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ABSTRACT

Data-driven Remaining Useful Life (RUL) estimation for sys-
tems with abrupt failures is a very challenging problem. In
these systems, the degradation starts close to the failure time
and accelerates rapidly. Normal data with no sign of degra-
dation can act as noise in the training step, and prevent RUL
estimator model from learning the degradation patterns. This
can degrade RUL estimation performance significantly. There-
fore, it is critical to identify degradation mode during the
training step. Moreover, in the application step, predicting
RUL when the system is in normal mode and is not showing
any sign of degradation can generate inaccurate estimations,
and reduce faith in the model. In this paper, we propose a
new RUL estimation method that incorporates an early degra-
dation mode detection step to automatically identify the ear-
liest point of time at which the degradation starts to happen.
When the degradation mode is detected, a Long Short Term
Memory (LSTM) neural network is applied to predict sys-
tem RUL. As a case study, we apply the proposed method
for RUL estimation in 2018 PHM Data Challenge. The case
study demonstrates that our solution achieves more accurate
RUL estimation compared to several baseline methods.

1. INTRODUCTION

Remaining Useful Life (RUL) is the remaining time that a
component or system can function in with the required per-
formance (Si et al., 2011). RUL estimation is a crucial ele-
ment in condition-based maintenance, prognostics and health
management systems which can improve product quality, re-
duce cost and downtime in different industries such as man-
ufacturing processes, transportation systems, and power gen-
eration plants. In prognostics, the degradation of a compo-
nent or system is typically a non-linear function of several
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parameters such as operation environment, and work load.
Normally, a system or component is in a healthy operating
condition in early stage of use. System performance starts to
degrade after operating for a period of time. The degradation
process accelerates over time till a complete breakdown oc-
curs. Degradation curves usually represent transitions from a
roughly constant value to a linearly decreasing curve towards
the end of life. The knee in the curve reflects the point when
the degradation starts (Heimes, 2008).

Generally, there are two broad categories of approaches for
RUL estimation: 1) physics-based (model-based) approaches
and 2) data-driven approaches. Physics-based approaches use
domain knowledge and basic principles of physics to model
degradation processes such as fatigue crack growth, battery
degradation, and corrosion. Sensor measurements are typi-
cally used to estimate the degradation model parameters and
update the model overtime (Khorasgani et al., 2013). Model-
based RUL estimation results are easy to understand and jus-
tified. However, for complex systems with several compo-
nents, it is often difficult and expensive to generate degrada-
tion models. For these systems, data-driven methods, which
rely purely on available past observed data and statistical mod-
els, can be used as an alternative solution.

Among data-driven methods, deep neural networks are widely
applied for sequence classification and prediction problems.
C. Zhang et al. (2017) used a multi-layer neural network for
RUL estimation on a real-world dataset with multiple sensor
measurements. LSTM networks are a special kind of Recur-
rent Neural Network (RNN) which can maintain long-term
memories. Due to their ability to learn long term depen-
dencies, LSTM networks have been widely demonstrated to
be useful for learning sequences with longer term patterns.
Multiple research groups have used LSTM for RUL estima-
tion (Hsu & Jiang, 2018; Zheng et al., 2017; Yuan et al.,
2016; J. Zhang et al., 2018). Zheng et al. (2017) proposed an
LSTM networks integrated with fully connected neural net-
works (NNs) and their results show their model outperforms
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other deep learning methods in RUL estimation on multiple
datasets.

For the abrupt failures, the degradation mode starts very close
to the failure. RUL estimation is very challenging when we
have abrupt failures. In the learning step, the large amount of
normal data can hide the degradation pattern in the dataset.
In the implementation step, making RUL estimation while
the system is still in a healthy operating mode and the sen-
sors show no sign of degradation can lead to meaningless es-
timations and damage the credibility of the RUL estimator
model. In this work, we design an early fault detection mod-
ule to detect system degradations in the early stages. When
the degradation modes are detected, we apply the LSTM net-
works structure proposed by Zheng et al. (2017) to estimate
the system RUL.

Normal operation

(RUL; = Nan)
x RF Classifier
¢ (Fault i)
M rement .
(Measurements) Early depredation
Xt-w Xe—1 Xt Xt+1

|
[LST™ |-+ {LSTM - LSTM |~ LST™ | - = -

RNN RNN

3 3
RUL,  RULgy,

Figure 1. RUL estimation approach.

Figure 1 illustrate our RUL estimation methodology for sys-
tems with abrupt failures. In the first step, we use a Random
Forest (RF) classifier to identify the system operating mode
as 1) normal or 2) degrading. When the system is in normal
operation, it is not feasible to predict RUL. Therefore, we do
not report a numerical value for RUL. When the system is
degrading, we use the LSTM networks with fully connected
NNs to estimate the system RUL. The rest of this paper is or-
ganized as follows. Section 2 presents the definitions and the
problem formulation. Our early fault detection method is pre-
sented in Section 3. Section 4 presents our RUL estimation
methodology. Section 5 presents the experimental results on
an ion milling chamber system dataset. Section 6 presents the
conclusions of the paper.

2. PROBLEM FORMULATION

Generally, systems are designed for an specific purpouse, e.g.,
a battery is designed to store a pre-specified amount of elec-
trical power. We define the system useful life, the period of
time the system can function with an acceptable performance.

Definition 2.1 System useful life is a period of time during
which the system is usable for the purpose it was designed.

In practice, system performance degrades after a period of
time. We define the degradation process as

Definition 2.2 Degradation process is a period of time dur-
ing which the system performance declines.

Gradual decrease in the capacitance of an electric battery to
store power is an example of a system in the degradation
mode. The degradation mode eventually leads to the system
complete failure. The time of failure is called system End of
Life (EOL). For a given current time point, ¢, the system RUL
is the time interval between ¢ and the EOL. In this paper, we
call a failure mode abrupt failure when the degradation mode
is significantly shorter than the system useful life.

Definition 2.3  Systems with abrupt failures are systems with
degradation mode much shorter than the system useful life.

As we mentioned earlier, RUL estimation is not feasible be-
fore the degradation mode. For systems with abrupt failures,
the relatively short period of degradation mode leaves limited
time for operators to plan the rest of the mission and take re-
quired actions before the EOL, e.g., driving to a repair shop
before the car dies. Therefore, accurate RUL estimation dur-
ing the degradation mode is even more critical for these sys-
tems.

3. EARLY FAULT DETECTION

Detecting system degradation in early stages is a crucial step
for accurate RUL estimation in our proposed method. How-
ever, early fault detection is not a trivial task. It is challenging
to extract features sensitive to the faults. Moreover, we usu-
ally do not have access to sufficient fault data for training. In
this section we will address these problems.

3.1. Features

Feature extraction is the most critical step in designing a di-
agnostic algorithm. We can categorize the features for fault
detection and isolation into three main groups (Khorasgani et
al., 2018):

e Sensor measurements: primarily, sensor data can be used
as the set of features for fault detection and isolation.

e Domain knowledge features: domain experts can iden-
tify important features for detecting and isolating each
fault. Moreover, they can help to define new features by
providing critical information about nominal behavior of
each measurement with respect to others.

e Physics-based residuals: the set of system equations can
be used to generate residuals which represent analytical
redundancy relations among measurements during nomi-
nal operation. When a fault occurs, residuals can capture
inconsistency among the measurements.
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A combination of sensor measurements, knowledge-based fea-
tures, and physics-based residuals can be used as the set of
features for fault diagnosis. In the case study, we use sensor
measurements with a physics-based residual for early fault
detection.

3.2. Training

RF classifiers, like most other classifiers, are designed to min-
imize the overall error rate, and therefore, their performance
degrades when the training data is imbalanced. For imbal-
anced datasets, the classifiers tend to focus on the prediction
accuracy of the majority classes, which often leads to poor re-
sults for the minority classes. This is a huge problem for early
fault detection and isolation because even though the goal is
to detect faults as soon as possible, the majority of training
data are normal data. There are different approaches in the
data level and algorithm level to address this problem. At
the algorithm level, typically the cost functions are modified
to represent higher penalties for misclassification of minority
class data points. At the data level, up-sampling of minor-
ity classes or down-sampling of majority classes are the two
main solutions in the literature.

Unlike algorithm level methods, the data level solutions are
independent from classification algorithms and can be used
with any classifier. By down-sampling the majority classes
to make the number of samples in these classes close to the
rarest classes in the dataset, we can lose significant amount
of information. On the other hand, up-sampling the minor-
ity classes increases the computational complexity and can
lead to overfitting. In this paper, we apply a hybrid approach.
We first up-sample the fault data points, we then randomly
select a subset of normal points equal to the number of over-
sampled fault samples.

4. RUL ESTIMATION

Normally, a system or component is operating at its healthy
condition in early stages of operation. In the systems with
abrupt failures, the system performance starts to degrade when
a fault occurs in the system. For these systems, it is unfeasible
to make precise RUL estimation from the beginning. To ad-
dress this problem, we used RF classifiers to design an early
degradation detection module in the previous step. In this sec-
tion, we present a deep learning model for RUL estimation in
a reasonable time frame before the end of life. This section
includes the basic structure of our deep neural networks mod-
ule, data preparation, and model evaluation.

4.1. LSTM Networks for RUL Estimation

After degradation mode detection, we apply a deep learning
method using the LSTM structure. We assume the dataset
includes a set of devices with the same type of sensor mea-
surements, where each device can have multiple run-to-fault
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Figure 2. LSTM model structure for RUL estimation

data sequences. Consider one sequence of run-to-fault data
which is a multivariate time series in the matrix form of X =
(X1, X2 ..., X! ..., XT], where T is the time of the fault and
each data sample is a D-dimensional vector X! = [z%, 25!,
zp'] where t = 1,2, ..., T. Our LSTM network structure
with one sequence of run-to-fault sensor data is shown in Fig.
2. The sensor data sequences are the input variables for the

model to predict the RUL at each sample time.

The model is a composition of multiple layers of LSTMs fol-
lowed by fully connected multiple layers of NNs. It uses this
complex deep learning network to learn the long-term tempo-
ral dependencies vertically and complex relationship between
different sensor measurements horizontally for different fault
modes and possibly degradation modes. Dropout is a recently
developed regularization technique (Hinton et al., 2012). Be-
cause of the complexity of the deep learning model, we in-
clude dropout (Srivastava et al., 2014) and L2 Regularization
during the training to prevent overfitting. The combination
of dropout and regularization can reduce generalization er-
ror significantly (Srivastava et al., 2014). The key idea for
dropout is to randomly mask units (along with their connec-
tions) from the network so that these units won’t influence the
propagation during model training. In our model, we apply
dropout to the input connections with the LSTM nodes for
each LSTM layer. The dropout on the input means that the
data on the input connection to each LSTM cell/block will
be excluded, at a given probability, from node activation and
weight updates.

In model training, the estimated RUL value (RU L) is com-
pared with the ground truth RUL value (RU L) to calculate
the Mean Square Error (MSE) as the model objective func-
tion.

1
MSE =~ > (RULg« — RULGr)” (1)

where n is the number of measurements in each sequence
sample. We use RMSprop optimizer, an adaptive learning
rate method, to train the model. RMSprop divides the learn-
ing rate by an exponentially decaying average of squared gra-
dients. We also use early stopping to stop the training process
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when there is no improvement on the validation data set.

4.2. Data Preparation for LSTM Model Training

Although LSTM is good at learning long-term dependencies.
The natural encoder-decoder architecture for LSTM network,
which uses a fixed-length internal representation for the in-
put sequence, imposes a limitation in learning very long se-
quences. For datasets with high sampling rates, we can make
RUL estimation in a moderately long and reasonable time
frame by downsampling the dataset in the pre-processing step
to summarize and shorten the long sequences without losing
all the long term history information.

In the downsampling step, we select a sample point of every
Sampler samples. We start the sampling by selecting the
end sample (where fault happened) of the original long run-
to-fault sequence and backtrack until the number of selected
samples reaches a given maximum length, maxy. Then we
slide the starting point from the end of the original sequence
to one sample before the end and follow the same process to
form another summarization of the original long run-to-fault
sequence. Again, we repeat the process N times by sliding
the starting point one sample before the previous one.

Iteratively, a set of shortened sequences are constructed which
represent different summarization of the original long run-to-
fault sequence. Compared with random sampling in a fixed
window, our sampling approach keeps a fixed gap and is able
to maintain similar performance degradation level between
two adjacent samples in the sampled run-to-fault sequence.
Meanwhile, this sampling approach may also be used as a
type of data augmentation scheme in order to create many
possible different input sequences from the original input se-
quence. This method improves the robustness of our model
when available run-to-fault sequences for the training are lim-
ited.

4.3. Model Evaluation

We use the Root Mean Square Error (RMSE) and a Symmet-
ric mean absolute percentage error (SMAPE) of estimation
results defined in (2) to evaluate the performance of our esti-
mation model.

|RULgs — RULgr|
RULpy| + |RULGr|

SMAPE = 100% > ©)
n <~ |
where n is the number of sequences in the data set. RMSE is
a widely used evaluation metric for RUL estimation models
which gives even penalties to the estimation errors no matter
how close the estimations are to the fault. Mean absolute per-
centage error (MAPE) gives higher penalty when the estima-
tion is close to the end of life. In real applications, accurate
RUL estimation is typically more critical when the system
is close to failure. Therefore, MAPE is a more reasonable
metric to measure RUL estimation performance than RMSE.

However, MAPE is not defined when the ground truth is zero.
Therefore, we use SMAPE to overcome this issue.

5. CASE STUDY: 2018 PHM DATA CHALLENGE

In this section, we apply our RUL estimation method to the
2018 PHM Data Challenge'.

5.1. Ion Milling System

The dataset includes 20 ion milling machine operating data.
The Ion Milling process is a common approach for designing
microwave circuits. The process uses an ion beam to remove
excess materials from the wafers and creates desired patterns.
A rotating fixture is used to rotate the wafer at different angles
facing the ion beams. The wafer can also be shielded from the
ion beams using a shutter mechanism. A Particle Beam Neu-
tralizer (PBN) system is used to control the ion beam shape
and ion distribution as it travels to the wafer surface. Each
recipe can have different set of steps, and each step may re-
quire different configuration settings such as rotation speed,
angles, beam current/voltages, etc. At each step, the system
processes the wafer for a set amount of time.

The wafers are cooled by a helium/water system called flow-
cool. The cooling system passes helium gas behind the wafer
at a specified flow rate. The helium gas is indirectly cooled
by a water system. The wafer and fixture o-ring separates the
flow-cool gas from the ion mill vacuum chamber. Different
types of failure can occur in the ion milling cooling system.
In this paper, we focus on the following faults.

e Fault mode 1 occurs when flow-cool pressure drops.

e Fault mode 2 occurs when flow-cool pressure becomes
too high.

o Fault mode 3 represents flow-cool leakage.

5.2. System variables

In addition to time and runnum (the number of times a ma-
chine has been run), there are three types of variables for each
machine.

1. Categorical variables such as recipe, and recipe step de-
scribe machine settings during the process. The num-
ber of combinations of different setting parameters is too
large and therefore, it is not practical to learn a model
for each operational setting. For example, the recipe pa-
rameter has over 500 different categorical values. More-
over, using these variables as inputs to our model can
lead to overfitting. Among the categorical variables, we
only use fixture shutter position in early fault detection
and RUL estimation. Fixture shutter position values are
[0,1,2,3,255] in the dataset. We apply one-hot encoder
to represent this categorical variable as binary vectors.

ISee https://www.phmsociety.org/events/conference/phm/18/data-challenge
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2. Sensor variables such as flow-cool flow rate and flow-
cool pressure represent sensor measurements during sys-
tem operation. Sensor variables can have a wide range
of amplitudes. For example, the temperature values are
typically much larger than the flow rate measurements.
This can bias machine algorithms. To avoid this prob-
lem, variable standardization is typically the first pre-
processing step. However, the sensor variables in our
dataset have been anonymized and normalized. There-
fore, we don’t have to perform data normalization.

3. Operating time variables such as etch source usage and
actual step duration measure the number of time different
parts in the system have been used or the time duration
for a particular step in the process. These variables rep-
resent system operation life and play an important role in
RUL estimation.

5.3. Data pre-processing

As the first pre-processing step, we remove the samples with
missing values. There are some periods of time when the
machines were not operating. However, since the provided
ground truth of the RUL is not based on operating time, we
can see sudden jumps in RUL between system operations.
In model training, we transfer the ground truth from time to
fault, to the number of samples to fault. This removes the
jumps between system operations. Since the sampling rate
is roughly 4 seconds when system is operating, the number
of samples to fault is an acceptable representation of system
RUL. We split the raw sequence for each equipment into mul-
tiple run-to-fault sequences for each fault. Some run-to-fault
sequences are very short with few measurements and some
contain a large time gap which implies a large number of
missing samples. We apply the following criteria to filter in-
valid run-to-fault data sequences.

1. We truncate each run-to-fault sequence with a large time
gap.

2. The remaining sequences with more than M,,,;, histor-
ical measurements are considered to be valid sequences
for model training.

5.4. Using LSTM for RUL Estimation

In this section, we apply the LSTM model for RUL estima-
tion for the 2018 PHM Data Challenge training data set. In
the 2018 PHM Data Challenge training data set, we have mul-
tivariate time series data of 20 similar ion and wafer mill etch
equipments. We assume that the three fault modes are inde-
pendent and train three LSTM based RUL estimation models
for each fault respectively. We use the sensor variables, oper-
ating time variables and fixture shutter position variable in the
categorical variables as the variables for model training. Af-
ter converting the fixture shutter position to five binary vec-

Table 1. Number of sequences in model training and testing

Fault modes | Training | Testing

Fmodel 199 39
Fmode2 23 4
Fmode3 44 10

Table 2. Comparison of LSTM and other approaches for Fault
mode 1 on Testing set.

Models RMSE (seconds) MAPE
RFR 5294 29.27%
MLP 5004 28.10%
LSTM 1877 13.90%

tors with one-hot encoder, we have 21 parameters for each
measurement.

Zheng et al. (2017) developed a network with two LSTM lay-
ers to learn the hidden relations between the measurement
variables and discover the degradation patterns as the main
indicators of RUL. For the 2018 PHM Data Challenge data
set, we construct same RUL estimation model architecture
for the three faults. The original model network has 4 hid-
den layers with 32 nodes in the first LSTM layer, 64 nodes in
the second LSTM layer, 8 nodes in the third and 8 nodes in
the forth layer. The models for the three faults are trained and
tested separately. After training the three faults separately, we
doubled the node number in two LSTM layers in the models
associated with Fault mode 1 and Fault mode 2 for better per-
formance.

Since it is impossible to make RUL estimation for very long
time periods, the value of max, can not be too large. Here,
we set maxy, = 300, N = 15 and Sampler = 15 (roughly
1 sample/4 minutes). Therefore, maxy x Sampler + N =
4515 historical measurements (which covers roughly 5 hours)
before the fault happened are taken for model training. It is
a reasonable time frame that can represent the performance
degradation period. We consider M,,;, = 3000. Roughly
80% of the run-to-fault sequences generated from the train
data set are randomly selected for model training, and the re-
maining 20% is used for model testing. The number of se-
quences in training and testing data set generated from the
2018 PHM Data Challenge train data set is summarized in
Table 1.

Different equipment have different number of failures. Some
equipment have very few failures. If the number of failures
is less than 4 times for an equipment, then all the failures are
used for model training. In the training step, 90% of the run-
to-fault sequences of the training set are randomly selected
for model training and the remaining 10% are used for vali-
dation. The model for each fault is trained 10 times and the
validation split is applied in each repetition. The training pro-
cess is a non-convex optimization problem. For each fault
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Table 3. Comparison of LSTM and other approaches for Fault
mode 2 on Testing set.

Models | RMSE (seconds MAPE
RFR 5567 30.16%
MLP 4113 23.78%
LSTM 2557 16.94%

Table 4. Comparison of LSTM and other approaches for Fault
mode 3 on Testing set.

Models | RMSE (seconds) MAPE
RFR 5476 29.92%
MLP 5194 29.11%
LSTM 1469 11.74%

data set, we run the LSTM 10 times and record the param-
eters of the model with best estimation performance on the
validation set.

We compare our LSTM method with other approaches in-
cluding Multi-Layer Perceptron (MLP) and Random Forest
Regression (RFR). We constructed the MLP network with
three hidden layers. The number of nodes and other parame-
ters are varied when training and the model with best perfor-
mance is recorded. For RFR model, we implemented random
search and grid search to find the optimal parameter set in-
cluding the number of trees in the forest, the maximum depth
of the tree, the number of features to consider when looking
for the best split, the minimum number of samples required
to split an internal node, the minimum number of samples
required to be at a leaf node and whether bootstrap samples
are used for building the trees. The models are applied to the
testing set. We show the RMSE and SMAPE of the estima-
tion results on the testing set for different methods in Table 2,
Table 3, and Table 4.

Two random examples of RUL estimations from the testing
set for the three faults are shown in Fig. 3, Fig. 4 and Fig. 5.
As shown in these figures, the absolute error of the predicted
RUL are generally below 30 minutes throughout the 5 hours
RUL monitoring. We notice that the LSTM method outper-
form the other RUL estimation methods. Moreover, we can
see that the absolute error at the beginning is usually higher.
The possible reason is that the historical data is limited at the
beginning. We can also notice that the predicted RUL curve
generated by our LSTM method for fault mode 2 (flow-cool
pressure too high) is different from the predicted curves for
the two other faults. The predicted RUL curves shown in Fig.
3 and Fig. 5 are smoothly tracking the real RUL curve. While
the predicted curve for fault mode 2 as it is shown in Fig. 4
decrease slowly at the beginning and suddenly drops down.
This indicates that the equipment performance degradation
modes for different faults could vary and it is possible that
the fault mode 2 is more abrupt than the other two faults.
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Figure 3. Two random samples of the RUL estimation results
on testing data for Fault: flow-cool Pressure Too Low.

5.5. Early Degradation Detection

To apply our approach for RUL estimation in the entire dataset,
we first develop an early fault detection module. We use the

union of sensor measurements and the operating time vari-

ables as the primary set of features for early fault detection.

Like the previous section, fixture shutter position is the only

categorical variable that we use for fault detection. We apply

one-hot encoding to convert this variable to binary vectors.

In addition to the available variables in the dataset, we derive

the following extra feature for early fault detection.

In general, the flow-cool flow rate (g) is a function of flow-
cool pressure (p), ¢ = f(p). When a fault occurs this re-
lationship can change. We use the normal data to learn the
nonlinear relationship between flow-cool flow rate and flow-
cool pressure.

q=f(p), 3)
We then use this model to estimate flow-cool flow rate as a
function of flow-cool pressure at each operating point. The
difference between the estimated flow-cool pressure and ac-
tual flow-cool pressure, r, is our additional feature for fault
detection.

T:q_f(p)v “4)

In the training step, we consider the data points with 5000s
or less RUL as close to failure data points. Since there are
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Figure 4. Two random samples of the RUL estimation results
on testing data for Fault: flow-cool Pressure Too High.

no clear boundaries for separating normal data from close
to failure data points, we consider data points with RUL >
50000s as normal data points. Therefore, the data points with
5000s < RUL < 50000s are considered as the boundary
points and have not been used in training the RF classifier
for that failure. To address imbalanced class distribution be-
tween normal and fault data, we first up-sample the fault data
points by a factor of 1000, we then randomly select a subset
of normal points equal to the number of over-sampled fault
points.

5.6. Results on PHM 18 Challenge Test Data Set

Table 5 and Table 6 represent the scores to evaluate 2018
PHM Data Challenge solutions. The first score is designed
capture the RUL estimation performance close to the failure.
The second score is designed to capture RUL estimation per-
formance when the system is far from the end of life. The
over all score is defined as the average of these two scores. A
lower score is a better score.

Table 7, Table 8, and Table 9 demonstrate the scores for our
method and several baseline solutions in estimating RUL for
the first, second and third fault modes respectively. To train
the baseline methods, we replaced NAN with maximum RUL
in the data set for each fault. In the test step, we report NAN
when a model predicts RUL higher than the maximum RUL
in the training data. Compared to the baselines solutions,
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Figure 5. Two random samples of the RUL estimation results
on testing data for Fault: flow-cool Leakage.

Linear Regression (LR), Support Vector Regression (SVR),
Random Forest Regression (RFR), and Multilayer Perceptron
(MLP) neural networks, our model (early fault detection +
LSTM) performs far better.

6. CONCLUSIONS

In industrial systems, it is not feasible to make accurate RUL
estimation before the beginning of the degradation process.
Therefore, it is challenging to estimate RUL for the systems
with abrupt failures. In this paper, we proposed a new solu-
tion for this hard problem. Our proposed solution incorpo-
rates an early degradation detection module to automatically
detect the degradation mode. After the degradation mode de-
tection, our solution applies an LSTM neural networks to esti-
mate the RUL. We demonstrated the performance of our RUL
estimation for the 2018 PHM Data Challenge.
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