4 is 

initially validated on the training dataset by using 80% of it 

for training and 20% of it for testing, and found to give 

reasonable RUL predictions on the 20% testing set. The 

models developed during the training phase and the approach 

were applied for predicting RULs for the 5 files in the test 

and validation datasets provided during the competition. The 

scores for these RUL predictions calculated using the rules 

mentioned in Section 2 are shown in Table 3.  

Table 3. RUL prediction scores on test and validation 

datasets. 
 

Scoring function 
Score on Test 

dataset 
Score on Validation 

dataset 

Primary ~100 96.45 

Secondary - 1.78e+06 

Average - 8.92e+05 
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It can be seen that while the primary scores on the test and 

validation datasets are reasonable, the secondary score on the 

validation dataset is quite high. While this may be partially 

due to the ‘squared error’ form of the secondary score, it 

could also be due to erroneous RUL predictions. To verify 

this, the ground truth (revealed after the competition was 

closed) and the predicted RULs for the 5 files in the test 

dataset were compared (as ground truth of validation dataset 

is not disclosed) and shown in Fig. 10 for fault #3 for tool 

#03_M01 in the test dataset.  

 
 

Figure 10. Comparison of ground truth and predicted RUL 

values for fault #3 for tool #03_M01 in the test dataset 

It can be seen from Fig.10 that RUL predictions are not far 

from the actual failure time, possibly because the signature is 

too weak and far from the actual failure, to be reflected in the 

process parameters leading to meaningful RUL estimation. 

On the other hand, while RUL predictions are closer to the 

actual failure time, they do not follow the ground truth 

consistently. Similar observations can be made for other 

faults and other tools. This indicates that there is scope for 

improvement in RUL predictions. Optimizing the modeling 

approach, using operational data from multiple IMETs and 

setting a reasonable horizon for RUL estimation are some of 

the potential improvements. We, however, feel that the 

biggest improvement would be possible by selecting sensors 

closer and more relevant to the problem at hand. In this case, 

all three faults are related to the FlowCool system and there 

are only two parameters viz. flow rate and pressure of helium 

in the FlowCool circuit. Even though the performance of the 

FlowCool system is influenced by the performance of the ion 

etch mill, sensors related to the water system used to cool 

helium in the FlowCool circuit or those related to the 

FlowCool pump may exhibit better signatures of FlowCool 

system failure. The accuracy of RUL estimation may improve 

significantly by including these variables in the analysis.                                 

6. CONCLUSIONS 

We propose a novel data-driven methodology for estimation 

of RULs in IMETs. This approach addresses the challenges 

of absence of run-to-failure and the presence of multiple 

faults simultaneously in the system. Based on the 

understanding of the process and the equipment, 13 important 

parameters were selected to characterize normal and faulty 

behaviour of the IMET.  

Operational data of the IMET was used to build a health score 

model and to create a library of truncated degradation curves 

for each fault. These libraries were utilized for obtaining 

estimates of RUL using DTW curve matching. The proposed 

approach was applied to test as well as validation datasets; 

the estimated RULs for both these datasets were found to be 

in reasonable agreement with the ground truth. The current 

approach may be improved by optimizing parameters such as 

smoothing factor and score threshold, utilizing data from 

multiple ion etch mills and through the use of deep learning 

techniques. Further improvement in RUL estimates may be 

realized by including sensors from the water cooling system 

and the FlowCool pump.  
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