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ABSTRACT

We describe the approach – submitted as part of the 2018
PHM Data Challenge – for estimating time-to-failure or Re-
maining Useful Life (RUL) of Ion Mill Etching Systems in
an online fashion using data from multiple sensors. RUL es-
timation from multi-sensor data can be considered as learn-
ing a regression function that maps a multivariate time series
to a real-valued number, i.e. the RUL. We use a deep Re-
current Neural Network (RNN) to learn the metric regression
function from multivariate time series. We highlight practical
aspects of the RUL estimation problem in this data challenge
such as i) multiple operating conditions, ii) lack of knowledge
of exact onset of failure or degradation, iii) different opera-
tional behavior across tools in terms of range of values of pa-
rameters, etc. We describe our solution in the context of these
challenges. Importantly, multiple modes of failure are possi-
ble in an ion mill etching system; therefore, it is desirable to
estimate the RUL with respect to each of the failure modes.
The data challenge considers three such modes of failures and
requires estimating RULs with respect to each one, implying
learning three metric regression functions - one correspond-
ing to each failure mode. We propose a simple yet effective
extension to existing methods of RUL estimation using RNN
based regression to learn a single deep RNN model that can
simultaneously estimate RULs corresponding to all three fail-
ure modes. Our best model is an ensemble of two such RNN
models and achieves a score of 1.91 × 107 on the final vali-
dation set.

1. INTRODUCTION

With the advent of Industrial Internet of Things (IIOT) (Xu
et al., 2014), large amounts of temporal sensor data is avail-
able in (near) real-time leading to an increasing interest in
remote monitoring of equipment. Typically, a large number
of sensors are installed across various components and sub-
components of a complex system. This leads manual moni-
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toring of the system extremely challenging. Data-driven ap-
proaches can aid operators to monitor the sensor data and
generate suitable alerts along with potential diagnostics in
case of malfunctioning system. Building data-driven or ma-
chine learning based models for fault detection and prognos-
tics (remaining useful life estimation) from sensor data can
help in real-time monitoring of equipment, avoid catastrophic
failures, enable condition-based maintenances, as well as
help to take key engineering decisions, e.g. to improve fu-
ture manufacturing processes.

Recently, deep Recurrent Neural Networks (RNNs) based on
gated units such as Long Short Term Memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997) have been success-
fully used for modeling sequential data. It has been shown
that RNNs can model the temporal (sequential) aspect of the
sensor data as well as capture the inter-sensor dependencies
Malhotra et al. (2015). RNNs have been used to model be-
havior of machines based on multi-sensor time series with
applications to anomaly and fault detection (Malhotra et al.,
2015; Malhotra, Ramakrishnan, et al., 2016; Yadav et al.,
2016; Filonov et al., 2016), Remaining Useful Life (RUL) es-
timation (Malhotra, TV, et al., 2016; Gugulothu et al., 2017;
TV et al., 2018), and diagnostics (TV et al., 2017; Gugulothu
et al., 2018).

Several approaches for RUL estimation using RNNs have
been proposed in the past for various type of equipment, e.g.
turbofan engines (Heimes, 2008; Malhotra, TV, et al., 2016;
Gugulothu et al., 2017), milling machines (Malhotra, TV, et
al., 2016), etc. These approaches can be categorised into
two types: supervised and semi-supervised. Supervised ap-
proaches model RUL estimation as a metric regression prob-
lem where RUL is considered to be a real-valued number and
a metric regression function – modeled via a (deep) RNN
– is learned to map the time series of sensor data to RUL.
Examples of this approach include (Heimes, 2008; Zheng et
al., 2017; TV et al., 2018). Semi-supervised approaches first
learn a deep RNN based model of normal behavior, which is
then used to obtain a health index trend of any instance of a
machine. The health index trend of a test instance is com-
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pared to that of the historical failed train instances to obtain
an estimate of RUL via curve matching Wang et al. (2008);
Malhotra, TV, et al. (2016); Gugulothu et al. (2017). In this
work, we adapt and modify the supervised metric regression
approaches using deep RNNs. Specifically, we build a metric
regression model using deep LSTM networks (LSTM-MR)
in a multi-task setting for RUL estimation.

The rest of the paper is organized as follows: In Section 2
we present some related work and provide details of the data
challenge in Section 3. We describe briefly the deep LSTM
Networks in Section 4 and give details of our approach and
experiments in Section 5 and Section 6 respectively, and fi-
nally conclude in Section 7.

2. RELATED WORK

An important class of approaches for RUL estimation is based
on trajectory similarity, e.g. Wang et al. (2008); Khelif et al.
(2014); Lam et al. (2014); Malhotra, TV, et al. (2016); Gugu-
lothu et al. (2017). These approaches compare the health in-
dex trajectory or trend of a test instance with the trajectories
of failed train instances to estimate RUL using a distance met-
ric such as Euclidean distance. Such approaches work well
when trajectories are smooth and monotonic in nature but are
likely to fail in scenarios when there is noise or intermittent
disturbances (e.g. spikes, operating mode change, etc.) as the
distance metric may not be robust to such scenarios Gugu-
lothu et al. (2017).

Another class of approaches is based on metric regression.
Unlike trajectory similarity based methods which rely on
comparison of trends, metric regression methods attempt to
learn a function to directly map sensor data to RUL, e.g.
Heimes (2008); Benkedjouh et al. (2013); Dong et al. (2014);
Babu et al. (2016); Gugulothu et al. (2017); Zheng et al.
(2017). Such methods can better deal with non-monotonic
and noisy scenarios by learning to focus on the relevant un-
derlying trends irrespective of noise. Within metric regres-
sion methods, few methods consider non-temporal models
such as Support Vector Regression for learning the mapping
from values of sensors at a given time instance to RUL, e.g.
Benkedjouh et al. (2013); Dong et al. (2014). Deep temporal
models such as those based on RNNs Heimes (2008); Mal-
hotra, TV, et al. (2016); Gugulothu et al. (2017); Zheng et
al. (2017) or Convolutional Neural Networks (CNNs) Babu
et al. (2016) can capture the degradation trends better com-
pared to non-temporal models, and are proven to perform bet-
ter. Moreover, these models can be trained in an end-to-end
learning manner without requiring feature engineering.

3. DATA CHALLENGE DESCRIPTION

The data challenge focuses on predicting time-to-failure (for
each of three types of fault) at specific times of an ion mill
etching tool.

3.1. Ion Mill Etching System

An ion mill etching tool is shown in Figure 1(a). The process
of ion mill etching typically consists of the following steps:

• Inserting a wafer into the mill.

• Configuring wafer settings (rotation speed, angles, beam
current / voltages, etc).

• Processing the wafer for a set amount of time.

• Repeating the 2nd or 3rd step for different steps of recipe.

• Removing wafer from mill.

An ion source generates ions that are accelerated through an
electric field using a series of grids set at specific voltages.
This creates an ion beam that travels and eventually strikes
the wafer surface. Material is removed from the wafer when
ions hit the wafer surface. The wafer is placed on a rotating
fixture that can be tilted at different angles facing the incom-
ing ion beam. The wafer can be shielded from the ion beam
until ready for milling operation to commence using a shutter
mechanism as shown in Figure 1(b). A Particle Beam Neu-
tralizer (PBN) control system influences the ion beam shape /
ion distribution as it travels to the wafer surface. The wafer is
cooled by a helium / water system called flowcool. The cool-
ing system passes helium gas behind the wafer at a specified
flow rate. The helium gas is indirectly cooled by a water sys-
tem. The wafer and fixture o-ring separates the flowcool gas
from the ion mill vacuum chamber.

3.2. Objectives

The objective is to build a model from time-series sensor data
collected from various ion mill etching tools operating un-
der various conditions and settings. The goal is to exam-
ine the fault behavior of an ion mill etching tool used in a
wafer manufacturing process1. Many different failure mecha-
nisms such as leaks between flowcool and ion mill chambers,
electric grid wear, ion chamber wear, etc. can be present in
this system. Predicting the time of these failures can help in
condition-based maintenance and schedule downtimes of the
ion mills for maintenance operations. The problem consists
of diagnosing failures (i.e. detect and identify) and determin-
ing time remaining until next failure (i.e. predict remaining
useful life).

Time-to-failure for the following three different failure modes
is of interest:

• F1: Flowcool Pressure Dropped Below Limit (FCP Low.
Figure 2(a))

• F2: Flowcool Pressure Too High Check Flowcool Pump
(FCP High. Figure 2(b))

• F3: Flowcool leak (FC Leak)
1http://www.ionbeammilling.com/about the ion
milling process, https://www.azom.com/article.aspx
?ArticleID=7533
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(a) An Ion Mill Etching System

(b) Wafer and Ion Mill Etching Process

Figure 1. Ion Mill Etching System and Process Overview

3.3. Dataset details

The training data corresponds to 20 tools. The testing data
corresponds to a subset containing 5 tools out of the 20 tools.
The data consists of 24 columns and 3 fault types. The time
period for testing data is after the training data such that there
is no overlapping time period. The columns S1 - S24 con-
tain sensor data and other process information for tool ids
arranged with timestamp. The various parameters are listed
in Table 1. There are 5 categorical variables, 14 numeric op-
erating condition related variables and 5 numeric parameters
obtained through sensors installed on the system. The times-
tamp and type of failure are available for the 20 tools in the
training dataset. The data has been anonymized so the units
of measurement for various parameters are not provided.

It is to be noted that the time of failure is actually the time
when the operator shuts down the machine for maintenance
rather than the time when the actual fault is observed. The
actual start of the failure may occur much earlier than the

provide failure time. The train folder contains the training
data to be used for modeling purposes. The test folder con-
tains the test data that is to be used to generate submissions.
The time where faults occur is found in the train/train faults
folder. Number of data points and faults for each tool id are
listed in Table 2. Example for time-to-failure examples are
provided in the train/train tff folder. There are ‘null’ (NaN)
values where faults do not occur in within a specified time
horizon. The 20 .csv files under the train folder represent the
sensor data that are used as predictors. Each of these files rep-
resent a separate ion milling tool. The sensor-wise statistics
are provided in Table 3. From Table, we can see that mean
and standard deviation of all sensors are very close to 0 and
1, which indicates that provided data is Z-normalized.

3.4. Scoring functions

The functions for computing Original Score (S1) and Sec-
ondary Score (S2) used during the testing phase (Phase-1)
and validation (Phase-2) phases respectively, are provided in
Table 4. In this data challenge, lower scores indicate better
performance. A secondary score is used in the validation por-
tion of the contest. The secondary score is similar in nature
to the original score. However, the penalty is more severe for
false positives and false negatives. The final score (S) is the
average of the original and secondary scores, and is computed
as follows:

S =
S1 + S2

2

3.5. Challenges

We first highlight few aspects and challenges while formulat-
ing an approach for the 2018 PHM data challenge for RUL
estimation of ion mill etching System, and then describe our
approach that can potentially deal with these challenges:

1. Dealing with multiple fault types leading to failures with
missing data prior to reported time of failure: The fail-
ures considered corresponded to three types of faults.
Data prior to failures which is critical to estimate RULs
(data points close to failure) is sparse. Average, mini-
mum and maximum missing points before failure shut-
downs are provided in Table 5. This issue is further
magnified when we consider failure types independently,
leading to very few failure instances with sensor data
available close to failure time.

2. The nature of evolution of faults over time is not known,
i.e. the nature of machine health degradation trends is not
known. It may be possible that one or more faults are in-
stantaneous in nature. The time at which the machine
is shutdown due to a particular type of fault is given.
However, the time taken to respond after the observation
of symptoms can vary and not known. For example, it
can be seen from Figure 2(a) that there is a sudden drop
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Sudden drop

Failure
Indicator

(a) F1 : Flowcool Pressure Dropped Below Limit (FCP Low)

  

Gradual Increase

Failure
Indicator

(b) F2 : Flowcool Pressure Too High Check Flowcool Pump (FCP High)

  

(c) Legend for subfigures (a)-(b)

Figure 2. Sample time series plots with fault signatures. Image best viewed in color.

4



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Table 1. Sensors used in model building

Sensor Name Sensor Type Used in model building
stage Categorical N
Lot Categorical N

runnum Numeric N
recipe Categorical N

recipe step Categorical N
IONGAUGEPRESSURE Numeric (Sensor) Y
ETCHBEAMVOLTAGE Numeric Y
ETCHBEAMCURRENT Numeric Y

ETCHSUPPRESSORVOLTAGE Numeric Y
ETCHSUPPRESSORCURRENT Numeric (Sensor) Y

FLOWCOOLFLOWRATE Numeric Y
FLOWCOOLPRESSURE Numeric (Sensor) Y

ETCHGASCHANNEL1READBACK Numeric Y
ETCHPBNGASREADBACK Numeric Y

FIXTURETILTANGLE Numeric N
ROTATIONSPEED Numeric N

ACTUALROTATIONANGLE Numeric (Sensor) N
FIXTURESHUTTERPOSITION Numeric Y

ETCHSOURCEUSAGE Numeric N
ETCHAUXSOURCETIMER Numeric N
ETCHAUX2SOURCETIMER Numeric N
ACTUALSTEPDURATION Numeric (Sensor) N

Table 2. Number of data points and faults for each tool id

Tool-ID Total Points (/106) F1 F2 F3

01 M02 5.11 53 40 16
02 M02 4.14 5 28 0
03 M01 3.43 42 51 0
04 M01 5.10 7 1 1
06 M01 3.81 10 3 3

in Flowcool Pressure but the failure is marked at a later
point in time.

3. Lack of knowledge of exact time of onset of failures in the
training set: Despite having access to large number of
failure instances, the onset of failure is very challenging
to identify as there is a large variance in the time between
onset of a failure and the shutdown of a machine. This
can be seen, for example, in Figure 2(b) where there is
a gradual increase in Flowcool Pressure as we move to-
wards failure.

4. Extremely large range of possible RUL values: It is well-
known that it is difficult to estimate the remaining useful
life unless there is at least one symptom of an approach-
ing failure or an onset of failure. In this dataset, the av-
erage time between two failures is 60.82 × 104 with the
maximum time between two failures being as large as
22.26 × 106. It is therefore challenging to model such a
large variance in the RUL values. Possible range of RUL
values for each tool id are listed in Table 6.

5. Sequence of faults in a given tool: Several shutdowns
caused by different types of faults are reported for each
tool. Therefore, it is difficult to model the normal oper-
ational behavior of a tool as a tool may be normal with
respect to one fault type but may be depicting abnormal
behavior or symptoms with respect to another fault type.

6. Multiple operating conditions: There are various param-
eters such as fixture shutter position, stage, recipe, recipe
steps, that determine the operating condition. Each pa-
rameter can have a large number of values (one at a time).
All possible combinations of all parameter’s values (all
operating conditions) are large in number. Percentage of
data points with respect to shutter position are listed in
Table 7.

4. BACKGROUND: DEEP LSTM NETWORKS

We use a variant of LSTMs as described in Zaremba et al.
(2014) in the hidden layers of the neural network. Intuitively,
an LSTM unit maintains a cell state using an input gate, a
forget gate, and an output gate: at a given time step, the input
gate decides what should be added to the cell state, forget gate
decides what should be removed from the cell state, and the
output gate decides what part of cell state should be given as
an output from the LSTM unit. Hereafter, we denote column
vectors by bold small letters and matrices by bold capital let-
ters. For a hidden layer with h LSTM units, the values for the
input gate it, forget gate ft, output gate ot, hidden state zt,
and cell state ct at time t are computed using the current in-
put xt, the previous hidden state zt−1, and the cell state ct−1,
where it, ft, ot, zt, and ct are real-valued h-dimensional vec-
tors such that zt = f(xt, zt−1, ct−1) as given by Equations
1.

Consider Wn1,n2
: Rn1 → Rn2 to be an affine transform

of the form z 7→ Wz + b for matrix W and vector b of
appropriate dimensions. In the case of a multi-layered LSTM
network with L layers and h units in each layer, the hidden
state zlt at time t for the l-th hidden layer is obtained from the
hidden state at t − 1 for that layer zlt−1 and the hidden state
at t for the previous (l − 1)-th hidden layer zl−1

t . The time
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Table 3. Sensor-wise statistics

Sensor Name Min. Max. Mean St.Dev.
IONGAUGEPRESSURE -1.9079 165.6602 0.0095 1.0737
ETCHBEAMVOLTAGE -1.5069 3.6962 0.0032 0.9975
ETCHBEAMCURRENT -1.5120 3.6552 0.0035 0.9968

ETCHSUPPRESSORVOLTAGE -1.5752 2.0325 0.0093 0.9983
ETCHSUPPRESSORCURRENT -1.5069 24.6522 0.0098 1.0046

FLOWCOOLFLOWRATE -2.8429 2.9403 0.0011 1.0007
FLOWCOOLPRESSURE -2.3330 15.1639 0.0281 1.0619

ETCHGASCHANNEL1READBACK -1.9010 6.2425 0.0045 0.9968
ETCHPBNGASREADBACK -2.8016 2.5711 0.0034 0.9985

FIXTURETILTANGLE -1.6493 22.2856 0.0008 1.0139
ROTATIONSPEED -91.6578 25.6777 -0.0179 0.7124

ACTUALROTATIONANGLE -17.2244 27.7990 -0.0166 0.9578

Table 4. Scoring functions used in test and validation phases.
Here, R: Ground Truth TTF, R̂: Submission TTF.

R R̂ Original Score (S1) Secondary Score (S2)
Num Num exp(-0.001*R)*abs(R-R̂) 0.1*(R-R̂)2

NaN Num exp(-0.001*R̂)*abs(R̂) 5.0/(abs(R̂)+3)
Num NaN exp(-0.001*R)*abs(R) 20*exp(-1.0/(abs(R)+0.1))
NaN NaN 0 0

Table 5. Average, minimum and maximum missing points
before failure shutdowns

Tool-ID Min Max (/103) Average (/103)
01 M02 0 120.5 14.01
02 M02 0 81.7 16.27
03 M01 0 83.2 12.57
04 M01 0 5.6 1.17
06 M01 0 9.7 2.51

series goes through the following transformations iteratively
at l-th hidden layer for t = 1 through T , where T is length of
the time series:


ilt

f lt

ol
t

gl
t

 =


σ

σ

σ

tanh

W2h,4h

(
D(z

l−1
t )

zlt−1

)
(1)

where the cell state clt is given by clt = f ltc
l
t−1+ iltg

l
t, and the

hidden state zlt is given by zlt = ol
ttanh(c

l
t). We use dropout

for regularization Pham et al. (2014), which is applied only
to the non-recurrent connections, ensuring information flow
across time-steps for any LSTM unit. The dropout operator
D(·) randomly sets the dimensions of its argument to zero
with probability equal to a dropout rate, z0t is the input xt at
time t. The sigmoid (σ) and tanh activation functions are
applied element-wise.

In a nutshell, this series of transformations for t = 1 . . . T ,
converts the input time series x1...T of length T to a fixed-
dimensional vector zLT ∈ Rh. We, therefore, represent
the LSTM network by a function fLSTM such that zLT =

fLSTM (x;W), where W represents all the parameters of the
LSTM network.

5. REMAINING USEFUL LIFE ESTIMATION USING
MULTI-TASK LSTM-MR

In this section we describe how we formulate the RUL estima-
tion problem. We intend to learn a single mapping function
to estimate RUL values for all the fault types simultaneously
and so we model it as a multi tasking problem of metric re-
gression tasks. Each metric regression task performs RUL
estimation for each of the fault types and the LSTM-MR net-
work is trained to perform all the tasks at once.

5.1. RUL Estimation Problem Formulation

Consider a training set D = {x1...T
i , ri}Ni=1 containing mul-

tivariate real-valued time series x1...T
i = {x1

i ,x
2
i , . . . ,x

T
i }

where xt
i ∈ Rm and RUL vector corresponding to the last

timestep of the time series ri = {r1i , r2i , ..., rCi }. Here m
is the number of sensors (input parameters), T is the length
of the time series, rji ∈ R with j = 1, . . . C, where C is
the number of faults, such that there is one RUL value corre-
sponding to each fault type. In general, the N instances are
obtained from data across tools by suitable windowing and
normalization as described in detail in Section 6. The goal is
to learn a mapping function fMR that maps any given mul-
tivariate time series x1...T

i to a vector of RUL estimates r̂i
corresponding to the ground truth ri. In the following sub-
section, we describe simple pre-processing done on the time
series before inputting it to the model.

5.2. Pre-processing

In pre-processing, first, since we have to deal with time series
of large lengths, we perform the standard downsampling by a
factor of d1. The downsampled time series is given by,

x̂k
i = xk.d1

i ∈ Rm

where k = 1, 2, 3, . . . , T1 and T1 = T/d1. Here x̂k
i is an m

dimensional vector representing the value at kth timestep of
the downsampled time series of length, T1.
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Table 6. Possible range of RUL values

Tool-ID F1 F2 F3

Rmin. Rmax.(/10
6) Rmin. Rmax.(/10

6) Rmin. Rmax.(/10
6)

01 M02 0 9.92 0 9.18 0 10.31
02 M02 0 5.87 0 3.12 NaN NaN
03 M01 0 15.52 0 6.75 NaN NaN
04 M01 0 22.26 0 .61 0 4.99
06 M01 0 26.54 0 25.57 0 14.37

Linear layer

zLSTM layers

Input layer

(a) LSTM-MR

  

Linear layer

LSTM 

    Input: 

y
1 
= [x

1
, x

2
] y

2 
= [x

3
, x

4
]

...

...
LSTM LSTM 

(b) LSTM-MR unrolled over time. d2 = 2 for illustration of T2V operation.

Figure 3. LSTM based Metric Regression Neural Network Architecture

Table 7. Percentage of points with respect to shutter position

Shutter Position Percentage of Points
0 33.599
1 52.589
2 1.985
3 0.784

255 0.057
missing 10.986

In the second step, we further reduce the time series length by
a Time series to Vector (T2V) operation. In T2V, we decrease
the sequence length by a factor of d2 but also increase the di-
mensionality of the resultant time series by the same factor
d2 unlike in the usual downsampling. This is done to ensure
having a smaller sequence length by retaining all the infor-
mation in the time-series. Also, we assume that for a small
d2, we do not lose any significant temporal information.

Formally, T2V can be described as follows.

yj
i = [x̂

(j−1).d2+1
i , x̂

(j−1).d2+2
i , . . . , x̂j.d2

i ] ∈ Rm.d2

where j = 1, 2, 3, . . . , T2 and T2 = T1/d2. Here yj
i is

an m.d2 dimensional vector representing the value at jth

timestep of the resultant time series of length, T2. Effectively,
through the two pre-processing steps, a time series window
of length T is converted to a time series of length T

d1.d2
, mak-

ing it computationally more efficient to be processed by the
LSTM-MR Network.

We impose an upper bound ru on any RUL value rji as, in
practice, it is not possible to provide meaningful estimates of
RUL too early in the life of a tool, e.g. if the tool is in perfect
health and there are no symptoms of degradation. So if any
rji ≥ ru, it is clipped to ru. We describe our training and
inference procedures using fMR in the next subsection.

5.3. Model training

We train an LSTM-MR network to estimate the RUL vector
r̂i, given an input time series y1...T2

i . At the output of the net-
work we have C linear units estimating the remaining useful
life values for C fault types. The network is trained using the
standard MSE loss function as given below.

zLT2
= fLSTM (y1...T2

i ;W)

r̂i = WO zLT2
+ bO

L(ri, r̂i) =
1

C

C∑
p=1

(rpi − r̂
p
i )

2

(2)

where W represents all the parameters of the LSTM net-
work and WO and bO represent the weights and biases of
the output linear layer which map the LSTM network’s out-
put to RUL estimations. The total loss function can be given
by 1

N

∑N
i=1 L(ri, r̂i). We minimize this loss using stochas-

tic gradient descent method and the standard backpropagation
through time for RNNs.

From equation 2 and the pre-processing described in 5.2, we
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Multivariate
Time Series 

Window

Sensor 
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Trained Metric
Regression Model
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RUL
Target vector 
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T2V (d
2
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1
)

Figure 4. Approach Overview with Training and Inference Phases. Here, T2V: Time series to Vector operation.

can concisely represent the entire process as,

r̂i = fMR(x
1...T
i ; d1, d2,W,WO,bO)

Once trained, it can be noted that fMR can be used in an on-
line fashion. For a current time instance t, the latest T points
(corresponding to time instances t− T + 1, . . . , t), can be in-
put to fMR to estimate the RUL values for the C fault types.
The process of training and inference using fMR is shown in
Figure 4.

6. EXPERIMENTAL EVALUATION

In this section, we present our experimental setup which in-
cludes the details of pre-processing and choosing values for
various parameters. We later present the results of our LSTM-
MR approach.

6.1. Experimental Setup

In the training set, we are provided with data for 20 tools.
According to the functional description of the apparatus, we
infer that the etching process is carried out only when the pa-
rameter fixture shutter position takes a value of 1. So, for
all the tools, we consider only those points for which fixture
shutter position is equal to 1 and also use only the 9 sensors
as marked in Table 1 for model building. We then split the
data of each tool into overlapping windows of length 2000
(T = 2000) points with an overlap of 500 points. Using the
time to failure values given for the tools in the train set, we
get the values for the target RUL vector ri for each of the
windows. We use a value of ru = 500. We had around 0.1M
windows out of which only around 150 were having at least

one of r1i , r
2
i , ..., r

C
i less than ru. To handle such an imbal-

ance in the target RUL values in training, we retain all the
windows for which at least one of r1i , r

2
i , ..., r

C
i is less than

ru and randomly sample from the remaining set of windows
to form our complete training set. For training, we divide the
clipped target RUL values by ru to normalize them, such that
the target RUL values lie in the [0, 1] range. After estimating
r̂i, RUL values on the original scale are obtained by multi-
plying with ru. According to the dataset we have three fault
types and hence C = 3. For the two steps described in sec-
tion 5.2, we use d1 = 2 and d2 = 10 to pre-process the time
series before inputting them to the model.

For the LSTM network, we choose the number of units h
from the set {50, 100, 150, 200} and use L = 2 layers.
We use early stopping with a maximum of 2500 iterations
of training with a batch size of 32. Also we use dropout
(Zaremba et al., 2014) with a value of 0.4 over the feedfor-
ward connections for regularization, and use Adam optimizer
(Kingma & Ba, 2014) for optimizing the weights of the net-
works with an initial learning rate of 0.005 for all our experi-
ments. We chose the best architecture (by varying the number
of hidden units (h)) as the one with minimum RMSE on a la-
beled hold out set (taken from the training set of 20 tools). We
will present results of our approach in the next subsection.

6.2. Results

We have evaluated the performance of our LSTM-MR ap-
proach using fMR on the data sets provided in the test (phase-
1) and validation (phase-2) phases provided during the chal-
lenge. We restrict our RUL estimations between 100 and
150 and any RUL estimate falling below 100 or above 150

8
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Table 8. Performance of LSTM-MR and LSTM-MR-Ensemble in terms of S1 and S2 on test and validation phase data sets.
Ptest and Pvalidation denote the number of non-NaN estimations made on the test and validation phase data sets respectively.

S1, S2 and S are scores as described in Section 3.4. Lower scores indicate better performance.

Approach Ptest Pvalidation S1 on test S1 on validation S2 on validation S on validation
LSTM-MR 4210 3929 63.01 96.48 5.26× 108 2.63× 108

LSTM-MR-Ensemble 300 270 62.93 96.40 3.82× 107 1.91× 107
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Figure 5. True positives to False positives ratio with respect
to estimated RUL ranges

is treated as NaN. These two thresholds were selected by
estimating true positives to false positives ratios for various
ranges of estimated RUL values, on a sample of points taken
from the provided train set. An estimated RUL value is con-
sidered a true positive, if |rpi − r̂

p
i | ≤ 100, p = 1, 2, . . . , C,

and a false positive, otherwise. As shown in Figure 5, the
range 100 to 150 of the estimated RUL values shows the max-
imum true positives to false positives ratio. Hence the esti-
mates outside the interval [100, 150] were replaced by NaN.
Along with LSTM-MR, we also present results for LSTM-
MR-Ensemble which is an ensemble of the two best models,
say M1 and M2, picked on the basis of a hold out set. Even if
one ofM1 andM2 estimates NaN, we consider the final RUL
estimate to be NaN and we take the maximum of the estima-
tions from M1 and M2 otherwise for LSTM-MR-Ensemble.

From Table 8, we can see that in both the test and validation
phases, LSTM-MR-Ensemble performs better than LSTM-
MR. It can be noted from Table 4 that, when the ground truth
is actually a number, S2 for estimating the RUL to be a num-
ber is mostly higher compared to estimating it to be NaN.
This is the reason for the significant difference, in terms of S2,
between LSTM-MR-Ensemble and LSTM-MR on the vali-
dation phase data set. Also, LSTM-MR-Ensemble estimates
more number of NaN values as compared to LSTM-MR (as
denoted by Ptest and Pvalidation in Table 8) as it is an ensem-
ble and hence results in lesser false positives.

7. CONCLUSION

We have described the approach used for the 2018 PHM Data
Challenge. We have highlighted the challenges in the super-
vised learning based approach such as missing data close to

failures, noisy labels for failures due to lack of knowledge of
onset of failure, learning to estimate very large RUL values
(very early prediction of failure), capturing temporal depen-
dencies from very long multivariate time series, dealing with
multiple operating conditions, etc. and described our solution
in the context of these challenges. Our approach leverages
deep recurrent neural networks to learn a supervised model
for remaining useful life estimation for three types of failure
modes in ion mill etching system. Our approach leverages
data from all tool-ids and failure modes to learn one general-
purpose model for all tools and failure modes. Importantly,
the proposed approach is able to estimate RUL in an online
fashion. We also found that an ensemble of RNN models sig-
nificantly improves the results. In future, it will be interesting
to explore if a semi-supervised approach (e.g. as in Malho-
tra, Ramakrishnan, et al. (2016); Malhotra, TV, et al. (2016))
can be used to mitigate the issue of lack of knowledge of the
time of onset of failure to find the change points, i.e. the time
instances when the health index starts decreasing or the first
symptoms of failure appear, and the RNN model can then be
used to estimate RUL only after the change points.
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